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This paper focuses on target localization problem in a multistation redundancy system which finds broad applications in
sonar, radar, and location-based service. Previous solutions can only be applied to the minimum system, such as the TOA
method with three sensors and the AOA method with two sensors or need matrix inversion. To solve this problem, we
propose a simple closed-form solution for a multistation redundancy localization system by using the estimation variance as
the weighting coefficient to compute an average of each group’s localization result. The proposed method, with simple algebraic
solution, requires no matrix inversion and can be used for low-cost hardware devices. We derive the method in TOA solution
and AOA solution, respectively. The proposed method can also be extended to other locating technologies. Numerical examples
are provided to illustrate the performance of the proposed method in root-mean-square error. The positioning accuracy of the
proposed method is close to Cramér-Rao low bound both in TOA solution and AOA solution.

1. Introduction

Target localization has a wide range of applications in
sonar, radar, and location-based service [1]. It is often of
concern for many scholars to enhance the localization
accuracy and make the localization algorithm widely appli-
cable to all kinds of situations [2]. A large variety of
range-based localization methods have been proposed with
respect to a set of sensors with known positions [3, 4].
Several range-based geolocation techniques have been used
to estimate the target position including the time-of-arrival
(TOA) [5–7], the time-difference-of-arrival (TDOA) [8, 9],
the angle-of-arrival (AOA) [10–12], the received signal
strength (RSS) [13–16] based techniques, or hybrid loca-
tion techniques [17, 18]. Among these location techniques,
TOA and AOA have attracted much attention because of
their high positioning accuracy [16, 18]. This paper focuses
on TOA and AOA location techniques.

There are algebraic method and matrix method for the
multistation localization system [5]. Algebraic methods
mainly include the TOA method [19] which uses the circles

produced by range measurements at other sensors to find
the position of the transmitter at the intersection of circles
in two dimensions or spheres in three dimensions and the
AOA method [10] which calculates the target position from
the point of intersection of bearing lines. It should be noted
that algebraic methods are designed for the minimum
location system, such as the TOA method with three anchor
sensors, and the AOA method with two anchor sensors. The
main advantage of algebraic methods is that they can provide
a simple algebraic solution without the computation of
matrix inversion which makes those methods can be applied
in a low-cost location system especially for wireless sensor
networks (WSNs) [5, 20]. Since the algebraic methods are
based on local information of a minimum system, the direct
extension for those methods to a multistation redundancy
system may not obtain optimal performance since those
solutions cannot make use of extra measurements to improve
position accuracy [8].

To improve the localization accuracy, matrix methods
[5, 6, 8, 11, 21–25] based on global information of measure-
ments from all sensors were developed for a multistation
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redundancy system. The closed-form solution which requires
solving a set of linear equations including all the measure-
ments was given by Friedlander [21]. In order to obtain
optimal estimation, Foy proposed an iterative localization
method [26] based on Taylor series expansion. It starts with
an initial guess and improves the estimate at each step by
determining the local linear least-squares (LS) solution.
Moreover, a proportion of solutions concentrates on trans-
forming the localization problem into a manageable form.
The LS method [6] based on TOAmeasurements is provided
by Caffery. It uses the least square procedure to solve geomet-
ric equations which represent the lines of positions. Chan’s
method [8], using a two-step weighted LS approach, provides
higher accuracy which is close to CRLB when the number of
sensors is greater than 3. Since the above matrix methods are
based on global information and consider the relationships
among all of measurements, they have better performance
than the algebraic method and may achieve the CRLB.
Unfortunately, the high computational burden caused by
matrix inversion makes it hard for matrix methods to be
applied for a low-cost location system such as WSNs with
several Mhz oscillators [20, 27].

