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An efficient level set model based on multiscale local binary fitting (MLBF) is proposed for image segmentation. By introducing
multiscale idea into the LBF model, the proposed MLBF model can effectively and efficiently segment images with intensity
inhomogeneity. In addition, by adding a reaction diffusion term into the level set evolution (LSE) equation, the regularization of
the level set function (LSF) can be achieved, thus completely eliminating the time-consuming reinitialization process. In the
implementation phase, in order to greatly improve the efficiency of the numerical solution of the level set segmentation model,
we introduce three strategies: The first is the additive operator splitting (AOS) solver which is used for breaking the restrictions
on time step; the second is the salient target detection mechanism which is used to achieve full automatic initialization of the
LSE process; the third is the sparse filed method (SFM) which is used to restrict the groups of pixels that need to be updated in
a small strip region. Under the combined effect of these three strategies, the proposed model achieves very high execution
efficiency in the following aspects: contour location accuracy, speed of evolution convergence, robustness against initial contour

position, and robustness against noise interference.

1. Introduction

In the process of researching and applying images, people
tend to be interested only in certain parts of the image, often
referred to as target or foreground; they generally correspond
to specific regions of the image that have unique properties.
In order to identify and analyze the target, these areas need
to be separated and extracted, and then it is possible to make
further use of the target, such as feature extraction and
measurement. Image segmentation is the technique and
process of segmenting an image into distinct regions and
extracting interesting objects. Image segmentation is the
key step from image processing to image analysis, and it is
also a basic computer vision technology. Image segmentation
has been paid great attention for many years; so far, a lot of
image segmentation algorithms [1-5] have been proposed.
In particular, the active contour models [6-7] have been
widely used because they are able to provide smooth and
closed boundary contours as segmentation results. The level
set method [8] is an implicit representation of active con-
tours. Compared to explicit active contour models [6, 9]

which utilize parametric equations to represent evolving
contours, level set methods represent the evolving contours
as the zero level set of a higher-dimensional function, thus
making them numerically stable and easily able to handle
topological changes. Without loss of generality, we can
classify the level set-based active contour models into two
categories: the edge-based models [7, 9-11] and the region-
based models [12-16]. The edge-based model uses the
gradient information of the image to construct the driving
force required for the evolution process. Such models are
not only sensitive to noise interference but also difficult to
detect weak target boundaries. In addition, the final output
is heavily dependent on the initial position of the contour.
The region-based model constructs the driving force needed
for the evolution process based on the regional statistical
information of the image. Compared with the edge-based
methods, such methods have the following advantages:
(1) They do not rely on the gradient information of the
image, so they can segment the weak edges, and (2) because
the region information adopted is global, it is usually robust
to noise. One of the most successful region-based models is
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the Chan-Vese (CV) model [12], which has been widely
used in binary phase segmentation with the assumption
that each image region is statistically homogeneous. How-
ever, the homogeneity assumption cannot precisely describe
the intensity distribution of region with intensity inhomo-
geneity. Thus, it often fails to segment the images with
intensity inhomogeneity.

In order to overcome the segmentation difficulty caused
by the intensity inhomogeneity, the researchers have pro-
posed some local region-based segmentation models: they
are the local binary fitting (LBF) model [17], the local
Gaussian distribution fitting (LGDF) model [18], the local
image fitting (LIF) model [19], and so on. These methods
generally believe that the images with intensity inhomoge-
neity satisfy the assumption of homogeneity within a very
small local region; that is, within a sufficiently small local
image region, we can assume that the intensity of the
image is approximately statistically uniform. Thus, by fit-
ting the given image in the sense of local region rather
than global region, they can segment the images with
slight inhomogeneity.

In practical implementation, they generally use a statisti-
cal function with a fixed scale to measure the characteristic
parameters of the local region centered at the current
sampling point. However, the degree of inhomogeneity
between different local regions is usually inconsistent; that
is to say, the nonlinear phenomenon of inhomogeneity is
very common. Therefore, the practice of fixing the scale for
all local regions does not apply to the images with severe
inhomogeneity. In view of the universality of the aforemen-
tioned issues, to improve the segmentation performance
of severe inhomogeneous images, we need to introduce
multiscale idea into our model framework.

