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Lots of sensors in the IoT (Internet of things) may generate massive data, which will challenge the limited sensor storage
and network bandwidth. So the study of big data compression is very useful in the field of sensors. In practice, BWT
(Burrows-Wheeler transform) can gain good compression results for some kinds of data, but the traditional BWT
algorithms are neither concise nor fast enough for the hardware of sensors, which will limit the BWT block size in a very small
and incompetent scale. To solve this problem, this paper presents a fast algorithm of truncated BWT named “CZ-BWT
algorithm” and implements it in the shareware named “ComZip.” CZ-BWT supports the BWT block up to 2 GB (or larger) and
uses the bucket sort. It is very fast with the time complexity O(N) and fits the big data compression. The experiment results
indicate that ComZip with the CZ-BWT filter is obviously faster than bzip2, and it can obtain better compression ratio than
bzip2 and p7zip in some conditions. In addition, CZ-BWT is more concise than current BWT with SA (suffix array) sorts and

fits the hardware BWT implementation of sensors.

1. Introduction

With the rapid expansion of IoT (Internet of things), lots of
sensors are available in various fields, which may generate
massive data. Meanwhile, the storage capacity of sensors
and network bandwidth are limited, especially in a WSN
(wireless sensor network). GBs or TBs of big data in IoT
make enormous challenges to the sensors.

Data compression is a smart way to reduce the storage
usage and speed up the network transportation. In addition,
BWT (Burrows-Wheeler transform [1]) can gain good com-
pression results for some kinds of data. For example, there
are a lot of lightweight sensors in a zone of WSN to obtain
the temperature data, and most of the data are similar. Thus,
a practical way is using some high-performance nodes in this
WSN to gather these data, use BWT to compress them and
transmit them to the back end cloud platform.

BWT is also valuable in the field of bioinformatics. For
example, the big genome data need compression and index,
and BWT is an effective way [2, 3]. The DNA data are special

and fit the BWT compression. Although we cannot simply
compare the bioinformation software such as BWA
(Burrows-Wheeler Aligner) and the universal compression
software such as bzip2, analyzing their BWT algorithms
is meaningful.

But a practical problem is the speed of BWT for sensors
and big data. High compression speed is important because
the sensors have to treat GBs of data or more, while the
traditional BWT algorithms are neither concise nor fast
enough, which will limit the BWT block size in a very small
and incompetent scale. In our previous paper, we have
discussed the traditional compression software bzip2 [4]. Its
BWT block size is not more than 900 KB, which will limit
the compression ratio. Although it is not large enough to deal
with the big data, enlarging the BWT block will observably
decelerate the compression. The primary reason is the
computing consumption of the traditional BWT algorithms.
Besides, the hardware performance and energy consumption
of the sensors are limited, which makes it difficult to increase
the BWT block size for the big data compression.
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We have designed a combined parallel algorithm named
“CZ algorithm” to compress and encrypt the big data effi-
ciently and developed our compression software named
“ComZip” [5]. Now we have made ComZip compatible to
Linux platforms. As mentioned in the figures of [4, 5],
ComZip has a BWT filter. This paper focuses on the BWT
filter and proposes a fast algorithm of truncated BWT named
“CZ-BWT algorithm” to compress the big data efficiently.
CZ-BWT algorithm has the following features:

(1) It uses truncated BWT to simplify the algorithm and
gain the good performance.

(2) It uses bucket sort to speed up the BWT encoding
and decoding with time complexity O(N), so that
the BWT block size can rise to 2 GB or more to fit
the big data compression.

(3) It can simplify the hardware design of the BWT filter,
so that the sensors may use hardware to accelerate the
BWT compression.

We did some experiments on both platforms x86/64 and
ARM (advanced RISC machines) to compare the efficiencies
of data compression among ComZip with/without CZ-BWT,
bzip2, and p7zip. The experiment results indicate that Com-
Zip with CZ-BWT filter is obviously faster than bzip2, and it
can obtain better compression ratio than bzip2, p7zip, and
ComZip itself without CZ-BWT filter in some conditions.
In addition, the algorithm analysis infers that CZ-BWT is
more concise than current BWT with SA (suffix array) sorts
and fits the hardware BWT implementation of sensors.