It is necessary to develop a location scheme with high
positioning accuracy for a low-cost location system. In this
paper, a novel and efficient estimator is designed for a
low-cost location system. The proposed method first
divides all of anchor sensors into several groups. Each
group is a minimum location system and can provide a
position estimate using an algebraic method. Subsequently,
theoretical variances of position estimates for every group
are derived and are used as weights to obtain the final
solution. The proposed method utilizes groups to avoid
matrix inversion and uses theoretical variances as weights
to improve the system performance. In this paper, the
proposed method is applied in TOA and AOA location tech-
niques. Moreover, the theoretical variance of the proposed
method is also derived for performance analysis. Simulation
results verify the proposed method. Compared with current
studies, the proposed method not only provides a simple
algebraic solution without matrix inversion but also has the
similar performance with the matrix method.

To illustrate, the paper is organized as follows. Section 2
formulates the system model of the localization problem in
a multistation redundancy system using TOA measurements
and AOA measurements in a 2-D plane, respectively. The
previous method is described and analyzed. Section 3
presents the proposed method in TOA solution and AOA
solution, respectively. The performance of the proposed
method is analyzed by deriving the theoretical estimate
variance in Section 4. Simulation results are presented
in Section 5 to illustrate the localization accuracy com-
pared with CRLB and other methods. Section 6 concludes
this paper.

2. Problem Formulation

The target localization problem in a multistation redundancy
system which contains N anchor sensors is depicted in
Figure 1. For notational convenience and ease of illustration,

we model the problem in a 2-D plane. Extension to three
dimensions is straightforward. Assume that N anchor
sensors are located at known positions xi, yi , i = 1, 2,… ,
N and the unknown target position is x, y . The objective
of the target localization is to identify the target location from
the known observers’ positions and the measurements, such
as TOAs and AOAs.

Assume that TOA and AOA measurements have already
been measured as shown in Figure 1. The measured distance
between the target and ith sensor is ri and the estimation
of azimuth for the target is αi. Then, we can use these
measurements to establish TOA equations [28]

r2i = xi − x 2 + yi − y 2, i = 1, 2,… ,N , 1

and AOA equations [10]

y − yi = tan αi x − xi , i = 1, 2,… ,N 2

Let ki = x2i + y2i , and r = x2 + y2. So that (1) can be
written as

r2i − ki = −2xix − 2yiy + r, i = 1, 2,… ,N , 3

which is a set of linear equations with unknowns x, y, and r.
From (2) we can obtain

sin αix − cos αiy = sin αixi − cos αiyi, i = 1, 2,… ,N 4

Since TOA and AOA measurements have error, which
consists of the truemeasurements corrupted by additive inde-
pendent zero-mean Gaussian noise. So with TOA and AOA
noise, the error vector [11, 28] derived from (3) and (4) is

φ = h −Gz 5

where

y

(xi, yi)

(x, y)ri

�훼i

Sensor

Target

x

Figure 1: Localization in a multistation redundancy system.
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h =

r21 − k1

r22 − k2

⋮

r2N − kN

,

G =

−2x1 −2y1 1

−2x2 −2y2 1

⋯ ⋯ ⋯

−2xN −2yN 1

,

z =

x

y

r

,

6

in TOA case,

h =

sin α1x1 − cos α1y1

sin α2x2 − cos α2y2

⋮

sin αNxN − cos αNyN

,

G =

sin α1 −cos α1

sin α2 −cos α2

… …

sin αN −cos αN

,

z =
x

y
,

7

in AOA case.
Most of the previous methods [5, 6, 8, 11, 23, 25] are

based on the least square procedure. Thus, the source
position is computed by

z = GTG −1GTh, 8

or some improvements of it, such as the two-step weighted
LS method (Chan’s method) [8]. These methods require
matrix inversion that leads to a high requirement for hard-
ware devices. However, low-cost hardware devices, such as
some embedded systems, may not support matrix inversion.
Hence, it is difficult for these methods to be applied to a
low-cost location system. A more widely adapted method
needs to be developed to address this situation.

3. The Proposed Method

In order to enable low-cost hardware devices to achieve
high-precision positioning, we propose a simple closed-
form solution for the multistation localization system.