In this paper, we propose a level set model based on
MLBF by introducing the idea of multiscale modeling into
the original LBF model and apply it to the practice of inho-
mogeneous image segmentation. Firstly, an implicit scheme
called AOS [20] is utilized to break the time-step limitation
of traditional explicit schemes. Under this numerical imple-
mentation strategy, the iterative process can take a larger
time step, so the evolution curve can quickly converge to
the real target contour. Secondly, an automatic initialization
strategy driven by a salient target detection mechanism is
adopted. By performing a CV [12] model-based segmenta-
tion operation on the output of the salient object detection
algorithm, we can get the initial curve required for the
evolution process. This process is completely automated
and does not require any form of human involvement.
Thirdly, a level set function update strategy called SFM
[21] is used to minimize the number of pixels of the level
set function that need to be updated in each iteration.
Under the SFM framework, the object to be updated for
each iteration is only one-pixel width; thus, the SEM is
an extreme narrowband [22, 23] strategy. Obviously, this
strategy can further accelerate the evolution of the level
set function. Fourthly, to further control the smoothness
of the evolving curve and avoid the oversegmentation
phenomenon, the regularization term is included in the
energy functional. Finally, the multiscale segmentation is
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performed by minimizing the new formed level set
energy functional.

The remainder of this paper is organized as follows.
Section 2 is a brief description of the background. Section 3
presents the proposed model. Section 4 gives the three
implementation strategies adopted in this paper. Section 5
validates the proposed model by extensive experiments and
discussions on a lot of images. Last, conclusions are drawn
in Section 6.

2. Background

2.1. Level Set Method. The level set methods implicitly repre-
sent the planar closed curve C by the zero level set of a
Lipschitz function ¢(x, y,t): Q — R, such that ¢(x, y,t) >0
if the point (x, ) is inside C, ¢(x, ,t) < 0 if (x, ) is outside
C, and ¢(x, y, 1) =0 if (x,y) is on C.

The variable ¢ in the expression ¢(x, y,t) indicates that
the level set function changes with time, and its evolutionary
process can be expressed by the following equation:

o
= =VIVdl (1)

where “V” represents the gradient operator, V is the
speed function of the evolutionary process, and ¢ is
the LSF.

The variational LSF considers LSE as a problem of
minimization of certain energy functional E(¢), that is,

09 __OE(¢) @

ot ¢

By using different energy terms to express the informa-
tion components related to the evolutionary process, the
active contours will be freely changed for different applica-
tion purposes. Thus, the variational level set methods are
convenient for developing new segmentation models and
have received great attention in recent years.

The core idea of the level set method is as follows: when
dealing with the evolution of the plane contour, the level set
method does not directly track the position of the active
contour, but updates the LSF through the evolution equation
shown in (1) and then achieves the purpose of updating the
active contour hidden in the LSF [8]. The biggest advantage
of this curve evolution style is that the LSF remains a valid
function even if the topological change (splitting or merging)
occurs in the closed curve which is hidden in the LSF.
Figure 1 shows an example of the LSE; the first row repre-
sents the three states in the LSE process, and the second is
the zero level set curve corresponding to the first row. From
this diagram, we can find that the topological structure
changes of the evolving curve can be well handled (the
topological change here is splitting type) by using the level
set expression.

2.2. LBF Model. Li et al. [17] proposed a novel region-based
active contour model which takes full account of the local
information of the image, and some good segmentation
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FIGURE 1: An example of LSE.

results are obtained on the nonhomogeneous images. The
energy functional is defined as follows:

ELBF=M1JJ K, (x=y)|I(y) -
alin(c)
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where I is the input image, Q is the integration region
corresponding to the image plane, y; and u, are control
parameters, K, is a Gaussian kernel function with standard
deviation equals to o, and f; and f, are two fitting functions
which approximate the local image pixel values inside and
outside contour C, respectively.

Similar to other segmentation models based on level set,
we still describe the LBF model in the level set framework
and use ¢ to represent the LSF. Minimizing the energy func-
tional E"BF with respect to ¢ by using the calculus of variation
and the steepest descent method [24], we can easily deduce
the corresponding gradient descent flow as
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where Q is the integration region corresponding to the entire
image, and
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In the above equations, we actually use the regularized
versions of Heaviside function H and Dirac function § which
are expressed as follows:
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The parameter ¢ affects the profile of J,(¢). A bigger ¢
will cause a broader profile, which will expand the capture
scope but decrease the accuracy of the final contour.

In actual calculation, the construction process of the
local binary image (p,e; — u,e,) is based on all the pixels
in a local Gaussian window; this localization property is
the real reason for the LBF model to be able to segment
nonhomogenous images. However, when the contour is
located at a certain location where p e, = p,e,, the local
image fitting force will be zero, which leads to the evolu-
tion process to be trapped into certain local minima; thus,
the segmentation result has a strong correlation with the
initial position of the curve.

3. The Proposed Segmentation Model

The energy functional corresponding to the proposed level
set segmentation model is composed of two parts: local term
E" and regularization term ER.

