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Long-term quantification of asthmatic wheezing envisions an m-Health sensor system consisting of a smartphone and a body-worn
wireless acoustic sensor. As both devices are power constrained, the main criterion guiding the system design comes down to
minimization of power consumption, while retaining sufficient respiratory sound classification accuracy (i.e., wheeze detection).
Crucial for assessment of the system-level power consumption is the understanding of trade-off between power cost of
computationally intensive local processing and communication. Therefore, we analyze power requirements of signal acquisition,
processing, and communication in three typical operating scenarios: (1) streaming of uncompressed respiratory signal to a
smartphone for classification, (2) signal streaming utilizing compressive sensing (CS) for reduction of data rate, and (3)
respiratory sound classification onboard the wearable sensor. Study shows that the third scenario featuring the lowest
communication cost enables the lowest total sensor system power consumption ranging from 328 to 428 yW. In such scenario,
32-bit ARM Cortex M3/M4 cores typically embedded within Bluetooth 4 SoC modules feature the optimal trade-off between
onboard classification performance and consumption. On the other hand, study confirms that CS enables the most power-
efficient design of the wearable sensor (216 to 357 yW) in the compressed signal streaming, the second scenario. In such case, a
single low-power ARM Cortex-A53 core is sufficient for simultaneous real-time CS reconstruction and classification on the
smartphone, while keeping the total system power within budget for uncompressed streaming.

1. Introduction identification of an unknown number of intermittently
appearing, temporally evolving frequency lines, embedded

Asthma is a chronic respiratory disease that affects more than ~ in respiratory noise [4]. Algorithm implementing this

300 million patients [1]. One of its specific symptoms is the
occurrence of so-called “asthmatic wheezing” in respiratory
sounds, caused by constriction of bronchial airways [2, 3].
Asthmatic wheezing is assessed by auscultation of either
patient’s chest, back, or neck [4, 5]. Being noninvasive
and not requiring patient cooperation, quantification of
wheezing proves beneficial as an independent method for
diagnosis and continuous monitoring of asthma [6]. It is
especially suitable for diagnosis of asthma in children and
nocturnal asthma [7, 8], where traditional spirometry-based
methods of assessment of respiratory function parameters
are not appropriate (i.e., home peakflowmetry). Automated
quantification of wheezing is performed on respiratory
sounds recorded by a single acoustic sensor [4, 9]. It entails

processing-intensive task most commonly combines spec-
trotemporal features drawn from the short-term Fourier
transform (STFT) [10-14], Mel-frequency cepstral domain
(MEC) [15, 16], wavelet transform [17, 18], empirical mode
decomposition [19], and a variety of classification schemes,
including decision trees [10, 12], neural networks [18], and
support vector machine [13-15, 18]. Detailed reviews given
in [12, 18, 20] report classification performance ranging on
average from 90 to 95% of sensitivity and specificity. Build-
ing upon the existing analysis of low-power DSP imple-
mentable wheeze detection algorithms [12, 21], we fix the
algorithm choice to the STFT frequency line tracking algo-
rithms based on either the empirical rules [12] or the hid-
den Markov model (HMM) [22, 23]. Both yield similar,
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FIGURE I: Analyzed operating scenarios: (1) raw, uncompressed signal streaming (referent), (2) streaming of CS-encoded signal, and (3)

classification onboard the wearable sensor.

representative classification performance of 87-89% sensi-
tivity and 93-96% specificity.

Commonly envisioned concept of an m-Health sensor
system for quantification of asthmatic wheezing consists
of a smartphone and a wireless acoustic sensor [24-26].
In recent years, some commercial products have appeared
on the market, featuring the smartphone-based electronic
asthma diary application, accompanied by the wheeze
quantification sensor in the form-factor of a hand-held
on-demand measurement device [27]. In order to allow
continuous patient monitoring, current research efforts are
aimed towards enabling construction of wearable (body-
worn) wheeze quantification sensors [12, 13, 16, 17, 28],
consisting of the following subsystems: acoustic transducer
(sensor), analog signal conditioning circuit, A/D con-
verter, a power-efficient digital signal processing unit, and a
low-power digital radio module for communication with
the smartphone.

Being battery powered, both the wearable sensor and the
smartphone are power-constrained devices. Thus, the main
criteria guiding the design of an m-Health asthma quantifica-
tion sensor system are (1) minimization of power consump-
tion and (2) retention of sufficient respiratory sound
classification accuracy. Trade-off between mentioned criteria
is affected by (1) the choice of respiratory sound classification
algorithm, (2) the system architecture in terms of organiza-
tion of signal acquisition, processing, and communication
between the wearable sensor and smartphone, and (3) the
characteristics of hardware components implementing each
particular subsystem [29].

System-level analysis presented in this paper contributes
by proposing how to power-efficiently organize a
processing-intensive wheeze detection sensor system, con-
sisting of a wireless wearable acoustic sensor and a smart-
phone. Specifically, we aim to quantify the universal trade-
off between the power cost of acquisition, processing, and
communication [29], for this specific processing-intensive
application. Also, we provide generalized guidelines on
hardware component architectures best fitting the applica-
tion. The analysis builds up upon our extensive prior research
on novel energy-efficient signal acquisition and wireless
transport schemes [30], design of specialized low-power

wheeze recognition algorithms suitable for running onboard
energy-constrained devices (sensor node and smartphone)
[12, 23], and verification of all subsystems on several hard-
ware laboratory prototypes [12, 22, 31, 32].

The paper compares total power requirements of the sen-
sor system in three different operating scenarios shown in
Figure 1. In the first, referent operating scenario, the sensor
acquires the signal at Nyquist rate. Apart from signal acqui-
sition, no particular DSP processing tasks are performed on
the sensor. Raw signal is streamed uncompressed via low-
power radio communication interface over to the smart-
phone, where the respiratory sound classification algorithm
is executed [24, 26]. The scenario is motivated by the idea
of simplification of the sensor design and using the smart-
phone as the main signal processing platform, in order to
simplify development and maintenance of respiratory sound
classification software.

In order to lower the data rate and consequently the aver-
age power required for streaming, the signal from the sensor
to a smartphone, the second scenario, exploits the compress-
ibility of respiratory sounds in the frequency domain [30, 33]
and applies a concept of compressed sensing (CS) [34, 35]. By
combining signal acquisition and compression in a single lin-
ear transformation step (i.e., CS encoding), CS in comparison
to classic audio coding techniques [36, 37] enables simulta-
neous lowering of the data rate, while retaining the low com-
plexity of signal processing on the sensor. Here, the CS
encoding on the sensor is performed by pseudorandomly
subsampling the signal [31], effectively compressing it. The
compressed signal is streamed over to the smartphone. By
knowing the subsampling pattern, the CS decoder subsystem
block obtains a reconstruction of the compressible STFT
spectra from the CS-encoded signal [30, 32]. Finally, a robust
hidden Markov model- (HMM-) based frequency line track-
ing algorithm [23] implemented on a smartphone [22]
enables for wheeze detection from reconstructed spectra at
less than 5% loss of classification accuracy.

In the third scenario, Nyquist rate signal acquisition
and respiratory sound classification are performed onboard
the wearable sensor, such as in [13, 16]. Here, we compare
the processing burden of the DSP implementations of robust
frequency line tracking based on HMM [22, 23] to the
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TaBLE 1: Comparison of acoustic sensors’ power consumptions.

Technology Component Sensitivity Imped Power
MEMS microphone, digital (1%S) ADMP441 [42] —26 dBFS — 2520 uyW at 1.8V
Electret condenser microphone KEEG1542 [43] —-42dB 22KkQ 1000 yW at 2.0V
Analog accelerometer ADXL337 [44] 300mV/g 32kO 900 uW at 3.0V
MEMS microphone, analog ADMP404 [45] -38dBV 2000 375 uW at 1.5V
Accelerometer, digital (SPT) ADXL345 [46] 3.9 mg/LSB — 350 uW at 2.5V
MEMS microphone, analog ICS-40310 [47] -37dBV 4.5kQ 16 uW at 1.0V

frequency-tracking algorithm mimicking the nearest neigh-
bor association previously presented in [12], analogous to
[10]. The sensor periodically reports the classification result
to the smartphone. The scenario is aimed at minimizing the
data traffic between the wearable sensor and the smartphone
and making the wearable sensor independent with respect to
radio link quality and smartphone-processing resources [38].

The paper is organized as follows: In Section 2, each of
the sensor’s subsystems is analyzed from the aspect of power
efficiency. Based on this, total sensor power consumption is
analyzed for each operating scenario in Section 3. In parallel,
estimates for the power spent onboard the smartphone are
given in Section 4. Finally, sensor system power consumption
estimates are derived in Section 5. The paper is concluded in
Section 6.

2. Power Analysis of the Wearable
Sensor’s Subsystems

2.1. Sensors and Analog Signal Conditioning. Requirements
for design of an acoustic sensor and associated analog signal
conditioning circuitry were derived from standardized guide-
lines for the respiratory sound acquisition [39-41]. First,
microphones and accelerometers were evaluated as acoustic
sensors. Microphones were chosen to exhibit flat frequency
response in bandwidth of respiratory sounds (i.e., 100 to
1000 Hz) and accelerometers featuring a resonant frequency
well above the upper corner frequency.