Without matrix inversion, the proposed method provides
an algebraic solution which can be effectively applied to
low-cost hardware devices.

We develop the approach by using theoretical variances
as weighting coefficients to compute an average of each
group’s localization result. As shown in Figure 2, first, the
anchor sensors are divided into several groups and each
group of sensors are used to estimate the target position,
respectively. Then, theoretical variances of the position
estimates in each group are calculated and regarded as
weighted values. Finally, the weighted average of the esti-
mates is obtained as final solution.

TOA and AOA measurements have already been
measured, and the specific derivations are as follows.

3.1. TOA Solution. Assume that there are N anchor sensors
distributed arbitrarily in a 2-D plane. We divide these sensors
intoM groups. Each group has 3 sensors, which are the min-
imum number of base stations required for the TOA location
algorithm. Note that some sensors may be repeated in differ-
ent groups. In the ith group, themth observation station is at
known position xim, yim and the distance measured
between the target and mth sensor is d̂im, for i = 1, 2,… ,M.

In each group, the localization scenario consists of a
source and three observation stations. Assume that the
unknown source position is located at (x, y). Then, the
TOA measurement equations [19] in i-th group are
given by

dim = xim − x 2 + yim − y 2, m = 1, 2, 3, 9

where dim is the true distance between the target and mth
sensor.

Transform (9) with respect to the first receiver, we obtain

xi2 − xi1 x + yi2 − yi1 y =
1
2

x2i2 + y2i2 − x2i1 + y2i1 + d2i1 − d2i2 ,

10

xi3 − xi1 x + yi3 − yi1 y =
1
2

x2i3 + y2i3 − x2i1 + y2i1 + d2i1 − d2i3

11

Using (10) and (11), we obtain

x =
yi2 − yi1 ci3 − yi3 − yi1 ci2

xi3 − xi1 yi2 − yi1 − xi2 − xi1 yi3 − yi1
, 12

y =
xi2 − xi1 ci3 − xi3 − xi1 ci2

yi3 − yi1 xi2 − xi1 − yi2 − yi1 xi3 − xi1
13

Since TOA measurements have errors, which consist of
the true TOAs corrupted by additive independent zero-
mean Gaussian noise, we actually model distance estimates
associated with receiver m as

d̂im = d̂im + nim, m = 1, 2, 3, 14

where nim~N 0, σ2 and m = 1, 2, 3.
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Let x̂i and ŷi represent the position estimate coordinates
in each group, where subscript i denotes the ith group. Then,
the location estimate is

x̂i =
yi2 − yi1 ĉi3 − yi3 − yi1 ĉi2

xi3 − xi1 yi2 − yi1 − xi2 − xi1 yi3 − yi1
,

ŷi =
xi2 − xi1 ĉi3 − xi3 − xi1 ĉi2

yi3 − yi1 xi2 − xi1 − yi2 − yi1 xi3 − xi1
,

15

where ĉi2 = 1/2 x2i2 + y2i2 − x2i1 + y2i1 + d̂
2
i1 − d̂

2
i2 and ĉi3 =

1/2 x2i3 + y2i3 − x2i1 + y2i1 + d̂
2
i1 − d̂

2
i3 .

With 3 sensors, the target position can be solved using
(15) in each group.We compute theoretical variance by using
the differential method [8]. From (12), the differential of xi is

Δxi = ai3Δci3 − ai2Δci2, 16

where

ai3 =
yi2 − y1i

xi3 − xi1 yi2 − yi1 − xi2 − xi1 yi3 − yi1
,

ai2 =
yi3 − yi1

xi3 − xi1 yi2 − yi1 − xi2 − xi1 yi3 − yi1
,

17

Δci2 = di1Δd1i − di2Δdi2, and Δci3 = di1Δdi1 − di3Δdi3. The
differential of yi is