3.1. Local Term. The LBF model has achieved good results
on the problem of inhomogeneous image segmentation;
however, when the inhomogeneity of the image is severe,
the segmentation performance of this model is drastically
reduced. The reason is that for a given input image, the
model’s scale parameter has only one single value. In the
real world, more cases are such that the degree of inhomoge-
neity within different image areas may be different; thus, the
scale parameter of the model should not take only one value.
In view of this, we introduce multiscale idea into the LBF
model to improve the adaptability of the model to severe



inhomogeneous images; the following is the local energy
term after the introduction of multiscale idea:

Em Y w, | B (0 ful0)ds st Y w, -1

(8)

where Q) is the image region, N is the total number of
Gaussian kernel functions, f, ,(x) and f, ,(x) are the values
of f,(x) and f,(x) of the LBF model on the nth scale,
respectively, w,, is the weight factor of the nth fitting energy
term, x is the central sampling point, and Ey" has the
following expression:
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where Q;, and Q,, correspond to the image regions inside
and outside the active contour, respectively, and A, and A,
are two positive constant coeflicients.

The MLBF model uses a series of Gaussian kernel func-
tions with different scale parameters to deal with the image
data with scale nonuniformity (corresponding to intensity
inhomogeneity). By using the LBF model as our theoretical
basis and introducing multiscale information, the MLBF
model can express the global properties of the input image.
Because the LBF model is the ideological foundation of the
MLBEF model, the model of this paper inherits the segmenta-
tion ability of the LBF model completely in terms of handling
inhomogeneous images. At the same time, the MLBF model
is more robust to the position of the initial contour and the
noise of Gaussian type.

As mentioned above, it is inappropriate to use the same
scale over all local regions when segmenting images that have
serious intensity inhomogeneity. Here, we give an example to
verify this conclusion.

In Figure 2, we apply the LBF model to segment the
images with slight and severe inhomogeneity. Figure 2(a)
shows a sample image with slight inhomogeneity (the
grayscale range of the target area is [44, 193]). We make two
markers (P, and P,) on this image, where the x-shaped mark
is the position where the current pixel is; the circular mark is
the local region (its scale is equals 15 pixels) corresponding to
the current pixel. From the two grayscale histograms shown
in Figures 2(b) and 2(c), we can see that the histograms of
the local regions corresponding to center points P, and P,
have similar grayscale distribution ranges. In these two
distributions, one of them ranges from 41 to 64, and the other
ranges from 157 to 181; the grayscale spans of these two
distributions are approximately equal to 13; that is to say,
the inhomogeneity of the image does not change greatly
when the image data goes from top to bottom. Therefore,
when we apply the LBF model to this image, we can get
the correct segmentation result shown in Figure 2(d).
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Figure 2(e) shows another example image, which differs
from Figure 2(a) in that it has severe inhomogeneity (the
grayscale range of the target area is [25,229]). Similar to the
aforementioned approach, we also mark two sampling points
on this image; they are P; and P,. From the distribution
histograms shown in Figures 2(f) and 2(g), we find that the
inhomogeneity of this image is much stronger than that
shown in Figures 2(b) and 2(c), and the local region corre-
sponding to center point P, has a higher inhomogeneity than
P,. As we expected, the LBF model outputs the wrong
segmentation result (as shown in Figure 2(h)) on this image.
Thus, in order to accurately segment this type of image, the
scales at the local areas indicated by the two circles should
take different values.

3.2. Regularization Term. When implementing the tradi-
tional level set segmentation models, the upwind schemes
are often used to keep numerical stability [24], and the LSF
is initialized to be a signed distance function (SDF). Since
the LSF is usually very flat or steep near the zero level set in
the LSE evolution, this will affect the numerical stability;
a remedy procedure called reinitialization is applied peri-
odically to enforce the degraded LSF being an SDF. The
researchers have developed a number of computational strat-
egies [22, 25-28] for the problem of reinitializing LSF.
Although these methods have achieved some success, the
following problems exist: (1) preventing new zero contours
from emerging, which may cause undesirable results for
image segmentation, such as failures to detecting the inte-
rior boundary, and (2) the reinitialization process which
requires a lot of CPU time, resulting in an extension of
the LSE process.

In order to solve the aforementioned problems, in recent
years, some variational level set formulations [28-32] have
been proposed to regularize the LSF during evolution,
and hence the reinitialization procedure can be eliminated.
Among these methods, we choose Zhang et al’s [32]
method as our regularization strategy; the reason is that
their method can completely eliminate the reinitialization
process and has a strict theoretical derivation.