Representative acoustic sensor technologies complying
with those requirements were evaluated: electret condenser
microphone (KEEG1542, Knowles), MEMS microphone
with analog output (ADMP404, Analog Devices; ICS-
40310, Invensense), and MEMS microphone with digital out-
put (ADM441, Analog Devices). Sensitivities of tested analog
microphones ranging from —42 to -37dB and of digital
MEMS microphones were typically —26 dBES (decibels rela-
tive to digitized full-scale reading). SNR varied from 50 to
62dB. Capacitive MEMS accelerometers were chosen for
evaluation (ADXL337, ADXL345, and analog devices).

Comparison in Table 1 shows that among tested sensor
technologies, analog MEMS microphones feature the highest
power efficiency. It is shown that power consumption as low
as 16 yW may be obtained using ICS-40310. However, the
common problem of low-powered analog MEMS micro-
phones is high output impedance. Electret condenser micro-
phones traditionally used in respiratory signal analysis
exhibit significantly worse power efficiency than their MEMS
counterparts. The tested model of the accelerometer, chosen

to fit into the power consumption budget of microphones,
exhibited the drawback of lower bandwidth and lower sensi-
tivity on its vertical axis, due to mechanics of the microma-
chined proof mass.

Advantage of the digital system-on-chip (SoC) acoustic
sensors, such as ADMP441 or ADXL355, is integration of a
complete signal chain, consisting of a microphone, audio
amplifier, ADC, and standard encoding of digitized output
signal (i.e, PDM, I%S, or SPI). However, this is paid with
the high overall power consumption and the lack of flexibility
(i.e., absence of a programmable amplifier and long wake-up
time from power down).

Design of the analog signal conditioning circuit for the
respiratory sound acquisition accommodates several func-
tionalities. First is the signal amplification, as typical sensor’s
output signal magnitudes reside in range of 1 to 10mV (as
shown by typical sensitivities in Table 1). Special attention
needs to be taken in case of MEMS microphones, as the
amplifier’s input is required to handle their output imped-
ance typically in order of kQ). Bandpass filtering with lower
corner frequency of around 100 Hz is required, to filter out
heart sounds. The upper corner frequency of the filter is
adjusted according to the signal sampling frequency in order
to prevent antialiasing. Assuming that the microphone
model is chosen such to filter out the low frequencies by its
frequency characteristics and that antialiasing is imple-
mented by a passive RC filter, a single instrumentation
amplifier may suffice for the signal conditioning require-
ments. Power consumption of such conditioning circuit,
implemented by INA333 [48], is estimated to 85-95 yW by
Spice simulation.

2.2. Signal Digitization. Two signal sampling scenarios were
analyzed. The first is Nyquist rate signal sampling at sam-
pling rates of 2 to 8 kHz, and the second is the compressive
sampling (CS) at temporally nonuniform time instants, as
proposed in [31]. In case of the CS, analog-to-digital con-
verters (ADCs) were tested at sub-Nyquist sampling rates
of 250Hz to 1kHz, corresponding to signal compression
ratios of 8x to 2x. Based on the results from [31, 39] and
[12], ADC resolution of 12 to 16 bits is required for the CS
DFT/DCT spectrum reconstruction and the respiratory
sound classification. Thus, the power efficiency tradeoffs of
12-, 16-, and 2-bit successive approximation (SAR) and
sigma-delta ADCs were compared.

ADCs were assumed operating on demand (triggered
by a signal processor) and entering power-saving state
after completing each conversion (duty cycling). Thus,



TABLE 2: Parameters of the tested ADCs.

Technology Component ENOB s;\rlr?;)lllehzlte sz:algié)l?sw e
12-bit SAR AD[Z;]924 11 10kS/s 10 uyW
16-bit SAR  AD7684 [50] 14 100kS/s 15 uW
sllzgr];l: delta ADS}?M 12 33kS/s 92 uW
slifg;]rjlz[—delta AD[ié]HAI 16 0.860kS/s 368 uW
gi;_:;iat[—delta ADS;]ZSI 19 20kS/s 1.95mW

Average power (mW)
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FiGure 2: Comparison of average power consumption of 12-, 16-,
and 24-bit SAR and sigma-delta ADCs operating in duty cycle
mode with respect to sample rates from 250 Hz to 8 kHz.

» o«

components supporting “burst mode,” “single-shot,” or
“auto-power-down” combined with fast wake-up times
were selected for the analysis. The components of different
nominal throughput were compared to evaluate the poten-
tial benefit of using short active and long-sleep periods.

A list of evaluated components alongside with their
respective performance is listed in Table 2. Each compo-
nent’s total active time was estimated from its power-up time,
number of erroneous conversion samples, and conversion
time. Finally, we extrapolated average power spent by each
component at sampling frequencies spanning from 250 Hz
to 8 kHz. Average power was obtained from its total active
time, power declared at their nominal sampling rate, and
the declared sleep mode power.

Results shown in Figure 2 confirm that the lowest con-
sumption is obtained for ADCs featuring a combination of
the lowest supply voltage and the lowest active and sleep
current and supporting high throughput (i.e., short active
time). Specifically, for the required range of sample rates,
SAR models show clear advantage in the average power
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consumption over the sigma-delta counterparts. In case of
12-bit converters, SAR yields around 9 times lower average
power than the comparable sigma-delta model, while at
16 bits, the difference increases to more than 24 times. With
the 24-bit sigma-delta ADC, 1 mW suffices for the average
sample rate of merely 500 Hz. Thus, 16-bit SAR ADC archi-
tecture is considered optimal for respiratory sound digitiza-
tion. It consumes in range of 4 to 123 yW while operating
at sample rates between 250 Hz and 8 kHz. In respect to 12-
bit SARs, 16-bit SAR requires about 50% more power.

2.3. Signal Processing

2.3.1. Processing Cores for Respiratory Sound Classification.
Power consumption required for execution of the wheeze
detection was evaluated for two studied algorithms: for
empirical rule-based frequency-tracking algorithm [12] and
the HMM-based wheezing frequency algorithm [22, 23].
Both algorithms were first implemented, trained, and tested
in Matlab on a dataset of prerecorded respiratory sounds.
Details on dataset’s size, constitution, and origin are given
in [12, 23]. After that, algorithms’ performance and execu-
tion speed were individually verified on a selection of repre-
sentative processing cores: an audio DSP TMS320C5505
(Texas Instruments, [12]), an ARM Cortex-M4 Bluetooth 4
SoC BGM113 (Silicon Labs), and an ARM Cortex-A9 smart-
phone SoC Exynos 4 (Samsung Galaxy S2, [22, 23]). In the
following section, we generalize these findings, by assessing
algorithms’ execution efficiencies for a broad range of com-
mercial processing core architectures.

As a universal rule, we focused on processing cores fea-
turing the lowest active-state power at the highest operating
frequency, in combination with the low sleep state power,
due to their potential to yield the lowest average power
[54, 55]. Table 3 summarizes a list of the cores used in the
benchmark. Three categories of processing cores were ana-
lyzed. The first was audio DSP processors. Advantage of
dedicated DSPs is that their proprietary cores are designed
to feature the architectural features accelerating execution
of the DSP functions, such as multiply-and-accumulate units,
barrel shifters for floating point operations, vector multiply,
hardware FFT coprocessors, specific data transport I/O units
such as I°S [56]. Also, they are typically supported with
extensive library of software functions for the audio process-
ing. Lowest-power 16-bit fixed-point DSP cores were evalu-
ated for onboard signal processing: TMS320C5535 (Texas
Instruments) and ADSP2188N (Analog Devices). They were
compared to a legacy 16-bit 56xxx core MC56F8006 (Free-
scale Semiconductors) and higher powered 32-bit ColdFire
core MCF51MM128 (Freescale Semiconductors).

The second category was general purpose MCUs. Here,
we compared general purpose, high-performance 32-bit
ARM Cortex-M3 (STM32L151C8, ST Microelectronics)
to lower-powered ARM Cortex-M0 (LPC1102, Linear Tech-
nologies). Also, 32-bit ARM cores were evaluated against
proprietary 16-bit MSP430 core-executing code from an
ultralow power ferroelectric (FRAM) program memory
(MSP430FR572x, Texas Instruments). Also, a dedicated sig-
nal acquisition controller based on an older 16-bit ARM 7
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TaBLE 3: Parameters of the tested digital signal processors.
Processing core Component 1;\2‘;_‘11; M\é\fc/tﬁilz S;f\ig)’
Audio DSP, 32-bit ColdFire MCF51MM128 [57] 50 1740 84.0
Audio DSP, 16-bit 56800E MC56F8006 [58] 32 4282 521.4
Audio DSP, 16-bit ADSP-21xx ADSP21838N [59] 80 562 180.0
Audio DSP, 16-bit C55xx TMS320C5535 [56] 100 220 220.0
High-perf. MCU, 32-bit ARM Cortex-M3 STM32L151C8 [60] 32 540 25.0
Signal acq. MCU, 16-bit ARM 7 TDMI ADUC7060 [61] 10 775 137.5
Low-power MCU, 32-bit ARM Cortex-M0 LPC1102 [62] 50 462 6.6
Low-power FRAM MCU, 16-bit MSP430 MSP430FR572x [63] 24 275 19.2
Bluetooth SoC, 8-bit 8051 CC2541 [64] 32 628 2.7
Bluetooth SoC, 16-bit ARM Cortex-MO nRF51422 [65] 32 495 6.9
Bluetooth SoC, 32-bit ARM Cortex-M4 BGM113 [66] 384 307 2.7
Bluetooth SoC, 32-bit ARM Cortex-M3 CC2640 [67] 48 110 4.9
Bluetooth SoC, 32-bit ARM Cortex-M4 nRF52832 [68] 64 100 1.7

core coupled with a high-resolution ADC (ADUC7060,
Analog Devices) was included in the test.