Δyi = bi3Δci3 − bi2Δci2, 18

where

bi3 =
xi2 − xi1

yi3 − yi1 xi2 − xi1 − yi2 − yi1 xi3 − xi1
,

bi2 =
xi3 − xi1

yi3 − yi1 xi2 − xi1 − yi2 − yi1 xi3 − xi1

19

For simplicity, we assume that the signal and noises
are mutually independent, zero-mean stationary Gaussian

random processes. If the distance estimation variance is
σ2, then the theoretical variance of xi is

var xi = E Δxi2 = a2i3E Δc2i3 − 2ai3ai2E Δci2Δci3 + a2i2 Δc2i2
= ai3 − ai2

2d2i1σ
2 + a2i3d

2
i3σ

2 + a2i2d
2
i2σ

2

20

The theoretical variance of yi is

var yi = E Δyi2 = b2i3E Δc2i3 − 2bi3bi2E Δci2Δci3 + b2i2 Δc2i2
= bi3 − bi2

2d2i1σ
2 + b2i3d

2
i3σ

2 + b2i2d
2
i2σ

2

21

The variance weighted average TOA solution is given by

x̂wa TOA =
〠M

i=1x̂i var xi
−1

〠M
i=1 var xi

−1 , 22

ŷwa TOA =
〠M

i=1ŷi var yi
−1

〠M
i=1 var yi

−1 23

From (20) and (21), it is clear that the variance is related
to the measurement error, the distance between the sensor
and target and the baseline. When measurement error or
the distance between the sensor and target increases, the
variance increases. While when the baseline becomes longer,
the variance decreases. Hence, for the proposed method, it is
better to let the target be in the central range of the array and
divide sensors with uniform extraction.

3.2. AOA Solution. Assume that there are N anchor sensors
distributed arbitrarily in a 2-D plane. We divide these sensors
into M groups. Each group has 2 sensors, which is the
minimum number of sensors required for the AOA location
algorithm. Note that some sensors may be repeated in
different groups. In the ith group, the mth sensor is located
at known position xim, yim and the measured angles are
αim, m = 1, 2, for i = 1, 2,… ,M. The unknown source
position is located at (x, y).

In ith group, the true AOAs are given by [10]

y − yim = tan αim x − xim , m = 1, 2 24

Using (24), we obtain

x =
yi2 − yi1 + xi1 tan αi1 − xi2 tan αi2

tan αi1 − tan αi2
,

y = yi2 tan αi1 − yi1 tan αi2 + xi1 − xi2 tan αi1 tan αi2
tan αi1 − tan αi2

25

The AOA measurements are subject to independent
zero-mean Gaussian noise

αim = αim + nim, m = 1, 2, 26

where nim~N 0, σ2 and m = 1, 2. Let x̂i and ŷi represent the
position estimate coordinates in each group, where subscript
i denotes the ith group, then the position estimate is

Divide N sensors into M groups

Group 1

(x1, y1)
Weight 1

(x2, y2)
Weight 2

(xM, yM)
Weight M

Group 2 ...

...

Sum up to a weighted
average

Group M

Figure 2: The process of the proposed method.
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x̂i =
yi2 − yi1 + xi1 tan αi1 − xi2 tan αi2

tan αi1 − tan αi2
,

ŷi =
yi2 tan αi1 − yi1 tan αi2 + xi1 − xi2 tan αi1 tan αi2

tan αi1 − tan αi2
27

With 2 sensors, the target position can be solved using
(27) in each group.We compute theoretical variance by using
the differential method [8]. The differential of xi is

Δxi =
xi1Δti1 − xi2Δti2 Pi1 − Pi3 Δti1 − Δti2

Pi1
2 , 28

where

Δti1 =
Δαi1

cos αi1
2 ,

Δti2 =
Δαi2

cos αi2
2 ,

29

Pi1 = tan αi1 − tan αi2, and Pi3 = yi2 − yi1 + xi1 tan αi1 − xi2
tan αi2. The differential of yi is