Under the variational level set framework, the LSE
equation can be formulated as

¢ = ~Ey(9) = FS(¢),
¢(x,1=0) =y (%),

where Ej(¢) denotes the Gateaux derivative of the energy
functional E(¢), 8(¢) is the Dirac functional, F is the force
function, and ¢, (x) is the initial LSF.

By adding a diffusion term “¢V¢” into (10), we have the
following reaction diffusion (RD) equation for LSM:

(10)

8,=edp -~ (-FS(9))
s.top(x,t=0,€) =y (x),

where ¢ is a small positive constant and A is the Laplacian
operator. Equation (11) has two dynamic processes: the
diffusion term “cA¢” gradually regularizes the LSF to be

(11)
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FIGURE 2: An example of inhomogeneous image segmentation based on the LBF model. (a) Sample image with slight inhomogeneity. (b) The
histogram of gray level distribution of the local region corresponding to center point P;. (c) The histogram of gray level distribution of the
local region corresponding to center point P,. (d) Correct segmentation results. (e) Another sample image with severe inhomogeneity.
(f) The histogram of gray level distribution of the local region corresponding to center point P;. (g) The histogram of gray level

distribution of the local region corresponding to center point P,. (h) Wrong segmentation result.

piecewise constant in each segment domain (), and the reac-

tion term “1 — 1/e(=F3(¢))” forces the final stable solution of

(11) to “~F&(¢)=0,” which determines (.. Due to the
absence of the diffusion term, the traditional LSMs have to
regularize the LSF by an extra procedure, that is, reinitializa-
tion. That is to say, the gradient descent flow corresponding
to the regularization term ER(¢) can be expressed as follows:

OEF(¢) _
S = (12)

where « is a control parameter.

From (12), we can deduce the expression of EX(¢):

E@)=3 | Ivétoras (13)

In summary, by adding a RD term into the LSE
equation, the regularization of the LSF can be achieved,
thus completely eliminating the time-consuming reinitiali-
zation process.

3.3. Level Set Formulation. With the level set representation,
the total energy functional E, . (¢) can be reformulated
as follows:

Era($#) = E*(9) +E*($) = Y w, (ijﬂ (JQK%@_y)yI(y) —fi,n<x>|2Mi<¢<y>>dy) dx) o 5] wotopas ()

where ) is the entire image region to be segmented, A, and
A, are positive constants, and

My (6(y)) = He(¢(9)),
My(¢(y)) =1 - He(¢(y))-

(16)

Keeping the multiscale fitting energy function f,, and
fo.n fixed, and minimizing the energy functional E,,(¢)

with respect to ¢, we obtain the following gradient descent
flow equation:

3¢  OE,,
o= =5, (9) b = hoe) + -89

==0,(¢)(M1e; — Ayey) + k- div (V),

(17)

where « is the same control parameter as (12), and

(%)= ijK - I0) - fin(x)[dy,  (18)
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In order to solve the partial differential equation shown
in (17), in this paper, three special strategies are adopted to
improve its computational efficiency; the details related to
these three strategies are shown in Section 3.

4. Implementation Strategies

4.1. AOS Solver. An explicit scheme is the most popular
method for solving (17) [33], but due to the limitations of
the Courant-Friedreichs-Lewy (CFL) [24] condition, which
asserts that the advancing speed of numerical waves cannot
exceed the evolution speed of physical waves. Thus, the active
contour can move only a small distance in each iteration; this
means that we can only take a small time step. If the active
contour is not near the target edge, the evolution process will
take a long time to reach its convergence state. In order to
remove the restriction on the time step and obtain fast
convergence, we introduce the fast AOS [34] scheme to solve
the terms which are marked by operator div in (17); however,
the existence of J(¢) leads some differences between our
terms and the processing objects of AOS. Fortunately, Chan
et al. [12] indicate that §,(¢) can be replaced by |V¢|; more-
over, in the restriction on signed distance function, we have
V| =1, so our equation will be an appropriate object that
can be handled by AOS. The first term on the right side of
(17) has no relation with the gradient of the LSF, so it can
be treated as a constant. In our previous paper about the
AOS scheme, we have given the AOS scheme for the terms
which are marked by operator div (for more details, please
refer to [20]).