The third category was processing cores embedded in
system-on-chip (SoC) Bluetooth 4 communication mod-
ules. The latest generation SoC featuring 32-bit ARM
Cortex-M3 (CC2640, Texas Instruments) is compared to
two different ARM Cortex-M4 cores (nRF52832, Nordic
Semiconductors; BGM113, Silicon Labs). Aforementioned
cores were compared to previous generation SoCs featuring
lower-powered processing cores: 16-bit ARM Cortex MO0
(nRF51422, Nordic Semiconductors) and 8-bit 8051 core
(CC2541, Texas Instruments).

Each core was benchmarked with the respiratory sound
classification algorithms [12, 23]. Number of mathematical
operations constituting each algorithm was modelled using
analytical expressions derived in [12, 23], respectively;
Number of additions and the multiplications was modelled
separately as elementary instruction types with different
power cost. Respective execution models show that the
execution times of both test algorithms are dominantly
dependent on two factors: (1) number of the observed fre-
quency states (bins) M defined by DFT frequency resolution
and (2) the spectral content of the input signal. Namely,
execution of both algorithms is linearly proportional to
the number of frequency lines L. Thus, in all test cases,
M and L are kept identical for both algorithms to enable
the comparison. M was varied in a span ranging from 32 to
maximally 128 frequency states. For input signal containing
wheezing, probabilities of occurrence of monocompo-
nent (L =1), two-component (L = 2), and three-component
(L = 3) wheezing are uniformly distributed.

Motivated by the execution time’s dependency of the sig-
nal content, a test environment was constructed to assess the
dependency of the average processing power consumption
with respect to the symptom severity, simulating realistic
operating conditions. Symptom severity was modelled by
two variables: (1) wheeze rate, and (2) symptom rate. Wheeze
rate, a percentage of respiratory cycle obstructed by wheez-
ing, was varied in the range of 0% to 50% (e.g., 25% wheeze

rate is reported as a severe obstruction of airways, experi-
enced only during asthmatic attacks [7, 8, 69, 70]). Symptom
rate is the frequency of occurrence of respiratory cycles con-
taining wheezing, expressed as percentage, ranging between 0
and 100%.

For each combination of wheeze rate, symptom rate, and
number of processed frequency states (M), execution time of
each algorithm was calculated on each processing core.
Cores’ operating frequency, register width with respect to
assumed 16-bit data width, and cost of multiplication with
respect to addition were taken into consideration. Knowing
the intervals between the consecutive processing tasks, pro-
cessing duty cycle was calculated from the execution time
(i.e., portion of time spent in active state). Finally, the average
processing power consumption was calculated, using the
power spent in active and sleep state. As processors generally
feature more than one low-power state, sleep power was esti-
mated to correspond to the low-power state, in which all the
required periphery for short wake-up and periodic sampling
by ADC (DMA and PLL) is operative, and the memory con-
tent is retained.

Example results in Figure 3 show an increase in average
power and processing duty cycle proportionally to the symp-
tom rate and the wheeze rate, for the HMM-based algorithm.
The figure contrasts the algorithm execution on two different
processing cores: 100 MHz 16-bit audio processing DSP
(C5535, Texas Instruments) and 25MHz 16-bit MSP430
general purpose low-power MCU. Due to 4 times lower clock
frequency, processing on the MCU results in proportionally
higher processing duty cycle (worst-case approx. 22% active
time, with respect to 5% on the DSP). However, due to lower
sleep power of the MCU, comparable power consumption is
achieved by both cores, with the audio DSP being approxi-
mately only 7% more efficient.

In a similar manner, average power consumption dis-
tributions of Bluetooth 4 SoCs featuring different process-
ing cores are compared in Figure 4. The best overall
results are obtained on the 64 MHz ARM Cortex-M4 core
(nRF52832), ranging from 308 to 452 uW. 48 MHz ARM



Power (uW); HMM algorithm, M = 128,

TMS320C5535

50
— 1300
g
E 1200
<
o 25
3
= 1100
=

0 1000

0 25 50 75 100
Symptom rate (%)

(a) Power consumption, 100 MHz audio DSP

Power (uW); HMM algorithm,
MSP430FR572x

>0 1400

1300

25 1200

1100

0 1000
0 25 50 75 100

Symptom rate (%)

M =128,

Wheeze rate (%)

(c) Power consumption, 25 MHz 16-bit MCU

Journal of Sensors

Average proc. duty-cycle (%); HMM algorithm, M = 128,

TMS320C5535
50
5
5
g 45
< .
E 25
& 4
z
0
0 25 50 75 100
Symptom rate (%)

(b) Active-state duty cycle, 100 MHz audio DSP

Average proc. duty-cycle (%); HMM algorithm, M = 128,
MSP430FR572x

50 21
g 20
L
S 2 s
B
E 17
= 16

0 15

0 25 50 75 100

Symptom rate (%)
(d) Active-state duty cycle, 25 MHz 16-bit MCU

FiGure 3: Comparison of processing power consumption and active-state duty cycles of a typical 16-bit audio DSP and general purpose low-

power MCU.
Power (uW); HMM algorithm, M =128,
nRF52832
440
g€ 420
& 400
g
3 25 380
3 360
=
= 340
320

Symptom rate (%)

(a) Power consumption, 64 MHz ARM Cortex-M4

Power (uW); HMM algorithm, M = 128,
BGM113

50 1400

1300

25 1200

1100

0 1000
0 25 50 75 100

Symptom rate (%)

Wheeze rate (%)

(c) Power consumption, 38 MHz ARM Cortex-M4

Power (uW); HMM algorithm, M =128,
CC2640

50 500
B
s 450
&
=25
2
§o 400

0 350

0 25 50 75 100

Symptom rate (%)
(b) Power consumption, 48 MHz ARM Cortex-M3

Power (uW); HMM algorithm, M = 128,
CC2540

50 6500

6000

25 5500

5000

0 4500
0 25 50 75 100

Symptom rate (%)

Wheeze rate (%)

(d) Power consumption, 32 MHz 8-bit 8051

FIGURE 4: Comparison of processing power consumption on four Bluetooth 4.x SoCs.

Cortex-M3 (CC2640) lags behind as the second, consuming
348 to 505 uW. BGM113, although featuring the same core
as the nRF52832 (ARM Cortex M4), yields 3 times higher
power consumption, mainly due to 3 times higher active

power and approximately 2 times lower clock frequency.
Legacy Bluetooth SoC module featuring 8051 (CC2541)
proves suboptimal for respiratory sound processing, due to
8-bit architecture, low clock frequency, and so on.
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The overall results are shown in Figure 5. In Figure 5(a),
all cores are sorted by the worst-case power consumed for
processing of wheezing with respect to the power con-
sumed for processing of normal respiratory sound, by both
algorithms. The results are shown for fixed, maximal
M=128. It can be seen that for HMM-based algorithm,
the processing of wheezing may require approximately
up to 45% more power than processing of normal respira-
tory sounds. On the other hand, referent algorithm shows
negligible difference, as it gradually reduces dimensionality
of data.

The best results are obtained for ARM Cortex-M4
and M3 cores embedded in Bluetooth 4 SoCs (nRF52832
and CC2640) and with dedicated low-power audio C55xx
DSP (TMS320C5535). On the other hand, the worst effi-
ciency is obtained with ADUC7060 signal acquisition con-
troller, high-performance 32-bit ColdFire audio DSP core
(MCF51-MM128), and the legacy 16-bit 568xx DSP core
(MC56F8006).

The average-case and the worst-case processing duty
cycles are compared in Figure 5(b), to potentially identify
cores failing to meet constraints of the real-time process-
ing. The results show that least resources are spent by
dedicated audio DSPs TMS320C5535 (worst case 10% of
processing time) and ADSP2188N. On the other hand, it is
shown that due to low maximal clock frequency (only
10 MHz), ADUC7060 signal acquisition controller hardly
meets the worst-case real-time requirements when running
the HMM-based classification algorithm (with M =128 hid-
den states). Also, 8051 and MSP430 spend high portions of
their processing time, 60% and 40%, respectively.

Finally, efficiencies of the HMM-based and referent crest-
tracking respiratory sound classification algorithms are com-
pared with respect to the number of the processed frequency
states (bins) M in Figure 6. At the maximal M =128, the

HMM-based algorithm requires approximately 1.5 times
more power with respect to the referent algorithm. However,
as execution time of the HMM-based algorithm scales with
M?, its power requirements may be significantly reduced by
lowering the number of processing states (e.g., focusing the
algorithm on a narrower frequency band of interest). The
red line depicts the intersection at which processing power
consumption requirements of both algorithms are equalized.
In worse case of the processing of respiratory sounds with
wheezing, this boundary lays at approximately M = 64. For
HMM algorithm, operating on signal sampled at 2 kHz, this
would mean narrowing the bandwidth of the observed sig-
nal to 500 Hz. Nevertheless, this is considered sufficient for
classification (see [12]).