To make further experiments, we provide 2 versions of
ComZip in the website: for Ubuntu Linux (x86/64 platform)
and Raspbian (ARM platform). The researchers may down-
load them from http://www.28x28.com/doc/cz_bwt.html.

The remainder of this paper is structured as follows:

Section 2 expresses the problems of BWT for sensors and
big data compression. Section 3 introduces the algorithm of
CZ-BWT encoding and decoding. Section 4 analyzes the
complexities of CZ-BWT algorithm. The experiment results
are given in Section 5. The conclusions and future work are
given in Section 6.

2. Problems of BWT for Sensors and Big
Data Compression

Numerous sensors in IoT can generate big data, but the
bottlenecks of data transportation, storage, and computation
in the networks of sensors need to be eliminated. Data
compression meets this requirement. Figure 1 shows a typical
scene in a WSN with both lightweight and heavy nodes,
where BWT is feasible.

This WSN has lots of lightweight nodes to sense the
situation and generate massive data. Since they have limited
energy, storing capacity, and computing resources, they
cannot keep the data or achieve the long distance transporta-
tion, while a few heavy nodes in the WSN can gather and
compress the data and then transport them to the backend
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cloud platform. The cloud platform has plenty of resources
to store, decompress, and analyze the data.

We have discussed the big data compression and
encryption in the heavy nodes in a WSN in [5], but
if the heavy nodes use BWT, we still have the follow-
ing problems:

(1) How can the BWT block be enlarged without rapid
decrease of the encoding/decoding speed?

(2) Can we design simplified hardware BWT filters for
the sensors?

A larger BWT block can gain better compression ratio. In
this paper and the previous [4, 5], we use the same definition
of the compression ratio as follows:

R=1-—22, (1)

D,, and D are the volumes of the compressed and
original data, respectively. If the original data are not
compressed, R=0. If the compressed data are larger than
the original data, R < 0. Always R< 1.

Facing GBs or TBs of big data, a small block of 900 KB
cannot show the power of BWT. But enlarging the block
will cause the performance bottleneck. As the analyses in
Section 4 reveal, BWT encoding speed depends on the
string sorting algorithm, and traditional BWT encoding
has the time complexity O(N’IbN). N is the block size. If
we change the block from 900KB to 60 MB without any
optimization, the encoding will become very slow. This is
the first problem.

Although the hardware development improves the
performance of the heavy sensors, it is still a challenge for
the sensors to achieve fast BWT encoding/decoding. For
example, ARM platforms have multicore CPUs with low
energy consumption, and the current flash memory has
enough capacity and good performance to support a large
BWT block, but a practical BWT filter must be fast enough.
This is the reason we consider making hardware BW'T filters
for the sensors.

The problem is that the complex traditional BWT algo-
rithms bring difficulties to the hardware design. If a hardware
BWT filter is very complex, its performance will be limited
and its energy consumption will be high, and then it is unfit
for the sensors.

To solve the problems, we need to review the main
related works around sensors and big data compression.

In [5], we have discussed that current mathematic models
and methods of lossless compression can be divided into
3 classes:

(1) The compression based on the probabilities and
statistics

(2) The compression based on the dictionary indexes

(3) The compression based on the order and repeat of
the symbols; BWT belongs to this class
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FiGure 1: WSN with lightweight and heavy nodes.

Current popular compression softwares are comprehen-
sive applications of the above basic classes, and they have
different features, which determine their compression ratio
and speed. Especially, to compress big data in the sensors,
we have 2 requirements:

(1) Compression speed: fast enough. Since the hardware
performance of a sensor is limited, the speed is very
important. Too slow softwares such as PAQ and
WinUDA are unfit for the big data.

(2) Compression ratio: high. A large data window with
good algorithms can benefit the compression ratio.
The softwares with too small data windows such as
WinZip (512KB), WinRAR (2MB), gzip (32KB),
and bzip2 (900 KB block) are unfit for the big data.