4.2. Salient Target Detection Mechanism-Based Automatic
Initialization of Level Set. Since the evolution equation of
the level set is carried out in the form of iterations in the

concrete execution, we need to set an initial value for the
LSF so that our time iteration process has a reference point;
the setting method of the initial value is usually divided into
two forms: (1) Man-made type. For example, a curve is
specified by hand drawing (by sliding the mouse over the
image area to complete the interactive design of the curve)
or by parameterizing (giving all the associated parameters
of the curve), and then the signed distance function corre-
sponding to this curve is taken as the initial value of the level
set. (2) Algorithm automatically generated type. For example,
the third-party presegmentation algorithm is used to output
the rough foreground region of the image, and then the
contour of the foreground region is extracted and taken as
our initial curve. Finally, the signed distance function corre-
sponding to this curve is taken as the initial value of the
LSF. Under different application scenarios, we are free to
use these two types of initial curve setting strategies; their
convenience is of no doubt, but their respective shortcomings
are obvious: The shortcomings of the first approach are
people’s strong subjectivity, so it usually unconsciously
places the initial curve within the neighborhood of the target
of interest. As a result, for the execution process, it is
impossible to make an objective evaluation of the overall
performance of the level set segmentation algorithm. The
shortcomings of the second approach are that the output
of the presegmentation algorithm cannot be predicted;
when the presegmentation effect is poor, the corresponding
initial curve must be very disturbing, and there is no doubt
that additional interference is added to our level set
segmentation task.

It is true that the targets we intend to segment usually
have some form of saliency; therefore, we may achieve a
predetection of the target area through a salient target detec-
tion mechanism, and the outer contour of the output is taken
as our initial curve.

Figure 3 shows the performance of some classic salient
target detection algorithms on several sample images (the
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F1GURE 4: Examples of the initial curve determination based on the salient target detection mechanism. The first column: saliency map. The
middle column: the convergence result of the CV model. The third column: the visual effect after the contour curve is superimposed on the

original image.

experimental results section also uses this set of images),
where the first and last columns are the input images and
ground truth, respectively, and the second to the sixth
columns are the saliency maps by using the graph-based
(GB) algorithm [35], frequency-tuned (FT) algorithm [36],
spectral residual (SR) algorithm [37], context-aware (CA)
algorithm [38], and region covariance-based (COV) algo-
rithm [39], respectively. In the saliency map, the greater the
gray value of these results, the greater the significance of the
corresponding position in the input image, and vice versa.
From the saliency target output results shown in Figure 3,
we found that the GB model outputs the optimal saliency
map; the reason is that its results have the following two
characteristics: (1) The pixels in the background area are less
salient, and (2) the pixels in the target area typically have a

higher saliency value. In view of this, in the experimental part
of this paper, we choose the GB model to achieve the detec-
tion of salient targets. In addition, we also found a common
phenomenon that the output of a significant target detection
algorithm is usually a nonbinarized image with a suspected
target area; it cannot directly give the external contour of
the suspected target area, thus we need to further segment
the output of the salient detection algorithm in order to get
the initial curve of the level set.

Because the output of the salient target detection
algorithm has a high degree of fuzzy characteristics, the
external contour of the suspected target area is not obvious;
therefore, the traditional threshold segmentation algorithms
cannot get the ideal segmentation results on this kind of
images. However, the CV model based on the theory of
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level set has excellent segmentation performance for such
edgeless images. Therefore, this paper uses the CV model
to segment the suspected target areas of the salient target
detection algorithms.

Figure 4 shows the segmentation results of the CV model
on the saliency map shown in the second column of Figure 3;
in order to demonstrate the initialization performance of this
processing mode, the final contour curve is superimposed on
the original input image shown in Figure 3. In initializing the
LSE of the CV model, we take the simplest way to draw a
rectangle directly above the image, which is 5 pixels from
each edge of the input image.

4.3. Sparse Field Method for Fast Local Computation. In tra-
ditional level set methods, it is needed to update the LSF
value in the whole image plane, which greatly increases the
CPU time consumption of the operation process. In order
to overcome this drawback, a narrow band approach which
was initially proposed in [22] and extensively analyzed and
optimized in [23] is proposed; its key idea is to deal only with
pixels which are close to the latest position of the zero level
set in both directions (inwards and outwards), and the SFM
[21] takes this strategy to the extreme since it computes the
updates on a band of the grid points that is only one point
wide. Therefore, the calculated amount increases with the
size of the curve length, rather than the resolution of the grid.

The SEM uses lists of points that represent the zero
level set as well as points adjacent to the zero level set.
By using these lists and carefully moving points to and
from the appropriate list, a very efficient representation
of ¢ can be maintained.

These lists are implemented as doubly linked lists. These
lists have the properties that elements can be added dynam-
ically and that elements can be removed from the middle
of the list. This type of data structure is available in most
programming languages (e.g., the vector class in C++).

Five lists are used in the SFM to represent five
different levels:

L, — [-25-15),

L, — [-15-05),
L, — [-0.5,0.5], (20)
L, — (0515
L, — (15,2.5].