Δyi =
yi2Δti1 − yi1Δti2 + xi1 − xi2 Δti1ti2 + ti1Δti2 Pi1 − Pi2 Δti1 − Δti2

Pi1
2 ,

30

where ti1 = tan αi1, ti2 = tan αi2, and Pi2 = yi2 tan αi1 −
yi1 tan αi2 + xi1 − xi2 tan αi1 tan αi2. If the angle estima-
tion variance is σ2, then the theoretical variance of xi is

var xi = E Δx2i

=
Pi1

2 xi1
2si1 + xi2

2si2 − 2xi1si1 + 2xi2si2 Pi1Pi3 + Pi3
2 si1 + si2

P4
i1

,

31

where

Si1 = E Δti12 =
σ2

cos αi1
4 ,

Si2 = E Δti22 =
σ2

cos αi2
4

32

The theoretical variance of y is

The variance weighted average AOA solution is given by

x̂wa AOA =
〠M

i=1x̂i var xi
−1

〠M
i=1 var xi

−1 , 34

ŷwa AOA =
〠M

i=1ŷi var yi
−1

〠M
i=1 var yi

−1 35

Through the analysis of (31) and (33), we can obtain that
when measurement error or the distance between the sensor
and target increases, the variance increases. These conclu-
sions are similar to those in TOA solution. Yet the variance
increases if the baseline gets longer. Therefore, we would bet-
ter group sensors with sequential extraction to get a smaller
baseline in AOA solution.

4. Performance Analysis

In location estimation, there are two main different values
that we can use to evaluate the performance of localization
algorithms. One is theoretical variance, and the other one is
CRLB [29, 30]. Theoretical variance is used to evaluate the
practical performance of localization methods, while CRLB
establishes a lower bound for any unbiased estimator. Since

CRLB has already been derived in [29, 30], here, we derive
the theoretical estimate variance of the proposed method in
this section to illustrate its performance.

4.1. Theoretical Variance of TOA Solution. Assume that the
variance of range measurements is σ2. From (22), we can
obtain the differential of xwa TOA:

Δxwa TOA =
〠M

i=1 Δxivi + xiΔvi 〠M
i=1vi −〠M

i=1xivi〠
M
i=1Δvi

〠M
i=1vi

2 ,

36

where vi = var xi
−1. Using (16) and (20), Δxi and Δvi can

be written as

Δxi = ai3 − ai2 di1Δdi1 + ai2di2Δdi2 − ai3di3Δdi3, 37

Δvi = ti1Δdi1 + ti2Δdi2 + ti3Δdi3, 38

where ti1 = −2 var xi
−2 ai3 − ai2

2di1σ
2, ti2 = −2 var xi

−2

ai2
2di2σ

2, and ti3 = −2 var xi
−2ai3

2di3σ
2. Then, we have

Δxivi + xiΔvi = ki1Δdi1 + ki2Δdi2 + ki3Δdi3, 39

var yi = E Δyi2

=
Pi1

2 yi2
2si1 + yi1

2si2 + xi1 − xi2
2 t2i2si1 + t2i1si2

P4
i1

+
2Pi1

2 yi2ti2si1 − yi1ti1si2 xi1 − xi2 + Pi2
2 si1 + si2 − 2Pi1Pi2 yi2si1 + yi1si2 + xi1 − xi2 ti2si1 − ti1si2

P4
i1

33
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where ki1 = vi ai3 − ai2 di1 + xiti1, ki2 = viai2di2 + xiti2, and
ki3 = −viai3di3 + xiti3.

Substituting (37), (38), and (39) into (36), the theoretical
estimate variance of xwa TOA is

With the similar derivation, the theoretical estimate
variance of ywa TOA is

where wi = var yi
−1, si1 = −2 var yi

−2 bi3 − bi2
2di1σ

2,
si2 = −2 var yi

−2bi2
2di2σ

2, si3 = −2 var yi
−2bi3

2di3σ
2, ji1

=wi bi3 − bi2 di1 + yisi1, ji2 =wibi2di2 + yisi2, and ji3 = −wi
bi3di3 + yisi3.