2.3.2. Processing Cores for CS Encoding. Here, we evaluate
power requirements for the CS signal encoding implemented
by sub-Nyquist sampling of the analog input signal at the
nonuniform pseudorandomly spaced sampling instants [30,
31]. The choice of encoder was motivated by the fact that
the mentioned CS encoder design requires minimal number
of digitized signal samples, thus enabling the highest savings
of active power in signal acquisition subsystem (i.e., ADC’s
and MCU’s active time spent on acquisition, data handling,
and storage) [71]. Also, it enables for simple implementation
in microcontroller’s firmware or a dedicated digital hardware
[31]. Finally, it enables for easy and energy-efficient synchro-
nization of pseudorandom number generators between sen-
sor and the receiver/smartphone side (with minimal data
transmission overhead) [30]. As the ADC power has already
been covered in Section 2.2, this analysis focuses on power
spent on the processing tasks implementing the LESR pseu-
dorandom number generator and the sampling period
scheduler blocks in the MCU software and operation of
the 16-bit timer MCU peripheral unit.
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The processing tasks required for sampling of a single
CS-encoded sample include (1) generation of the next LFSR
pseudorandom output, (2) scheduling of the next sampling
instant, (3) setup of the timer, (4) and triggering the ADC
conversion. Cost of the MCU implementation within Free-
RTOS was empirically verified on a prototype implementa-
tion on MSP430 to approximately 150 instructions per
single CS-encoded sample. Cost of the timer operation was
estimated from the MCU manufacturer data (e.g., [67]) and
scaled with the clock frequency.

The total cost of CS encoding was simulated for a range of
CS sub-Nyquist sample rates corresponding to compression
ratios of 2x, 4x, 5.33x, and 8x with respect to the Nyquist
sampling frequency of 2 kHz. In addition to MSP430, power
cost of the CS encoding was simulated on several additional
MCU cores: ADUC7060 signal acquisition controller and
MCUs within Bluetooth 4 SoCs: nRF52832, CC2640,
BGM113, nRF51422, and CC2540.

Average power and the processing duty cycle required for
the CS encoding with the increase of compression ratio are
shown in Figure 7. The results show that the most efficient
implementation may be achieved on Bluetooth 4 SoC ARM
Cortex cores. On the nRF52832 power for the CS encoding
ranging from 17 to 63 yW, while on the CC2640, it costs
22 to 73uW. It is shown that CS encoding on the
nRF52832 in the worst-simulated case spends less than 1%
of the processing time.

2.4. Bluetooth Communication. Bluetooth 4 (i.e., Bluetooth
Smart, Bluetooth Low Energy) radio technology was evalu-
ated for the wireless data transfer, as it enables for interoper-
ability with smartphones and medical certification [72],

while retaining low-power operation. The highest level of
integration of Bluetooth radios is provided with system-on-
chip (SoC) modules, packaging together a digital radio, a
radio controller implementing the Bluetooth stack, an appli-
cation processor, and a variety of standardized embedded
peripheral interfaces.

The following state-of-the-art Bluetooth 4 SoCs were
analyzed: CC2640, CC2541 (Texas Instruments), BGMI113
(Silicon Labs), and nRF52832 (Nordic Semiconductors).
Table 4 compares their average power in the most typical
operating states: radio transmission (TX), radio listening
(receiving, RX), and sleep. The power reduction in TX and
RX in order of 2 to 3 times can be observed when comparing
the previous and the actual generations of Bluetooth 4 SoCs
(CC2541 with respect to CC2640, nRF52832, and BGM113).
The increase of processing capabilities enables for the imple-
mentation of respiratory sound classification algorithms
(e.g., [12, 13, 16]) onboard SoC’s application processor.

Bluetooth 4 communication protocol is designed with
the premise of fostering the lowest average power, by featur-
ing intermittent, short active time (TX, RX) of the radio, in
combination with long sleep time in between connection
intervals. Data packets are exchanged only at predefined peri-
odical connection intervals, during the so-called connection
events. Upon completion of the connection event, the radio
is put to sleep until the next one [73]. Duration of a connec-
tion event is minimized by high communication throughput
(typically 2 Mbit over the air). Typical waveform of the
CC2640 radio’s power supply current measured during the
connection event, segmented into a sequence of common
power states, is shown in Figure 8 (see descriptions for the
labels 1 to 6).



Journal of Sensors

800
700
S 600 1
=
500
E
2 400 1
(9]
80 300
o)
Z 200 -
100 1
0 - . . ,
o [=} o e o~ [=} (=]
o <t — N o <t O
=] O — O~ <t [Te} (=)
p S = e " 3 $)
Z= © 2 5 =z ©° >
=} ) =t a
5 <
w
=

—— CS compr. ratio 2x —»— CS compr. ratio 5.33x
—o— CS compr. ratio 4x —— CS compr. ratio 8x

(a) Power consumption for CS encoding

Average processing duty-cycle (%)

nRF51422 A
CC2540 1

[ (=} o
o < —
& & =
2 9 3
A

MSP430FR572x A
ADUC7060

—>— CS compr. ratio 2x —»— CS compr. ratio 5.33x
—o— CS compr. ratio 4x —— CS compr. ratio 8x

(b) Active-state duty cycle for CS encoding

FIGURE 7: Comparison of processing cores’ consumption and active-state duty cycles for CS encoding.

TABLE 4: Parameters of the tested Bluetooth 4 SoC modules.

Application TX, RX, Sleep,

Component processor mW mW A

CC2541 [64] 8-bit 8051 364 358 2.0
32-bit ARM

BGM113 [66] Cortex-M4 163 16.1 2.6
32-bit ARM

nRF52832 [68] Cortex-M4 131 120 2.8
32-bit ARM

CC2640 [67] Cortex-M3 1.3 109 1.9

Due to numerous parameters influencing durations of
each power state, we focused our power analysis on the
CC2640, as it offers extensive Bluetooth power estimation
guidelines [73], power simulation tools [74], and data [67].
The analysis assumes following parameters and limitations
of CC2640. The power was measured at the supply voltage
of 1.8 V. Output power of the transmitter was set to 0 dBm
as communication between the sensor and the smartphone
is taking place at the very short range (i.e., <10 m). Maximal
payload size during a single connection event was limited by
the Bluetooth software stack to maximally 256 bytes. Time
between the successive connection intervals may range from
7.5ms to maximally 4.0s.

With the given constraints, the average power consump-
tion spent on communication was calculated for each of the
three operating scenarios: Firstly, in the scenario of stream-
ing of uncompressed data, we analyzed cases of sampling
(i.e., streaming) rates of 8 and 2kHz. There, 8kHz corre-
sponds to the case of using the referent empirical rule-
based spectral crest-tracking classification algorithm [12]
on the smartphone (requiring DFT block size N = 512, with
75% overlap). On the other hand, 2kHz corresponds to
classification on smartphones by the HMM-based algorithm

[21, 22], on signal blocks of N =256 samples, overlapped by
75% as well.

Secondly, in the scenario of streaming of the CS-
compressed signal, we analyzed 4 different compression
ratios with respect to the 2kHz Nyquist frequency: 2x, 4x,
5.33x, and 8x. Payload size is calculated with respect to orig-
inal signal block size of N =256 and 75% overlap, as the
HMM-based classification algorithm [21, 22] is assumed.
Also, each TX payload size is increased by 2 additional bytes
needed for the pseudorandom seed.

Finally, in the third scenario of the respiratory sound
classification onboard sensor, the binary block-wise classifi-
cation outcome is encoded in a periodically sent report mes-
sages. The connection period and payload size depend on the
classification algorithm (sampling frequency, signal block
size) and payload content, whether the stream of raw binary
classification outcomes corresponding to each signal blocks
is sent or if wheeze rate is calculated for a predefined tempo-
ral window. For all scenarios, 2-byte acknowledged RX mes-
sage is assumed.

In the analysis, relative contributions of the payload size
and connection interval were compared for each operating
scenario, by accumulating (buffering, storing) the TX data
on the sensor across multiple connection intervals until
reaching the maximal payload size and then transmitting it
in bulk. Table 5 summarizes the tested scenarios, nominal
payload sizes, and the span of possible connection intervals
supporting the transmission, given the payload size limita-
tions (i.e., 256 bytes on CC2640).

Spans of the average power required for the communi-
cation in each operating scenario with respect to time
between successive Bluetooth connection events are shown
in Figure 9. It is shown that due to very short active times
(i.e., high data rate), sleep power spent in between the
connection intervals influences the average communication
power much more than the change of payload size. This
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F1GURE 8: Example waveform of current measured during a single Bluetooth 4 connection event. 1—real-time operating system wake-up,
radio setup; 2—radio turned on, transition to RX; 3—radio receiver listening (RX); 4—transition from RX to TX; 5—radio transmission
(TX) of the packet; 6—Bluetooth stack processing the received packets, setup of sleep timer, going to sleep [73].

TaBLE 5: A list of tested communication scenarios, with best-case
average power.

Scenario. case Min. payload  Conn. intvl. ~ Min. avrg.
’ TX/RX, bytes span, ms power, uW

Nyquist rate

streaming, f. 8 Kz 256/2 16-32 914

Nyquist rate

streaming, f, 2 kHz 128/2 31.25-62.5 373

CS streaming, (64+2)/2 31.25-125 168

compr. 2x

CS streaming, (32+2)/2  31.25-250 81

compr. 4x

CS streaming, (24+2)2  3125-250 79

compr. 5.33x

CS streaming, (16+2)/2 31.25-250 77

compr. 8x

Class. result 2 125-4000 g

reporting

causes the average power to exponentially fall when increas-
ing the connection interval. Thus, we propose to maximally
prolong the (sleep) time between connection intervals by
accumulating the data, filling each transmission packet up
to the maximal payload size.

The best-case results for each scenario obtained in a sim-
ilar manner are highlighted in Table 5. The Nyquist rate data
streaming proves most costly, costing 914 yW at 8kHz.
Drastic decrease of power in case of the Nyquist rate stream-
ing at 2 kHz originates from doubling the connection inter-
val. The identical mechanism is the reason for decrease
from 168 to 81 yW when stepping-up from the CS compres-
sion ratio of 2x to 4x. On the other hand, minimal difference
in the average power is observed in cases of identical connec-
tion intervals, where only the payload size was increased
(e.g., at the CS compression ratios 4x, 5.33x, and 8x). In
the scenario of onboard classification, the minimum average
power of only 8 W is achieved at the maximal connection
interval of 4s.