In [4, 5], we have developed and updated the compres-
sion software ComZip, and in this paper, we developed its
Linux version, so that it can run in some sensors such as
ARM platforms. ComZip uses all the 3 compression classes:

(1) In class 1, ComZip uses the arithmetic coding [6] and
PPM (partial prediction match) algorithm [7], which
can gain pretty good compression ratio.

(2) In class 2, LZ77 algorithm [8] is used, which has the
advantage of speed.

(3) In class 3, BWT is used, which is the focus in
this paper.

To solve the problem of BWT encoding/decoding speed,
a lot of algorithms have been developed. Current string
sorting algorithms for BWT can reach the speed of linear

time complex O(N), for example, some algorithms using SA
(suffix array) [9] such as the 3 most popular linear-time
algorithms: KS [10], KA [11], and SA-IS [12]. Among them,
SA-IS is currently the best algorithm in the speed. Moreover,
the further optimization of SA-IS algorithm is studied [13],
and the first linear nonrecursive algorithm named GSACA
is a new approach for the future [14].

Although current algorithms with SA are faster than
the traditional BWT algorithms, it is not so easy to apply
them directly to the sensors with the hardware and energy
limits. Considering the large BWT block for the big data,
the memory requirement of the SA construction is many
times of the block. Meanwhile, if we try to design a hardware
BWT filter for the sensors, we will meet the complexity of the
algorithms such as the recursive computation in SA-IS [13].
GSACA is nonrecursive, but currently, it is slower than
SA-IS, and its memory consumption is quite large [14],
which are weaknesses for the limited computing resources
of the sensors.

Parallel algorithms and the hardware design of BWT are
also studied to improve the speed, including the parallel
architecture [3, 15] and the practical hardware acceleration,
for example, FPGA (field-programmable gate array) [16]
and GPU (graphic processing unit) [17]. The advancement
is that parallel algorithms benefit the hardware BWT perfor-
mance, and the researchers tend to simplify the hardware
design so that they can obtain higher speeds [3, 17], but the
algorithms such as SA-IS are still complex for the sensors.
Thus, finding faster and simpler BWT algorithms is useful.

In [3], a limited SA length k is brought into the string
sorting, which can reduce the computation. We call this
method “truncated BWT.” We also use truncated BWT in
this paper, but the limited length is different because we do



not use SA, and we use bucket sorting instead of traditional
merging or comparing-based sorting.

3. CZ-BWT Encoding and Decoding

3.1. Concepts of CZ-BWT. The compression software
ComZip uses the parallel pipeline named “CZ pipeline” and
the truncated BWT named “CZ-BWT.” We have intro-
duced the framework of CZ encoding pipeline in [5],
and the reverse framework is CZ decoding pipeline.
Figure 2 is the same encoding framework, and the only
difference is the alternative BWT filter in use. CZ-BWT
is working in the BWT filter.

CZ-BWT combines the following methods to improve
the performance and simplify the algorithm design:

(1) CZ-BWT wuses truncated string sorting instead of
SA sorting.

As shown in the first figure of [16], the principle of
BWT is sorting the data to fit the compression.
Sorting is the primary computation in BWT, which
determines the performance. We use the same
example as that in [16] to explain the truncated string
sorting in CZ-BW'T.

Figure 3 shows the matrices for BWT sorting. The
block size N =8. As shown in (a), the traditional
BWT uses full string sorting, which needs comparing
of entire strings, for example, Row 0 “XYZAACOL”
and Row 1 “YZAACOLX.” The sorting result of (a)
is shown in (b). Column 0 “AACLOXYZ” is the
sorted string, and Column 7 “ZAAOCLXY” is the
BWT output string. As shown in (c), the SA sorting
ought to compare the suffixes of the same string,
e.g., Row 0 “XYZAACOL” and Row 1 “YZAACOL,”
but the SA algorithms have been optimized to avoid
such slow comparison [9-14]. As shown in (d), the
truncated string sorting only compares short strings
with length k <N, for example, Row 0 “XYZ” and
Row 1 “YZA” with k = 3.