The theoretical estimate variance of the proposed method
is then obtained from (40) and (41) as

varwa TOA = var xwa TOA + var ywa TOA 42

Figure 3 depicts the theoretical variance of the proposed
method in the TOA case as the target position varies, where
the sensor positions are x1 = 0, y1 = 1000 , x2 = 1000 sin
40°, y2 = 1000 cos 40° , x3 = 1000 sin 80°, y3 = 1000 cos 80° ,

x4 = 1000 sin 60°, y4 = −1000 cos 60° , x5 = 1000 sin 20°,
y5 = −1000 cos 20° , x6 = −1000 sin 20°, y6 = −1000 cos 20° ,
x7 = −1000 sin 60°, y7 = −1000 cos 60° , x8 = −1000 sin 80°,
y8 = 1000 cos 80° , and x9 = −1000 sin 40°, y9 = 1000 cos
40° and σTOA is fixed at 50. It shows that the estimation
is more accurate when the target gets closer to the central of
the array range.

4.2. Theoretical Variance of AOA Solution. Assume that the
variance of angle measurements is σ2. From (28), Δxi can
be written as

Δxi = Ri1Δαi1 + Ri2Δαi2, 43

where

var xwa TOA = E Δxwa TOA
2

=
σ2 〠M

i=1vi
2
〠M

i=1 ki1
2 + ki2

2 + ki3
2 + σ2 〠M

i=1xivi
2
〠M

i=1 ti1
2 + ti2

2 + ti3
2

〠M
i=1vi

4

−
2σ2 〠M

i=1vi 〠M
i=1xivi 〠M

i=1 ki1ti1 + ki2ti2 + ki3ti3

〠M
i=1vi

4

40

var ywa TOA = E Δywa TOA
2

=
σ2 〠M

i=1wi
2
〠M

i=1 ji1
2 + ji2

2 + ji3
2 + σ2 〠M

i=1yiwi
2
〠M

i=1 si1
2 + si2

2 + si3
2

〠M
i=1wi

4

−
2σ2 〠M

i=1wi 〠M
i=1yiwi 〠M

i=1 ji1si1 + ji2si2 + ji3si3

〠M
i=1wi

4 ,

41

Ri1 =
xi1/ cos αi1

2 tan αi1 − tan αi2 − yi2 − yi1 + xi1 tan αi1 − xi2 tan αi2 1/ cos αi1
2

tan αi1 − tan αi2
2 ,

Ri2 =
− xi2/ cos αi2

2 tan αi1 − tan αi2 + yi2 − yi1 + xi1 tan αi1 − xi2 tan αi2 1/ cos αi2
2

tan αi1 − tan αi2
2

44
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From (34), we can obtain the differential of xwa AOA

Δxwa AOA =
〠M

i=1 Δxivi + xiΔvi 〠M
i=1vi −〠M

i=1xivi〠
M
i=1Δvi

〠M
i=1vi

2 ,

45

where vi = var xi
−1. Using (31), Δvi can be written as

Δvi = Ci1Δαi1 + Ci2Δαi2, 46

where

Ci1 = − var xi
−2 ⋅

1
P8
i1
⋅

Qi1

cos αi1
2 +

xi1Qi2

cos αi1
2 −

4σ2Qi3

cos αi1
5 ,

Ci2 = − var xi
−2 ⋅

1
P8
i1
⋅ −

Qi1

cos αi2
2 −

xi2Qi2

cos αi2
2 −

4σ2Qi4

cos αi2
5 ,

Qi1 = P4
i1 xi1

2si1 + xi2
2si2 − 2xi1si1 + 2xi2si2 Pi3 − 4LiP3

i1,
Qi2 = P4

i1 − 2xi1si1 + 2xi2si2 Pi1 + 2Pi3 si1 + si2 ,
Qi3 = P4

i1 Pi1x
2
i1 − 2xi1Pi1Pi3 + P2

i3 ,
Qi4 = P4

i1 Pi1x
2
i2 − 2xi2Pi1Pi3 + P2

i3 ,
Li = Pi1 xi1

2si1 + xi2
2si2 − 2xi1si1 + 2xi2si2 Pi1Pi3 + Pi3

2 si1 + si2

47

Then, we have

Δxivi + xiΔvi = Bi1Δαi1 + Bi2Δαi2, 48

where Bi1 = viRi1 + xiCi1 and Bi2 = viRi2 + xiCi2.
Substituting (43), (46), and (48) into (45), the theoretical