3. Wearable Sensor’s Total Power Consumption

Analysis of the total sensor power consumption is given here.
Three operating scenarios from Section 1 are compared: (1)
the onboard classification, (2) the CS signal streaming, and
(3) the streaming of uncompressed Nyquist rate signal. For
each scenario, the total power is calculated by summing up
contributions of the acoustic sensor, analog conditioning,
A/D conversion, processing, and Bluetooth communication
subsystem, based on results presented in Section 2.

To enable the comparison of all three operating scenar-
ios, the analysis assumes a wearable sensor constituting of
common subsystem components. An analog MEMS micro-
phone (such as ICS-40310) is combined with analog front-
end from Section 2.1 for conditioning and 16-bit SAR ADC
(e.g., AD7684) for digitalization. Processing and communi-
cation are implemented on the Bluetooth 4 SoC featuring
the ARM Cortex-M4 processing core, proven optimal for
both onboard classification and CS-encoding tasks (see
Section 2). For completeness, the analysis is based on the
representative CC2640 SoC. In the scenario of onboard clas-
sification, the number of processed frequency states is equal-
ized for both classification algorithms to M =64 to yield
comparable power. In the CS streaming scenario, range of
the CS compression rates was chosen to yield comparable
classification performance with respect to Nyquist rate signal
acquisition. According to [21, 30], the classification accuracy
is degraded by less than 5% for the CS compression ratios
lower than 5.33. Thus, the power analysis focused on com-
pression ratios spanning from 2x to 5.33x.

The total power consumption of the CC2640-based sen-
sor is compared in Figure 10. Being constantly powered
and architecturally identical in all scenarios, the microphone
and the analog conditioning circuit contribute equally to the
total power with 101 yW. Power contributions of the remain-
ing subsystems are scenario dependent.

In the scenario of onboard classification, lower total
power is obtained for the case of the HMM-based algorithm
operating on a signal sampled at 2kHz. The total average
power was 320 W, with a major share of 56% being taken



Journal of Sensors

11

100} 8-

Average power (uW)

10%

50 100 150

200

250 300

Connection interval (ms)

--- Nyquist rate streaming, ( f, 8 kHz)
—— Nyquist rate streaming, ( f, 2 kHz)
—— CS streaming, compr. 2x (w.r. 2 kHz)

--- CS streaming, compr. 5.33x (w.r. 2 kHz)
CS streaming, compr. 8x (w.r. 2 kHz)
—— Class. result reporting, 2—8 kHz

--- CS streaming, compr. 4x (w.r. 2 kHz)

FIGURE 9: Average power spent on Bluetooth 4 communication with respect to time between successive connection events.

Breakdown of total sensor power, CC2640
T

Class. on sensor, ref. alg. number 2 ( f 8 kHz)
Class. on sensor, HMM alg. ( f 2 kHz)

CS streaming, compr. 5.33x (w.r. 2 kHz)

CS streaming, compr. 4x (w.r. 2 kHz)

CS streaming, compr. 2x (w.r. 2 kHz)

Nyquist rate streaming ( f, 2 kHz)

Nyquist rate streaming ( f, 8 kHz)

0 200

I Sensor

I Analog conditioning

400 600 800 1000
Total average power (uW)

| Processing
|:| Communication

1200

[ A/D conversion

F1GURE 10: Comparison of total power consumptions for different operating scenarios. Breakdown of power consumption per subsystems.

by the classification algorithm. As a comparison, the classifi-
cation using the referent crest-tracking algorithm, requiring
the signal digitized at 8 kHz, results in 31% higher sensor
power (i.e., 420 uW).

In the scenario of streaming of the CS-encoded signal,
total power scales down as expected when increasing the
compression ratio. At higher compression ratios of 4x and
5.33x, it yields 228 and 216 W, respectively. Majority of this
power is spent on communication. However, the significant
processing share related to CS encoding occurring at low
compression ratios (e.g., 76 yW for compr. ratio of 2x) points
to inefficiency of the MCU software implementation of
CS encoding.

As the scenario of uncompressed signal streaming vir-
tually excludes any processing, the largest portion of the
power is spent on communication (proportional to the
sample rate). In the best case (at 2kHz, assuming classifi-
cation using the HMM-based algorithm on smartphone),
the total power was 505uW. At 8kHz, it doubled to
1138 uW. Thus, streaming the uncompressed signal proves
to be the worst solution.

Power analysis confirmed that the sensor performing the
CS encoding, operating at the compression rate higher or
equal than 4x, yields the lowest total power. By requiring less
power for processing, it outperforms the best case of onboard
classification 1.8 times (HMM algorithm with sample rate at
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TABLE 6: Analytical models of computational and storage complexities of the OMP algorithm per single iteration, taken from [35].

Implementation

Computational cost

Storage cost

OMP, QR factorization
OMP, Cholesky factorization

2MK+ M+ A+ N
3A+3 K>+ 2M+ N

2(M+1)K+05K(K+1)+ A+ N
05KGi+1)+A+M+2K+N

2kHz). Also, by reducing the communication cost, it yields
2.2 times lower total power with respect to uncompressed
signal streaming (at 2kHz). This confirms usability of the
practically implemented CS encoding in systems where off-
loading the sensor in terms of power consumption is the
primary design criterion.

4. Smartphone Power Consumption

In the smartphone-centric wheeze quantification sensor
system (i.e., in both signal streaming scenarios), the major
contributors to smartphone’s power consumption are com-
munication and signal processing. Processing includes respi-
ratory sound classification and additionally, in the scenario
of CS streaming, CS reconstruction.

Processing cost is evaluated for typical system-on-chips
(SoC) integrating multiple processing cores, radio, and
peripheral units. Such are the Samsung Exynos 7420 SoC
[75] (Samsung Galaxy S6, Galaxy Note 5) and Samsung
Exynos 5433 SoC [76] (used in Samsung Galaxy Note 4,
Galaxy Tab S2). Both SoCs encapsulate 8 cores in the
so-called big.LITTLE configuration, consisting of a cluster
of 4 low-power ARM Cortex-A53 cores [77] and 4 high-
performance ARM Cortex-A57 [78] cores. Both cores are
based on ARMv8-A 32/64-bit architecture and feature archi-
tectural extensions supporting efficient digital signal process-
ing (i.e., NEON SIMD, VFPv4 floating point unit). Figure 11
compares Samsung Exynos 7420 and 5433 SoC’s per-core
active-state power consumptions.

4.1. Power Cost of CS Reconstruction on Smartphone. Power
cost of the CS reconstruction on smartphones was analyzed
for the representative orthogonal matching pursuit (OMP)
algorithm [30, 32, 79]. The OMP algorithm estimates a
K-sparse solution to the underdetermined M xN system
(M <N), by organizing it into the iterative procedure, in
whose each iteration one-after-another solution vector
element is estimated by solving an overdetermined system
(of the dimensionality growing with each iteration) using
the linear least squares method. As the calculation of the least
squares presents a major bottleneck of the algorithm, we ana-
lyzed two approaches to solving the least squares, one by uti-
lizing QR factorization and the other featuring the Cholesky
factorization. The computational complexities of both algo-
rithm implementations were modelled analytically, based
on the expressions derived for per-iteration computational
cost [35], shown in Table 6. N stands for the original signal
length, M is the compressed signal length, K is the number
of (sparse) signal components, i is the iteration number,
and A is the calculation cost of the CS measurement
matrix. The total cost was evaluated for the number of iter-
ation (termination condition) set to exactly K reconstructed
frequency components.

All simulations were performed using the fixed original
DFT/DCT block size of N =256 (f,=2kHz), with the num-
ber of iterations K parametrized in range 4-32 and the num-
ber of subsampled signal elements M in the range 128-32,
yielding the compression ratios N/M of 2-8. The model was
fed with the architectural parameters of ARM Cortex-A53
and ARM Cortex-A57 processing cores featured in Exynos
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smartphones. Comparison of implementations featuring QR and
Cholesky factorization. N =256. Single ARM Cortex-A53 core
running at 1.5 GHz, embedded in Exynos 7420 SoC.

7420 smartphone SoC. Single-core operation is simulated.
From estimated total processing times and required process-
ing intervals, occupancies of the processing cores (i.e., pro-
cessing duty cycles, in %) and the associated increment in
cores’ average power consumption were calculated. Incre-
ments in average power consumptions obtained by executing
the OMP featuring QR and Cholesky factorization are
compared in Figure 12 for case of the smartphone ARM
Cortex-A53 core running at 1.5GHz. In general, OMP’s
processing time (i.e., average power) grows proportionally
with both K and M and is more sensitive to M. The imple-
mentation featuring QR factorization yields about 2.5 times
less power than the implementation with Cholesky; thus,
the version featuring QR is considered optimal and is further
analyzed within the rest of the study.

Spans of average powers required for OMP execution on
A57 and A53 processing cores within Exynos SoC with
respect to range of cores’ respective clock frequencies are
shown in Figure 13(a). In the worst case, obtained for the
maximal M and K, the power on the low-power A53 core
(blue) ranges from 3.7mW at 400 MHz to 10.4mW at
1500 MHz. On the high-performance core A57 (orange),
13.8-32.9mW is required, for the frequency span of 800-
2100 MHz. Analogously, Figure 13(b) depicts associated pro-
cessing time duty cycles. Processing time, dropping inversely
with clock frequency, spans in the worst case from 2.8% to
10.7% on A53 (blue) and from 2.0% to 5.3% on A57 (orange).