Figure 3(c) shows the SA sorting. Because the
common SA sorting result is not always the same
as the initial BWT result [1] shown in (b), a spe-
cial ending symbol “$” is attached to the string
tail in order to bridge the gap of the different
results. This special symbol has a smaller code
(e.g, —1) than any 8b binary code (0...255),
which means the SA sorting algorithm needs spe-
cial treatments for the ending symbol besides the
normal 8b charset.

Figure 3(e) shows the truncated string sorting result
of (d). In this example, (b) and (e) are the same, but
in practice, if 2 truncated strings are the same, for
example, “ABC” compares to “ABC,” the sorting
result depends on their original positions. So the
decoding algorithm of CZ-BWT is different from that
of common BWT.
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FIGURE 2: Framework of CZ encoding pipeline with BWT.

(2) CZ-BWT sorts simple integers instead of strings, and
it reverses the character sorting sequence indeed.

Figure 4 shows different types of data comparisons.
Truncated string comparing, for example, “XYZ”
and “ACO” in (a) can be changed into simple
integer comparing if we regard “XYZ” as a 24b
integer. A 64b integer can substitute a truncated
string with length k<9, but in most of the plat-
forms, for example, x86/64 and ARM, the LSB
(least significant byte) is in the front, so the sort-
ing sequence of the characters is reversed. As
shown in (b), “Z” is the MSB (most significant
byte) of the integer “XYZ,” so its actual sorting
result will be the same as reverse string sorting
in (c).
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(3) CZ-BWT uses bucket sorting instead of traditional

Phase 1 (building the bucket sorting links). We assume the

merging or comparing based sorting. BWT block data is a “cycle” string s[0 ... N — 1], which has
. . L L . the following feature:
Since the sting sorting is changed into integer sorting,
CZ-BWT can use bucket sorting. When we use
truncated strings with k =3, 256° buckets are needed. ) ) )
If the memory is sufficient, k = 4 is feasible and 256* si+N]=s[] (i=-2-10,1,...). (2)
buckets are needed. Both encoding and decoding in
CZ-BWT use bucket sorting.
Ands[i—2...1isa24binteger (i=0,1,...,N — 1). Then

3.2. CZ-BWT Encoding. We use another example with
BWT block length N >1KB. There are 2 phases in
CZ-BWT encoding:

we build the bucket sorting links on s. Figure 5 shows the
example of 2 links: “ZYX” and “OCA.” The bucket array
has 256 link headers, and all links have the same end: null
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FIGURE 6: Phase 2 of CZ-BWT encoding (k = 3).

pointer. We define the structure of the links and their
headers as follows:

max(i)(s[i—k+1...i]=m)

headel’[m] = { null(S[i —k+1.. i] ¥ m)

link[i] = {m"“‘(j)(s["‘k+ Lo.i]=s[j—k+1..j])

Link headers
(i:0,1,...,N—1;m=0,1,...,256’<—1), (3)
(i=0,1,...,N=1;j=0,1,...,i - 1). (4)

null(sfi—k+1...i]#s[j—k+1.../])

Phase 2 (outputting the sorted data). We follow each link to
output the data. Figure 6 shows the example of the link
“OCA,” which will output the characters “MA,” referring to
Figure 3(e). And finally we output the start position of the
block for CZ-BWT decoding.

Algorithm 1 shows the CZ-BWT encoding algorithm.

3.3. CZ-BWT Decoding. We use the same example as shown
in Figure 3, but the string is reversed into “LOCAAZYX”
because of the MSB/LSB in the integer sorting. Figure 7(a)
shows the full decoding matrix of CZ-BWT, which corre-
sponds to Figure 3(e). And we ought to pay attention to the
column numbers of this matrix: Row 6 is the reversed string
“YZAACOLX,” and Row 5 is the original data, reversed
string “XYZAACOL.”

Recovering the whole decoding matrix is not necessary.
Because CZ-BWT uses truncated data sorting, its decoding
is different from that of the general BWT. As shown in
Figure 7, there are 4 phases in CZ-BWT decoding:

Phase 1 (building the second column of the matrix). As
shown in Figure 7(b), this phase is the 8b integer bucket
sorting. The second column is Column 7, and Column 0
stores the input data, which are the output data of CZ-BWT
encoding. The bucket array has 2° counters, so that we can
scan Column 0 once and write the sorted data to Column 7.