estimate variance of xwa AOA is

With the similar derivation, the theoretical estimate
variance of ywa AOA is
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Figure 3: The theoretical variance of the proposed method in TOA
case as the target position varies.

var xwa AOA = E Δxwa AOA
2

=
σ2 〠M

i=1vi
2
〠M

i=1 Bi1
2 + Bi2

2 + σ2 〠M
i=1xivi

2
〠M

i=1 Ci1
2 + Ci2

2 − 2σ2 〠M
i=1vi 〠M

i=1xivi 〠M
i=1 Bi1Ci1 + Bi2Ci2

〠M
i=1vi

4

49

var ywa AOA = E Δywa AOA
2

=
σ2 〠M

i=1wi
2
〠M

i=1 Gi1
2 +Gi2

2 + σ2 〠M
i=1yiwi

2
〠M

i=1 Ei1
2 + Ei2

2

〠M
i=1wi

4 −
2σ2 〠M

i=1wi 〠M
i=1yiwi 〠M
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where

The theoretical estimate variance of the proposed method
is then obtained from (49) and (50) as

varwa AOA = var xwa AOA + var ywa AOA 52

The theoretical variance of AOA solution is illustrated
in Figure 4 as the target position varies, where the sensor
positions are x1 = −1000, y1 = 1000 , x2 = 1000, y2 = 1000 ,
x3 = 1000, y3 = −1000 , and x4 = −1000, y4 = −1000 and
σAOA is fixed at 3°. The result is similar to TOA solution that
the proposed method can give a more accurate estimation if
the target gets closer to the central of the array range.

5. Simulation Results

Simulations are performed to validate the performance of the
proposed method and to compare the relative localization
accuracy for different methods.

Without loss of generality, we assume that the signal
and noises are mutually independent, zero-mean stationary

Gaussian random processes. Suppose that σTOA and σAOA
denote TOA standard deviations and AOA standard
deviations, respectively. Simulation results are displayed in
terms of the root-mean-square error (RMSE) given by

E xes − x 2 + yes − y 2 [15] which are obtained from the

average of 3000 independent runs.
As shown in Figures 5(a) and 5(b), the correctness of

the theoretical variance we derive is verified in TOA solu-
tion and AOA solution, respectively. The source is at an
arbitrary position within the range of the array. The
Monte Carlo experiment generates a source position
randomly in each run. Simulations demonstrated that the
theoretical variance fits well with RMSE in both TOA
solution and AOA solution.

Figure 6(a) illustrates the performance of the pro-
posed method as the number of the sensor varies, where
the area size is 1000, σTOA is fixed at 30, and the source
is at x = −200, y = −100 . The proposed method with the
simplified formulae instead of matrix inversion still

wi = var yi
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Gi2 =wiJi2 + yiEi2,
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performs well, and its localization accuracy is close to
CRLB. In case of AOA solution, the results are given in
Figure 6(b), where the area size is 1000, σAOA is fixed
at 2°, and the source is at x = 100, y = −200 . The perfor-
mance of the proposed method also performs well in
AOA solution.