However, in the typical use case, lower M is utilized in
order to implement higher compression ratio. Also, depend-
ing on the signal sparsity (compressibility), the number of
reconstructed spectral components K may be chosen reason-
ably low (e.g., K =8...16). Thus, the power consumption
would range from 1.2 to 2.4 mW on A53 core running at its
maximal 1500 MHz. By scaling the frequency down to
400 MHz, the power drops to 400-850 uW, at the cost of

13

higher processing duty cycle, spanning between 1.2 and
2.4% of core’s processing time. The analysis shows that single
ARM Cortex-A53 processing core entails sufficient resources
for real-time execution of the OMP (QR) CS reconstruction.

4.2. Power Cost of Respiratory Sound Classification on
Smartphone. Resource requirements for respiratory sound
classification were evaluated for case of the proposed
HMM-based respiratory sound classification algorithm
[21, 22] digitized at f, of 2kHz (DFT block size N =256,
75% overlap). We analyzed the worst-case execution time
obtained at the maximal symptom occurrence rate (100%)
and for the wheeze rate of 50%. Number of the processed fre-
quency states (i.e., DFT bins) Mg, and the processing core’s
frequency were taken as parameters. The processing core’s
parameters were set as for OMP in Section 4.1.

According to the results in Figure 14(a), the worst-case
power cost of the classification on high-performance ARM
Cortex-A57 core spans between 1.7mW at 800 MHz and
4.0mW at 2.1 GHz. On the other hand, lower power may
be obtained on ARM Cortex-A53, ranging from 400 uW at
400 MHz to 1.2mW at 1.5GHz. The algorithm typically
requires well below 1.0% of the processing time (see
Figure 14(b)). In the case of the HMM-based algorithm opti-
mized to operate on a reduced number of the frequency states
(e.g> Mg =064), the average power on Cortex-A53, operat-
ing at the minimal clock frequency of 400 MHz, would drop
to 158 W, occupying around 0.45% processing time.

5. System-Level Power Consumption

The total system-level power consumption is comprised of
the sensor’s power analyzed in Section 3 and the power
spent onboard the smartphone. Complexity of typical
smartphone’s hardware architecture (multicore processing
units, multiple wireless communication interfaces, storage
devices, screens, peripheral units, etc.), heterogeneity of
hardware components, and high-complexity operating sys-
tem software governing the allocation of hardware resources
and power management policies complicate mW-accurate
system-level modelling.

Total power of smartphone models featuring processing
cores such as those analyzed in Section 4 typically ranges
from 120 to 550 mW [31, 75]. In order to foster a meaningful
comparison with the sensor’s power, a simplified smartphone
power-estimate simulating only the incremental contribu-
tions to the smartphone’s active-state baseline power is given
here. Estimates on smartphones’ power requirements for
processing (i.e., cost of CS spectrum reconstruction and
respiratory sound classification) are based on results from
Section 4. Also, it is assumed that the increment in smart-
phone’s power consumption for Bluetooth communication
is comparable to the power of the sensor (Section 2.4).
Within these constraints, the total system-level power for
each of three operating scenarios was estimated. Table 7
summarizes the findings.

The worst-case system-level power consumption is
measured in the referent scenario featuring uncompressed
data streaming, tested for the range of sampling/streaming
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TaBLE 7: Total system-level power consumption in the analyzed operating scenarios.

Scenario Sensor, yW Smartphone, proc., AuW Smartphone, comm., AuW Total, uw
Class. on the sensor, f,=2-8 kHz 320-420 — 8 328-428
CS signal streaming, N/M = 5.33-2 216-357 460-2080 79-168 775-2605
Uncompr. Streaming, f, =2-8kHz 505-1138 158-632 373-913 1036-2683
rates f, spanning from 2 to 8 kHz, and smartphone running The minimum overall system-level power consumption

HMM classification algorithm. At 2kHz, the total power  is obtained in the scenario featuring classification onboard
was estimated at 1.3 mW, spanning to 3.6 mW at sample rate  the sensor. Here, the smartphone is free of any signal pro-
of 8kHz. cessing tasks, and minimal power is spent on communication
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between peer devices. Thus, the majority of system power is
related to the sensor’s power, keeping the total system’s
power below 428 yW.

In the CS signal streaming scenario, the total power
ranges from 775 to 2605 uW, for respective CS compres-
sion ratios spanning from 5.33x to 2x. It features at least
2.4x higher total system-level consumption with respect
to the sensor system with classification onboard the sensor
but brings up to 25% savings in total system-level power
with respect to the uncompressed signal streaming (at f,
of 2kHz). Widespan of the total system-level power is pri-
marily influenced by its dependency on the CS compres-
sion ratio (yielding higher power requirements at low
compression ratio). Depending on the compression rate,
cost of CS encoding on the sensor is 2.5x to 6x lower than
the power required for execution of the HMM algorithm
in the scenario of onboard classification. On the smart-
phone, CS reconstruction poses the largest bottleneck,
costing 2.2 to 5.4 times more than classification with the
HMM-based algorithm. The power cost of its implementa-
tion (estimated at 158 yW) is about 12% lower compared
to the implementation on the wearable sensor (180 yW).

Power figures from Table 7 enable us to estimate the
effective sensor system runtime. For example, a wearable sen-
sor based around Texas Instruments CC2640 SoC, powered
from a 200 mAh lithium coin-cell battery (CR2032) and a
suitable DC/DC voltage regulator featuring 85% efliciency,
would last for 50-66 days running onboard wheeze detection,
depending on the wheeze detection algorithm. In the same
conditions, a sensor node implementing CS sampling and
streaming would operate for 59-98 days (depending on com-
pression ratio), and the sensor node performing pure Nyquist
rate sampling and streaming, only 18-42 days (depending on
sample rate).

On the other hand, let us assume a smartphone consum-
ing on average 125mW, powered by a 2500 mAh Li-Ion
accumulator (around 63 hours of base autonomy). Its
runtime would be shortened for less than 1 minute, 16—
66 minutes, or 16-45 minutes in respective scenarios on the
account of application-specific processing and communica-
tion. This estimate excludes any power spent by a dedicated
asthma diary mobile application on data visualization and
user interaction, which may put additional heavy power
burden on the smartphone’s LCD screen.

6. Conclusion

With power consumption being one of critical parameter in
designing wearable sensor systems, the goal of this analysis
was to provide generalized knowledge on how different ana-
log/digital processing hardware architectures and communi-
cation technologies handle the specific task of wearable
asthmatic wheeze detection. The analysis covered three typ-
ical operating scenarios differing with respect to distribution
of signal digitization, processing, and communication across
the wearable sensor system. In addition to exact power
figures reflecting the current state of the technology, analysis
provided relative relations between different hardware archi-
tectures and component families, which can be used to guide
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similar and future designs in the high-impact field of wear-
able physiological signal monitoring devices.

Given the processing-intensive application, it is shown
that the minimal end-to-end system power consumption
(both sensor and smartphone) is achieved by implementing
processing onboard the wearable sensor (328 to 428 uW).
This scenario minimizes the power spent on communica-
tion, and the bottleneck consumer is the sensor’s signal
processing subsystem. The comparison of the proposed
respiratory sound classification algorithms (HMM-based
algorithm from [23] and referent frequency-tracking algo-
rithm [12]) has shown that both algorithms feature com-
parable execution times. However, HMM-based algorithm
lowers signal digitization power requirements by operat-
ing with signal digitized at only 2kHz and in lower SNR
conditions [23].

The analysis of acoustic sensors, analog signal condi-
tioning, and ADC architectures has confirmed that analog
MEMS microphones feature the greatest power efficiency
for our application, totaling about 100 4W including the
proposed analog signal conditioning circuit. For signal
digitization, 16-bit successive approximation (SAR) ADC
architecture proved optimal. Power analysis of the pro-
cessing subsystem has shown that 32-bit ARM Cortex
M3/M4 cores embedded within the Bluetooth 4 SoC mod-
ules feature the optimal trade-off between performance and
power consumption.

Application of CS enables for construction of the system
featuring a wearable sensor consuming minimal power (216
to 357 uW). This poses great implications on manufacturing
costs of the wearable sensor as it enables for simpler (thus
cheaper) hardware/firmware design. Also, it lowers the
software development and maintenance and updates costs,
by moving most of the software development from the
sensor to the smartphone (i.e., from the domain of special-
ized MCU-/DSP-embedded firmware development, to
common Android Java mobile application development).
The biggest merit of the CS in comparison to the conven-
tional compression techniques is that it minimizes the
sensor’s power, while simultaneously keeping the total sys-
tem power lower or equal to the uncompressed streaming
scenario. CS asymmetrically redistributes power load, redir-
ecting it from sensor’s acquisition, processing, and commu-
nication subsystems into the smartphone’s processing
subsystem. On the smartphone, CS reconstruction is the
major bottleneck, costing in the case of OMP algorithm 2.2
to 5.4 times more than the classification. A single low-
power ARM Cortex-A53 processing core running at the
minimum frequency (e.g., 400 MHz) suffices for real-time
CS reconstruction and classification.