Phase 2 (building the third column of the matrix). As shown
in Figure 7(c), this phase is the 16b integer bucket sorting.
The bucket array has 2'® counters, so that we can scan
Column [0,7] once and write the sorted data to Column
[7,6]. Because the amount of the 16b integers is related to
the previous 8b integers, Column 7 will be the same as that
in phase 1. Thus, we can write Column 6 only.

Phase 3 (building the forth column of the matrix). As shown
in Figure 7(d), this phase is the 24b integer bucket sorting.
The bucket array has 2** counters, and we can scan Column
[0,7,6] once and write the sorted data to Column [7,6,5]. But
this time, we need not write Column 5, because the link
headers in phase 4 have the same 24b sorting effect already.
Hiding the writing back operation can simplify this algo-
rithm and improve the decoding speed.

Phase 4 (outputting along the bucket sorting links). As shown
in Figure 7(e), this phase is the outputting of the decoded
block. We can easily change the bucket array from data
counters into link headers by accumulating the counter
values, because Column [7,6,5] is sorted, and the current link
header position adds that the current counter value is the
next link header. For example, in Figures 7(d) and 7(e), we
focus on Column [7,6,5] and notice

header[“LXY”] + counter[“LXY”] = 3 + 1 = 4 = header[*OLX"].
(5)

According to the “cycle” string s[0... N —1] as shown
in (2), we define the data counters in Figure 7 as follows:

counter|m] =

Nl{ 1(s[i-k+1...i]=m)

<m=0,1,...,256k—1).
O(sfi—k+1...1) #m)

(6)

Then we can get the link headers in Figure 7(e) from the
data counters in Figure 7(d) as follows:

i=0

header|[m] = Z counteri] (m =0,1,...,256" - 1). (7)

i=0
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function encode(s) {
link =array(0...N - 1);
bucket = array(0.. .256°-1);

/* s is the BWT block data string (original data) */

/* N is the length of string s */
/* bucket stores the link headers of (3) */

for j= 0...256°-1 do {bucket[j] = null;} /* Initialize the link headers */
fori=0...N-1do{j=s[i—2...i; link[i] =bucket[j]; bucket|[j] =1}
count =0; /* count traces the start position of the block */
forj=0...2563—1 do { /* Phase 2: output data */
i= bucketlj];
while i is not null do {
output(s[i+1]); i=linkli];
if i=N -1 do {start= count;}
}

t
output(start);

count = count+1;
/* start stores the start position */

/* finally output the start position */

/* Phase 1: build links of (4) */

/* output a character of s */

ArLcoriTHM 1: (CZ-BWT encoding (k = 3)).

Input data Bucket array
(1) Counting
o o L
ZIAACOLXY an z
IAACOLXYZ 'AIA
IACOLXYZA AlC
OLXYZAAC oL A
ICOLXYZAA clo
|
}—,—L KYZAACO L X Data [counters
XYZAACOL XY
YIZAACOLX vz
Original data T (2) Bucket sorting
(a) CZ-BWT full decoding matrix (b) Phase 1
. Bucket Bucket
MSB LQB (1) Counting Hee aray (1) Counting Heceraray
(ZAIA ZA ZAA ZAA
AAC AAC
ACO ACO
OLX AA OLX AAC
COL COL
LXY Data|counters LXY Data|counters
XYZ XYZA
YZA| YIZA L]
T (2) Bucket sorting (2)
(c) Phase 2 (d) Phase 3
(1) Outputing Links Bucket array
0654321
0lZAAC MOLX
1IAIAC
2IAICO
Start position 3 }()‘}L XV = LXY
4 }CHO L !
JWLX Y7 Link headers
6 }X\}Y 4 }
7IYiZIA A %
(2) Seeking End of links