Each list holds the x, y, and z location of pixels in the
image. In addition to the lists, two arrays are used. The first
is the ¢ array. It is the same size as the image domain and
should be maintained at full floating point precision. The
second array is a label map the same size as ¢. This label
map is used to record the status of each point and provides
a way to look up which list a point belongs to. The label
map will only contain the values {-3,-2,-1,0, 1,2, 3}.

The procedure of SEM can be divided into two stages:
initialization and contour evolution.

Figure 5 shows an instance of the initialization of SFM.
In the LSF evolution stage, the updated status of L, is

i
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FIGURE 5: One example of the initialization in SEM.

determined by the level set iteration. Then, by fusing the
neighborhood information, the updated status of points
around L; can be deduced and stored in the following five
new lists:

S_, — points moving to L_,,

S.;, — points moving to L_,,
Sy — points moving to L, (21)
S, — points moving to L,
S, — points moving to L,.

Finally, points in the above new lists update their status
and one movement of the contour is finished. This process
is repeated until convergence is reached.

It should be noted here that the input of the SFM is the
updated LSF corresponding to the pixels in L, which is only
one pixel wide; by using the AOS strategy to solve ¢"*! shown
in (17), we can get the updated LSF.

In addition, from the implementation of SEM, we see
that the input LSF can be processed in parallel fashion;
thus, we can use GPU or other parallel architectures to
obtain further acceleration.

5. Experimental Results and Discussions

In this section, we will carry out a series of experiments on
some synthetic and real images with slight and severe
intensity inhomogeneity to verify the validity of the model
presented in this paper. The experiments were implemented
by Matlab R2012a on a computer with Intel Core i7 2.3 GHz
CPU, 8 G RAM, and Windows 7 operating system. The CPU
time in this paper starts from the time when the salient target
detection mechanism-based automatic initialization is com-
pleted. Here, we configure the common parameters in the
experiments according to the following values: The time step
At for the evolution process of LSF is set to 15; the parameters
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(a) The comparison results of images numbered 1-3

FiGure 6: Continued.
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(b) The comparison results of images numbered 4-6

FIGURE 6: A set of comparative experiments used to verify the contour location accuracy.
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A Ay, and « are all set to 1; and the parameter N (the total
number of Gaussian kernel functions) is set to 7.

In order to test the generalization ability of the proposed
model, we adopted a method of randomly selecting the test
images. Some of these images come from the literatures on
image segmentation, and some come from the Internet.
These images are weakly related to each other.

In the following, we will evaluate the performance of the
proposed algorithm from three aspects: accuracy, fastness,
and stability; they are represented by contour location
accuracy, speed of evolution convergence, robustness against
initial contour position, and noise interference, respectively.

The contour location accuracy of the MLBF model is
evaluated by applying it to the real images shown in the first
column of Figure 3. In this group of experiments, we also give
the segmentation results of several other classical models, in
which the level set-based segmentation methods have a CV
model [12] and geodesic active contours (GAC) model [1],
and the traditional segmentation methods include expecta-
tion maximization (EM) algorithm [40], Nobuyuki Otsu’s
(OTSU) algorithm [41], and pulse-coupled neural network
(PCNN) algorithm [42]. In order to facilitate the subsequent
description, we give each input image a number; the digital
numbers corresponding to the input images of Figure 3 are
1 to 6. Figure 6 shows the results of this set of comparison
experiments, where the first row is the input images and
the initial contours required for the level set-based segmenta-
tion methods, and the second to the seventh rows are the
segmentation results by using the CV, GAC, EM, OTSU,
PCNN, and our MLBF models, respectively. Figures 6(a)
and 6(b) follow the same image layout. In order to be consis-
tent with the expression form of ground truth, we use two
valued images to represent the segmentation results corre-
sponding to the final evolution curve of the level set.

From this set of real image segmentation experiments (as
shown in Figure 6), we found that the traditional segmenta-
tion methods are difficult to obtain ideal segmentation
results, and they all have different degrees of defects;
however, our method outputs accurate segmentation results.
The following analysis gives the general cause of the afore-
mentioned phenomenon: (1) The logical basis of the CV
model is that the gray value of the target area is uniform. In
most cases, this condition cannot be satisfied; for example,
on the inhomogeneous images shown in this experiment,
the model outputs wrong segmentation results. (2) The
GAC model is a level set model based solely on image gradi-
ent information, so the model is powerless for weak target
edges. (3) Because only the intensity information can be used,
the statistical modeling ability of the EM algorithm will be
affected, and then its final segmentation performance will
be affected. (4) The segmentation process of the OTSU algo-
rithm is based on the histogram; therefore, the spatial
information of the image is sacrificed. When the target area
of the input image is not uniform, the segmentation result
is inevitably deviated. (5) When the PCNN algorithm per-
forms the segmentation task, it searches pixels with similar
gray levels only within the neighborhood of the internal
connection matrix; in the absence of constraints, some small
spurious information will enter into the segmentation results.