In the next step, collected knowledge shall be used for
advancing to the next step of technological readiness, entail-
ing a construction of an integrated hardware prototype suit-
able for trials on patients. Specific engineering challenges
expected on this path may include some of general limita-
tions related to acoustic sensing modality: sensitivity to
mechanical coupling [9, 40], external interferences (e.g.,
speech, heart sounds [4]), and noise (sensor contact noise,
background noise [5]).
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Abbreviations

ADC: Analog-to-digital converter
CS: Compressed sensing/compressive sampling
DCT: Discrete cosine transform
DFT: Discrete Fourier transform
DMA: Direct memory access

DSP:  Digital signal processor
HMM: Hidden Markov model

I°C:  Interintegrated circuit bus
MCU: Microcontroller unit

OMP:  Orthogonal matching pursuit
STFT: Short-term Fourier transform
PLL:  Phase-locked loop

RX: Receive

SAR:  Successive approximation
SoC:  System-on-chip

SPI.  Serial peripheral interface bus
TX: Transmit.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Both

Vedran Bilas and Dinko Oletic conceived the research

and designed the experiments; Dinko Oletic performed the
experiments and analyzed the data; Dinko Oletic and Vedran

Bilas

wrote the paper. Dinko Oletic and Vedran Bilas con-

tributed equally to this work.

References

(1]

(2]

(3]

M. Masoli, D. Fabian, S. Holt, and R. Beasley, Global Burden of
Asthma, Medical Research Institute of New Zealand, Welling-
ton, New Zealand, 2010.

H. Melbye, L. Garcia-Marcos, P. Brand, M. Everard, K. Priftis,
and H. Pasterkamp, “Wheezes, crackles and rhonchi: simplify-
ing description of lung sounds increases the agreement on
their classification: a study of 12 physicians’ classification of
lung sounds from video recordings,” BM] Open Respiratory
Research, vol. 3, no. 1, article 000136, 2016.

H. Pasterkamp, P. L. Brand, M. Everard, L. Garcia-Marcos,
H. Melbye, and K. N. Priftis, “Towards the standardisation of
lung sound nomenclature,” European Respiratory Journal,
vol. 47, no. 3, pp. 724-732, 2016.

Z. Moussavi, “Fundamentals of respiratory sounds and analy-
sis,” Synthesis Lectures on Biomedical Engineering, vol. 1, no. 1,
pp. 1-68, 2006.

J. A. Fiz, J. Gnitecki, S. S. Kraman, G. R. Wodicka, and
H. Pasterkamp, “Effect of body position on lung sounds in
healthy young men,” Chest Journal, vol. 133, no. 3, pp. 729-
736, 2008.

U. Koehler, V. Gross, C. Reinke, T. Penzel, and C. F. Vogelme-
ier, “Akustische Analyse néchtlicher bronchialer Obstruktio-
nen,” Pneumologie, vol. 56, no. 1, pp. 19-24, 2002.

A. L. Boner, G. L. Piacentini, D. G. Peroni et al., “Children with
nocturnal asthma wheeze intermittently during sleep,” Journal
of Asthma, vol. 47, no. 3, pp. 290-294, 2010.

(8]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

Journal of Sensors

L. Bentur, R. Beck, M. Shinawi, T. Naveh, and N. Gavriely,
“Wheeze monitoring in children for assessment of nocturnal
asthma and response to therapy,” European Respiratory Jour-
nal, vol. 21, no. 4, pp. 621-626, 2003.

H. Pasterkamp, S. S. Kraman, and G. R. Wodicka, “Respiratory
sounds. Advances beyond the stethoscope,” American Journal
of Respiratory and Critical Care Medicine, vol. 156, no. 3,
pp. 974-987, 1997.

S. A. Taplidou and L. J. Hadjileontiadis, “Wheeze detection
based on time-frequency analysis of breath sounds,” Computers
in Biology and Medicine, vol. 37, no. 8, pp. 1073-1083, 2007.

B. S. Lin, B. S. Lin, and H. D. Wu, “Wheeze recognition based
on 2D bilateral filtering of spectrogram,” Biomedical Engineer-
ing: Applications, Basis and Communications, vol. 18, no. 3,
pp. 128-137, 2006.

D. Oletic, B. Arsenali, and V. Bilas, “Low-power wearable
respiratory sound sensing,” Sensors, vol. 14, no. 12, pp. 6535-
6566, 2014.

B.S.Linand T. S. Yen, “An FPGA-based rapid wheezing detec-
tion system,” International Journal of Environmental Research
and Public Health, vol. 11, no. 12, pp. 1573-1593, 2014.

M. Wigniewski and T. P. Zieliniski, “Joint application of audio
spectral envelope and tonality index in an e-asthma monitor-
ing system,” IEEE Journal of Biomedical and Health Informat-
ics, vol. 19, pp. 1009-1018, 2015.

I. Mazi¢, M. Bonkovi¢, and B. Dzaja, “Two-level coarse-to-fine
classification algorithm for asthma wheezing recognition in
children’s respiratory sounds,” Biomedical Signal Processing
and Control, vol. 21, pp. 105-118, 2015.

O. Boujelben and M. Bahoura, “FPGA implementation of an
automatic wheezes detector based on MFCC and SVM,” in
2016 2nd International Conference on Advanced Technologies
for Signal and Image Processing (ATSIP), pp. 647-650, Mona-
stir, Tunisia, March 2016.

G. C. Chang, “FPGA realization of an automatic wheeze
detector based on wavelet filter bank,” in 2009 IEEE 13th Inter-
national Symposium on Consumer Electronics, pp. 832-833,
Kyoto, Japan, May 2009.

M. Bahoura, “Pattern recognition methods applied to respiratory
sounds classification into normal and wheeze classes,” Com-
puters in Biology and Medicine, vol. 39, no. 9, pp. 824-843, 2009.
M. Lozano, J. A. Fiz, and R. Jané, “Automatic differentiation of
normal and continuous adventitious respiratory sounds using
ensemble empirical mode decomposition and instantaneous
frequency,” IEEE Journal of Biomedical and Health Informat-
ics, vol. 20, no. 2, pp- 486-497, 2016.

L. J. Hadjileontiadis, Lung Sounds: An Advanced Signal Pro-
cessing Perspective, Number 9 in Synthesis Lectures on Bio-
medical Engineering, Morgan & Claypool, 2008.

D. Oletic, Low-Power Wearable System for Asthmatic Wheeze
Detection, [Ph.D. thesis], 2016.

D. Oletic, M. Skrapec, and V. Bilas, “Hidden Markov model in
spectro-temporal tracking of asthmatic wheezing in respira-
tory sounds,” 6th European Conference of the International
Federation for Medical and Biological Engineering. IFMBE Pro-
ceedings, 1. Lackovi¢ and D. Vasic, Eds., , pp. 5-8, Springer,
Cham, 2015.

D. Oletic and V. Bilas, “Asthmatic wheeze detection from
compressively sensed respiratory sound spectra,” IEEE Journal
of Biomedical and Health Informatics, vol. PP, no. 99, p. 1,
2017.



Journal of Sensors

(24]

(25]

(26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]

(38]

(39]

(40]

M. Wisniewski and T. Zielinski, “Digital analysis methods of
wheezes in asthma,” in ICSES 2010 International Conference
on Signals and Electronic Circuits, pp. 69-72, Gliwice, Poland,
September 2010.

D. Oletic, B. Arsenali, and V. Bilas, “Towards continuous
wheeze detection body sensor node as a core of asthma
monitoring system,” in Wireless Mobile Communication
and Healthcare. MobiHealth 2011, K. S. Nikita, J. C. Lin, D. L.
Fotiadis, and M. T. Arredondo Waldmeyer, Eds., vol. 83 of
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pp. 165-
172, Springer, Berlin, Heidelberg, 2012.

C.Yu, T. H. Tsai, S. I. Huang, and C. W. Lin, “Soft stethoscope
for detecting asthma wheeze in young children,” Sensors,
vol. 13, no. 12, pp. 7399-7413, 2013.

http://www.respiri.co/.

K. Li, Implementation of the CUSUM Algorithm on FPGA for
Transient Signal Detection, [Ph.D. thesis], Auckland University
of Technology, 2012.

R. Sarpeshkar, “Universal principles for ultra low power and
energy efficient design,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 59, no. 4, pp. 193-198, 2012.

D. Oletic and V. Bilas, “Energy-efficient respiratory sounds
sensing for personal mobile asthma monitoring,” IEEE Sensors
Journal, vol. 16, no. 23, pp. 8295-8303, 2016.

D. Oletic, M. Skrapec, and V. Bilas, “Prototype of respiratory
sounds monitoring system based on compressive sampling,”
in The International Conference on Health Informatics, Y. T.
Zhang, Ed., vol. 42 of IFMBE Proceedings, pp. 92-95, Springer,
Cham, 2014.

D. Oletic, M. Skrapec, and V. Bilas, “Monitoring respiratory
sounds: compressed sensing reconstruction via OMP on
android smartphone,” in Wireless Mobile Communication
and Healthcare. MobiHealth 2012, B. Godara and K. S. Nikita,
Eds., vol. 61 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineer-
ing, pp. 114-121, Springer, Berlin, Heidelberg, 2013.

T. Sakai, H. Satomoto, S. Kiyasu, and S. Miyahara, “Sparse
representation-based extraction of pulmonary sound compo-
nents from low-quality auscultation signals,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 509-512, Kyoto, Japan, March 2012.

E. J. Candés and M. B. Wakin, “An introduction to compres-
sive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 21-30, 2008.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and
Applications, Cambridge University Press, 2012.
http://www.csr.com/products/aptx.

R. Salami, C. Laflamme, B. Bessette, and J. P. Adoul, “ITU-T G.
729 Annex A: reduced complexity 8 kb/s CS-ACELP codec for
digital simultaneous voice and data,” IEEE Communications
Magazine, vol. 35, no. 9, pp. 56-63, 1997.