(e) Phase 4

FiGurg 7: CZ-BWT decoding (k = 3).
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function decode(s) {
link =array(0...N - 1);
bucket_A = array(0.. .2563—1);
for j= 0...256°-1 do {bucket_A[j] =0;}
bucket_B = array(0.. .2562—1);
for j= 0...256°-1 do {bucket_B[j] = 0;}
fori=0...N-1do {j=s[i]; link[i]=};
p=0; /* p traces the current position of link */
for i=0...256-1 do {
j=bucket_Ali]; bucket_A[i] =0;
while j >0 do {
m= (link[p] <<8) | i;

for i=0...256°-1 do {
j=bucket_Bli];
while j>0 do {
m = (link[p] < <8) | i;
link[p]=m; p=p+1;
bucket_A[m] = bucket_A[m] +1;

/* m stores Column [0,7,6]

j=i-1;

/* reset p */
= /* m traces the link headers */
ri=0...256>-1 do {
m=m+ bucket_Al[i];
}
input(start); /* input the start position of the block */
j=start; /* j traces the position */
fori=0...N—-1do{
p=link[jl; /* link keeps Column [0,7,6] after phase
s[i] =(p >>16) & 255;
j=bucket_A[p] -1;
bucket_A[p] =j;
}
output(s[0 ... N = 1]);

fo
bucket_Al[i] = m;

/* seek the next position j with

/* s is the BWT block data string (BWT encoded data) */
/* link stores the Column [0,7,6,5] of the decoding matrix. N is the length of string s. */
/* bucket_A stores the data counters */
/* Initialize the data counters */
/* bucket_B stores the data counters */
/* Initialize the data counters */
bucket_A[j] = bucket_A[j] +1;}

/* Initialize the data counters */
/* m stores Column [0,7] */

/* Phase 2: count Column [0,7] */

link[pl=m; p=p+1; /* Phase 1: sort Column 7 */
bucket_B[m] = bucket_B[m] +1; j=j-1;
}
}
p=0; /* reset p */

/* Phase 2: sort Column 6 */
/* Phase 3: count Column [0,7,6] */

/* Phase 4: calculate link headers */
/* bucket_A stores the link headers of (7) */

/* Phase 4: output decoded data */
/* s stores the decoded block string in Column 0 */
/* update the current link header of (8) */

/* finally output the block string */

/* Phase 1: count Column 0 */

*/

2%/

Column [0,7,6]: fetch & decrease */

ALGoRrITHM 2: (CZ-BWT decoding (k = 3)).

Here is a trick for the algorithm optimization. The exact
value of a header ought to be 1 smaller than that in (7). For
example, according to (7), header["LXY"] =4, while in (5),
header["LXY"] = 3 exactly. Now we explain this trick:

There are 256° links in Column [7,6,5] in Figure 7(e), and
their 256 headers are dynamic. In this phase, the headers are
calculated with (7) at first, and then each output character of
string s will cause that a corresponding header switches to the
next link node position:

header[m] = header[m] — 1. (8)

When a counter gets a value larger than 1, for example, in
Figures 5 and 6counter["ACO"] =2 (the string is reversed),
the dynamic header is useful to determine which is the
current link node position. The next position of the same

link is easily calculated with (8) because Column [7,6,5] in
Figure 7(e) are already sorted.

The trick can save the algorithm operations: Since each
time we have to fetch a header value to locate the position,
and decrease the value with (8) for the future fetch, we
may simply merge the “fetch” and “decrease” operations.
So long as the initial value of each header in (7) is 1 larger
than the exact value, we can use the “fetch & decrease”
operation each time.

Algorithm 2 shows the CZ-BWT decoding algorithm.
We use 2 bucket arrays to mix the phases and save the time
of data accessing.

3.4. Example of CZ-BWT Decoding. To explain how
Algorithm 2 works, we provide another example of
CZ-BWT decoding in detail.
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FiGUre 8: CZ-BWT encoding example: (a) truncated string sorting (k = 3); (b) BWT sorted matrix; (c) BWT sorted matrix output.
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6 X! Counting 6|XY S i='Y, j=2 others : 0
7 Ixl link 7 XY i='Y, j=1
bucket_A link bucket B
(a) (b) ©
0765 Data counters ) ﬁv(irt,“al data 1 ik headers
/ 0 O
0XCO 5 COL:1 0 X COi&—— COL:0+1
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6 XY X ¢ i='VX, j=2 YXY: 1 6XYXI| YXY : 741
7 XY XS iE'YX j=1 others: 0 7 XYX]! others: ignore
link bucket_A link bucket_A
(d) (e) ()

F1GURE 9: CZ-BWT decoding example: (a) Phase 1: count column 0; (b) Phase 1: sort column 7; (c) Phase 2: count column [0,7]; (d) Phase 2:
sort column 6; (e) Phase 3: count column [0,7,6]; (f) Phase 4: calculate link headers.