Journal of Sensors

TaBLE 1: Region overlap metrics of different algorithms, where
“image number 17 to “image number 6” are the serial numbers of
the images shown in the first column of Figure 3 with the same
order.

. . Indexes
Input image Algorithm IS DSC  FPR  ENR
Ccv 0.4705 0.6399 0.0450 0.5189
GAC 0.7111 0.8311 0.1192 0.2132
EM 0.5101 0.6756 0.1170 0.4529
Image number 1
OTSU 0.7141 0.8332 0.1952 0.1363
PCNN 0.7132  0.8326 0.2099 0.1200
MLBF 0.9302 0.9638 0.0381 0.0343
Ccv 0.4818 0.6503 0.0147 0.5147
GAC 0.3590 0.5283 0.0989 0.6263
EM 0.8096 0.8948 0.1417 0.0655
Image number 2
OTSU 0.0951 0.1736 0.0118 0.9048
PCNN 0.1063 0.1922 0.0217 0.8935
MLBF 0.8319 0.9082 0.0138 0.0539
Ccv 0.9035 0.9493 0.0453 0.0560
GAC 0.6388 0.7796 0.1233  0.2982
EM 0.9024 0.9487 0.0291 0.0724
Image number 3
OTSU 0.8426 0.9146 0.1300 0.0360
PCNN 0.8800 0.9362 0.0850 0.0416
MLBF  0.9301 0.9638 0.0127 0.0286
CcvV 0.7423 0.8521 0.0403 0.2338
GAC 0.5879 0.7405 0.0939 0.3740
EM 0.7288 0.8431 0.0697 0.2291
Image number 4
OTSU 0.7782 0.8753 0.1119 0.1371
PCNN 0.7788 0.8757 0.1370 0.1113
MLBF  0.8097 0.8948 0.0332 0.0385
CcvV 0.4534 0.6239 0.0444 0.5368
GAC 0.6863 0.8140 0.1038 0.2545
EM 0.3488 0.5172 0.6509 0.0021
Image number 5
OTSU 0.0750 0.1395 0.0107 0.9249
PCNN 0.0740 0.1378 0.0158 0.9259
MLBF  0.8330 0.9089 0.0103 0.0020
Ccv 0.8697 09303 0.0199 0.1147
GAC 0.7348 0.8471 0.0002 0.2651
EM 0.8707 0.9309 0.0249 0.1095
Image number 6
OTSU 0.8923 0.9431 0.0375 0.0756
PCNN  0.8729 0.9321 0.0411 0.0931
MLBF  0.9005 0.9477 0.0001 0.0133

(6) On the contrary, the proposed method is established
within the framework of level set; as a result, we can impose
various constraints to filter out the information that does
not belong to the target. This is an important safeguard
mechanism for accurate segmentation. This is the reason
why the output of this paper is the best.

In the subjective visual level of the human eye, our
method does output the best results, in order to increase
the objectivity of the comparison behavior. Next, we will
use four region overlap metrics to compare the
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TaBLE 2: Comparison of the speed of evolution convergence.

Input image Algorithm Iterations CPU time (s)
LBF 598 80.794
LIF 808 98.521
Image number 1
LGDF 536 91.095
MLBF 46 0.577
LBF 758 96.905
LIF 800 87.217
Image number 2
LGDF 653 94.755
MLBF 62 0.623
LBF 300 34.843
LIF 450 40.935
Image number 3
LGDF 500 72.443
MLBF 23 0.249
LBF 550 53.426
LIF 650 65.756
Image number 4
LGDF 250 29.558
MLBF 25 0.211
LBF 450 58.080
LIF 598 64.185
Image number 5
LGDF 200 32.690
MLBF 21 0.234
LBF 520 22.102
LIF 550 27.404
Image number 6
LGDF 260 18.687
MLBF 27 0.133

performances of the models quantitatively; their definitions
are as follows:
(jaccard similarity [43])

N(S N Stest)