D. Oletic and V. Bilas, “Wireless sensor node for respiratory
sounds monitoring,” in 2012 IEEE International Instrumenta-
tion and Measurement Technology Conference Proceedings,
pp. 28-32, Graz, Austria, May 2012.

A. R A. Sovijarvi, J. Vanderschoot, and J. E. Earis, “Standard-
ization of computerized respiratory sound analysis,” European
Respiratory Review, vol. 10, no. 77, p. 585, 2000.

S. S. Kraman, G. R. Wodicka, G. A. Pressler, and
H. Pasterkamp, “Comparison of lung sound transducers using

(41]

[55]

(56]

(57]

(58]
[59]

(60]

[61]
[62]
(63]

(64]
[65]

(66]

[67]

17

a bioacoustic transducer testing system,” Journal of Applied
Physiology, vol. 101, no. 2, pp. 469-476, 2006.

M. ZaNartu, J. C. Ho, S. S. Kraman, H. Pasterkamp, J. E.
Huber, and G. R. Wodicka, “Air-borne and tissue-borne sensi-
tivities of bioacoustic sensors used on the skin surface,” IEEE
Transactions on Biomedical Engineering, vol. 56, no. 2,
pp. 443-451, 2009.

August 2016, http://www.analog.com/media/en/technical-
documentation/obsolete-data-sheets/ ADMP441.pdf.
August 2016, http://www.farnell.com/datasheets/1780663
.pdf?_ga=1.147712756.2140163270.1467027387.

August 2016, http://www.analog.com/media/en/technical-
documentation/data-sheets/ ADXL337.pdf.

August 2016, http://www.farnell.com/datasheets/1794369.pdf.
August 2016, http://www.analog.com/media/en/technical-
documentation/data-sheets/ADXL345.pdf.

August 2016, https://www.invensense.com/wp-content/uploads/
2015/02/ICS-40310-datasheet-v1.2.pdf.

August 2016, http://www.ti.com/lit/ds/sbos445c/sbos445c.pdf.
August 2016, http://www.ti.com/lit/ds/symlink/ads7924.pdf.
August 2016, http://www.analog.com/media/en/technical-
documentation/data-sheets/AD7684.pdf.

August 2016, http://www.ti.com/lit/ds/symlink/ads1015.pdf.
August 2016, http://www.ti.com/lit/ds/symlink/ads1115.pdf.
August 2016, http://www.ti.com/lit/ds/symlink/ads1251.pdf.
P. Vidas, B. Jeren, P. Crnkovic, and I. Jovanovic, “Digital signal
processing systems with low power consumption,” in [1991]
Proceedings] 6th Mediterranean Electrotechnical Conference,
pp. 343-346, LJubljana, Slovenia, May 1991.

L. Benini and G.d. Micheli, “System-level power optimization:
techniques and tools,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 5, no. 2, pp. 115-192, 2000.
August 2016, http://www.ti.com/lit/ds/symlink/tms320c5535.
pdf.

August 2016, http://cache.nxp.com/files/32bit/doc/ref_manual/
MCF51MM256RM.pdf?fpsp=1&WT_TYPE=Reference%
20Manuals&WT_VENDOR=FREESCALE&WT_FILE_
FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf.
August 2016, http://www.nxp.com/files/dsp/doc/data_sheet/
MC56F8006.pdf?fsrch=1.

August 2016, http://www.analog.com/media/en/technical-
documentation/data-sheets/ADSP-2188M.pdf.

August 2016, http://www.st.com/content/ccc/resource/technical/
document/datasheet/66/71/4b/23/94/c3/42/c8/CD00277537.
pdf/files/CD00277537.pdf/jcr:content/translations/en.CD00
277537.pdf.

August 2016, http://www.analog.com/media/en/technical-
documentation/data-sheets/ ADuC7060_7061.pdf.

August 2016, http://www.nxp.com/documents/data_sheet/
LPC1102_1104.pdf.

August 2016, http://www.ti.com/lit/ds/symlink/msp430fr5729
.pdf.

August 2016, http://www.ti.com/lit/ds/symlink/cc2541.pdf.
August 2016, http://www.mouser.com/pdfdocs/PRODBRIEF
nRF51422.pdf.

August 2016, https://www.silabs.com/Support%20Documents/
RegisteredDocs/BGM113_DataSheet.pdf.

August 2016, http://www.ti.com/lit/ds/symlink/cc2640.pdf.


http://www.respiri.co/
http://www.csr.com/products/aptx
http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP441.pdf
http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP441.pdf
http://www.farnell.com/datasheets/1780663.pdf?_ga=1.147712756.2140163270.1467027387
http://www.farnell.com/datasheets/1780663.pdf?_ga=1.147712756.2140163270.1467027387
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL337.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL337.pdf
http://www.farnell.com/datasheets/1794369.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ICS-40310-datasheet-v1.2.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ICS-40310-datasheet-v1.2.pdf
http://www.ti.com/lit/ds/sbos445c/sbos445c.pdf
http://www.ti.com/lit/ds/symlink/ads7924.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD7684.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD7684.pdf
http://www.ti.com/lit/ds/symlink/ads1015.pdf
http://www.ti.com/lit/ds/symlink/ads1115.pdf
http://www.ti.com/lit/ds/symlink/ads1251.pdf
http://www.ti.com/lit/ds/symlink/tms320c5535.pdf
http://www.ti.com/lit/ds/symlink/tms320c5535.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MCF51MM256RM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MCF51MM256RM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MCF51MM256RM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MCF51MM256RM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://www.nxp.com/files/dsp/doc/data_sheet/MC56F8006.pdf?fsrch=1
http://www.nxp.com/files/dsp/doc/data_sheet/MC56F8006.pdf?fsrch=1
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-2188M.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-2188M.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/66/71/4b/23/94/c3/42/c8/CD00277537.pdf/files/CD00277537.pdf/jcr:content/translations/en.CD00277537.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/66/71/4b/23/94/c3/42/c8/CD00277537.pdf/files/CD00277537.pdf/jcr:content/translations/en.CD00277537.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/66/71/4b/23/94/c3/42/c8/CD00277537.pdf/files/CD00277537.pdf/jcr:content/translations/en.CD00277537.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/66/71/4b/23/94/c3/42/c8/CD00277537.pdf/files/CD00277537.pdf/jcr:content/translations/en.CD00277537.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADuC7060_7061.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADuC7060_7061.pdf
http://www.nxp.com/documents/data_sheet/LPC1102_1104.pdf
http://www.nxp.com/documents/data_sheet/LPC1102_1104.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5729.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5729.pdf
http://www.ti.com/lit/ds/symlink/cc2541.pdf
http://www.mouser.com/pdfdocs/PRODBRIEFnRF51422.pdf
http://www.mouser.com/pdfdocs/PRODBRIEFnRF51422.pdf
https://www.silabs.com/Support%20Documents/RegisteredDocs/BGM113_DataSheet.pdf
https://www.silabs.com/Support%20Documents/RegisteredDocs/BGM113_DataSheet.pdf
http://www.ti.com/lit/ds/symlink/cc2640.pdf

18

(68]

[69]

(70]

(71]

(72]

(73]

(74]
(75]

(76]

(771
(78]

(79]

August 2016, http://infocenter.nordicsemi.com/pdf/nRF52832_
PS_v1.0.pdf.

J. G. Teeter and E. R. Bleecker, “Relationship between airway
obstruction and respiratory symptoms in adult asthmatics,”
Chest, vol. 113, no. 2, pp. 272-277, 1998.

C. Lenclud, G. Cuttitta, D. Van Gansbeke et al., “Evaluation of
nocturnal bronchoconstriction by all night tracheal sound
monitoring,” Thorax, vol. 51, no. 7, pp. 694-698, 1996.

D. E. Bellasi and L. Benini, “Energy-efficiency analysis of ana-
log and digital compressive sensing in wireless sensors,” IEEE
Transactions on Circuits and Systems I. Regular Papers,
vol. 62, no. 11, pp. 2718-2729, 2015.

M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung,
“Body area networks: a survey,” Mobile Networks and Applica-
tions, vol. 16, no. 2, pp. 171-193, 2011.

T. Instruments, Application Report SWRA478A: Measuring
Bluetooth Smart Power, Texas Instruments, 2016, Technical
report.

August 2016, http://www.ti.com/ble-power-calculator.

A. FrumusanuAugust 2016, http://www.anandtech.com/show/
9330/exynos-7420-deep-dive/5.

A. Frumusanu and R. Smith, August 2016, http://www
.anandtech.com/show/8718/the-samsung-galaxy-note-4-
exynos-review/4.

August 2016, https://static.docs.arm.com/ddi0500/f/DDI0500
.pdf.

August 2016, https://static.docs.arm.com/ddi0488/g/DDIO0
488G_cortex_a57_mpcore_trm.pdf.

J. Tropp and A. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transac-
tions on Information Theory, vol. 53, no. 12, pp. 4655-4666,
2007.

Journal of Sensors


http://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.0.pdf
http://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.0.pdf
http://www.ti.com/ble-power-calculator
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/5
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/5
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://static.docs.arm.com/ddi0500/f/DDI0500.pdf
https://static.docs.arm.com/ddi0500/f/DDI0500.pdf
https://static.docs.arm.com/ddi0488/g/DDI0488G_cortex_a57_mpcore_trm.pdf
https://static.docs.arm.com/ddi0488/g/DDI0488G_cortex_a57_mpcore_trm.pdf

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal ——  Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of ) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration


https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