In order to verify dynamic localization performance of
the proposed method, simulations of dynamic positioning
were carried out. Figures 7(a) and 7(b) compare the real
target trace and estimated target trace in TOA solution.
Two different motion trajectories of W and S are simulated
in Figures 7(a) and 7(b), respectively. σTOA is fixed at 40.
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Figure 5: The theoretical variance and RMSE of the proposed method: (a) theoretical variance in TOA solution with 9 sensors as σTOA varies;
(b) theoretical variance in AOA solution with 8 sensors as σAOA varies.
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Figure 6: Performance of the proposed method as sensor number varies: (a) RMSE of TOA solution (σTOA is fixed at 30 and the source is at
x = −200, y = −100 ); (b) RMSE of AOA solution (σAOA is fixed at 2° and the source is at x = 100, y = −200 ).
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Both Figures 7(a) and 7(b) show that the proposed method
performs well in dynamic localization. The real target trace
and the estimated target trace are almost coincident. Similar
simulation was conducted in AOA solution as shown in
Figures 8(a) and 8(b), where σAOA is fixed at 2°.

Figures 8(a) and 8(b) show that the AOA solution of
the proposed method achieves high accuracy in dynamic
localization.

To give a comparison of the localization accuracy
between the proposed method and other methods,
Figure 9(a) compares the performance of the proposed
method, Chan’s method [8], and direct average method
in TOA solution with 4 sensors. The sensor positions are
x1 = −1000, y1 = 1000 , x2 = 1000, y2 = 1000 , x3 = 1000,
y3 = −1000 , and x4 = −1000, y4 = −1000 . The source is
at an arbitrary position within the range of the array.
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Figure 7: Dynamic localization performance of the proposed method in TOA solution: (a) the comparison between real target trace and
estimated target trace in W trajectory; (b) the comparison between real target trace and estimated target trace in S trajectory.
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Figure 8: Dynamic localization performance of the proposed method in AOA solution: (a) the comparison between real target trace and
estimated target trace in W trajectory; (b) the comparison between real target trace and estimated target trace in S trajectory.
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The Monte Carlo experiment generates a source position
randomly in each run. Simulations show the estimation
performance of the proposed method as σTOA varies from
10 to 50. Among the three methods, the direct average
method performs worst and the proposed method gives a
smaller RMSE using variance weighting. The positioning
accuracy of the proposed method is close to the Chan’s
method and CRLB [29]. Note that no matrix reverse is
required for the proposed method; the computation com-
plexity is largely simplified, and the method can be used
in low-cost hardware devices.

Similar experiment was conducted in AOA solution as
shown in Figure 9(b). The sensor positions are x1 = 0,
y1 = 0 , x2 = 1000, y2 = 1000 , x3 = 1000, y3 = 1000 , and
x4 = 0, y4 = 1000 . Simulations show the localization
accuracy of the proposed method compared with the WLS
method [11] and direct average method as σAOA varies from
1° to 3°. The performance of the proposed method remains
promising in AOA solution.

As seen in all the figures, the proposed method
using theoretical variances as weights to improve the
system performance provides higher accuracy than the
method that uses the direct average of each group’s
estimate result. Previous closed-form solutions cannot
be used for low-cost hardware devices due to matrix
inversion. This method, on the other hand, provides an
effective solution which has the similar performance with
the matrix method for target localization with low-cost
hardware devices.

6. Conclusions

We have developed a simple method for target localization in
a multistation redundancy system. The proposed method,
which utilizes groups to avoid matrix inversion and uses
theoretical variances as weights to improve the system per-
formance, gives an algebraic solution which can be applied
to low-cost hardware devices. It requires less computation
and does not reply on matrix inversion. The performance
of the proposed method is verified by the simulation results.
A comparison with other localization methods and CRLB
was conducted. With theoretical variances used as the
weighting coefficients, the proposed method has a signifi-
cantly reduced RMSE compared with the method that
directly averages each group’s localization result. The posi-
tioning accuracy of the proposed method is close to CRLB
both in TOA solution and AOA solution.

This paper introduces the variance weighted average
method for target localization in a multistation redundancy
system. The proposed method, without matrix inversion,
has the similar performance with the matrix method. For
many low-cost hardware devices applications, this closed-
form solution may itself be sufficiently accurate.

Data Availability

All data generated or analysed during this study are included
in this paper. No additional data are available.
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