]S _ reference , (22)
N (Sreference u Stest)
(dice similarity coeflicient [44])
2N(S ns
DSC = ( reference test) , (23)
N(Sreference) + N(Stest)
N(S S
FPR = (Sreference \ Scommon) (false positive ratio),  (24)
N(Sreference)
N(S \ S
FNR = N(Sies \ Scommon) (false negative ratio), (25)
N(Stest)

where “N” and “U” represent the intersection and union of
two regions, respectively; S Sreferences 304 Scommon are the
output region of the segmentation algorithm, the ground
truth, and the common part of two regions, respectively;
and N(-) represents the number of pixels in the enclosed
set. Obviously, the closer the JS and DSC values to 1, and
the FPR and FNR values to 0, the better the segmentation
results. Table 1 presents the evaluation results using the four
region overlap metrics; it can be seen that the proposed
MLBF model has the optimal performance indicators.
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FiGURE 7: The error segmentation results corresponding to the
convergence state.

The speed of evolution convergence of the MLBF model
can be reflected by the number of iterations required to
obtain the final target contour and the CPU time required
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FIGURE 8: A set of comparative experiments used for verifying the robustness of the model against the initial curve.

FIGURE 9: The pure input image of the noise suitability test.

to complete the entire segmentation process. In this group of
experiments, we compare it with three other level set models
which are also aimed at inhomogeneous images: LBF [17],
LGDF [18], and LIF [19]. The detailed performance indi-
cators for this set of experiments are shown in Table 2;
the initial curves and the input images here are the same
as those shown in Figure 6.

It can be seen from the statistical data in Table 2 that the
proposed model which combines the two strategies of AOS
and SFM has the least number of iterations and the CPU time
consumption under the premise of outputting the accurate
segmentation results, and it can decrease the iterations from
hundreds of times to dozens of times compared with the
level set methods without these two strategies and the total
CPU time from dozens of seconds to hundreds of millisec-
onds. Although the methods involved in the comparison
have reached the final state of convergence, their segmenta-
tion results all have different degrees of error; Figure 7

shows the final evolution curves and corresponding two
valued images.

In order to validate the KL-MLBF’s robustness against
initial contour position, we compare it with three classic
inhomogeneous image segmentation models which have
already appeared in the previous comparative experiments.
Figure 8 shows the results of this set of comparison experi-
ments, where the first row is the input images and the initial
contours of the LSE process, and the second to the fifth rows
are the segmentation results by using the LBF, LGDF, LIF,
and our MLBF models, respectively; here, we use the usual
form of the level set method to express the final segmentation
results. By simply assigning the area inside the curve to white
and the area outside the curve to black, we can get the binary
image corresponding to the segmentation curve. From
this set of comparison results, we found that the results
of the three methods involved in the comparison are
related to the position of the initial contour, while the
model in this paper outputs the same correct result under
different initialization forms.

In order to verify the proposed model’s robustness against
noise interference, we carried out the experiments on a set of
images with different noise levels. By superimposing different
levels of Gaussian noise into a clean original image, we can
easily build the experimental data needed here. In the specific
implementation, we adopt the imnoise function from Matlab,
whose call syntax is “output = imnoise (input, ‘gaussian’, m,
v),” and the precise control of the noise level can be achieved
by changing the values of m and v. In this experiment, we use
the data shown in Figure 9 as the original pure image; the
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FIGURE 10: A set of comparative experiments used for verifying the robustness against noise interference. The first and second rows are the
segmentation results of the LBF and MLBF models under three noise levels, respectively.

segmentation results corresponding to different noise levels
are shown in Figure 10, where the blue curve is the initial
contour and the red curve is the final evolution result. From
the final outputs, we can draw the following conclusion: the
LBF model is greatly affected by noise and all outputs
completely wrong segmentation results, while the proposed
model has excellent noise adaptability.

6. Conclusion

In this paper, we propose a level set segmentation model
called MLBF. By introducing multiscale ideas into the
classical LBF model, the MLBF model in this paper achieves
excellent segmentation performance in the segmentation
experiments of inhomogeneous images. The introduction of
the reactive diffusion energy term makes it possible to ensure
the validity of the LSF without the need for reinitialization. In
the numerical implementation, we have introduced three
strategies to improve the overall performance of the pro-
posed model: (1) the AOS strategy to break the time step
limit, (2) the SFM strategy to achieve minimal pixel update
range, and (3) the salient region localization strategy to
achieve fully automatic initialization. Under the combined
effect of the above strategies, the model of this paper has
achieved excellent performance in the following aspects:
contour location accuracy, speed of evolution convergence,
robustness against initial contour position, and robustness
against noise interference. In the future study, we intend
to further strengthen our model, for example, the intro-
duction of a probabilistic graphical model and other ideas,
in order to further enhance its adaptability in natural
image segmentation.
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