In this example, we use the reversed string “XYXYXCOL”
as the original data, which has two matches of the characters
“XYX.” Figure 8 shows the CZ-BWT encoding of Algorithm
1. We can find the relationship between Figures 3(d) and 3(e)
and Figures 8(a) and 8(c). And in Figure 8(a), characters
“XYX” in positions 1 and 2 are sorted. As a result,
Figure 8(b) shows the unchanged “XYX” position sequence.
The similar situation is in Figure 6.

Figures 9 and 10 show decoding phases 1 to 4 according
to Figure 7. As the phases and key operations are described
in Algorithm 2, we can see the data changes from Figures 9
and 10, so that we can follow the process of decoding the
reversed string “XOCYLYXX.”

In Figure 9(a), the input data “XOCYLYXX” are counted
and then sorted in Figure 9(b). This is a typical bucket sorting
with 256 counters. And the bucket sorting proceeds again in
Figures 9(c) and 9(d), with 2562 counters. The array link
stores the sorting results.

In Figure 9(e), the data are counted with 256°
counters, but the sorting is hidden in the calculation of
link headers in Figure 9(f). Thus, the link does not store
Column 5 indeed.

Figure 10 shows the data output process in phase 4. The
practical output operation in Algorithm 2 is using a string s
to store the output characters. Figures 10(a) and 10(b) give
the example of outputting s[0] and s[1].

The start position is Row 4 in Figure 10(a). Each
time, the algorithm outputs a character by the follow-
ing steps:

(1) Outputting the character of Column 0 in the link. In
Figure 10(a), s[0] = "L.”

(2) Fetching and decreasing the link header value
with Column [0,7,6] in the link. In Figure 10(a),
header["LXY"] = 1.
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FIGURE 10: CZ-BWT decoding example: output. (a) Phase 4: output character s[0]; (b) phase 4: output character s[1]; (c) phase 4: output
character s[5]; (d) phase 4: output character s[7] (end). Finally, reversed s = "LOCXYXYX."

(3) Keeping the header value as the next position to
output a character. j=1.

In Figure 10(b), the steps are executed again:

(1) s[1]="0".
(2) header["OLX"] = 2.
(3) j=2.

The steps go on repeating until we gain the full-length
s="LOCXYXYX,” which are reversed. As mentioned in
Section 3.3, CZ-BWT decoding outputs reversed data.
As CZ-BWT encoding also outputs reversed data through
the backward links in Figures 5 and 6, this decoding
algorithm can reverse the data again and finally gain
the original data.

As shown in Figures 10(c) and 10(d), the decoding
algorithm can maintain the correct values of the dynamic
headers, for example, header[“XYX”], which keeps the
proper order of the character outputs.

4. Analyses of the CZ-BWT Algorithm

Quite a few recent advancements of BWT algorithms are
driven by the rapid development of genome information
technologies [2, 3, 13, 18], and there are many DNA
softwares using BWT, including DNA compression, align-
ment, sequencing, and indexing. Due to the difference
between the DNA and common data charsets, we cannot
proceed direct experiments to compare a DNA software
such as BWA (Burrows-Wheeler aligner) with a universal
compression software such as ComZip or bzip2, but we

can analyze their BWT algorithms to investigate their
advantages and shortcomings.

4.1. Time Complexities. We may study the BWT encoding
and decoding algorithms by analyzing their time and
space complexities in the worst cases. First, it is known
that the traditional BWT encoding algorithm has the time
complexity O(N?IbN). N is the block size. The analyses are
as follows:

According to the principle of BWT compression [1], the
key computation of BWT encoding is the string sorting,
which determines the encoding speed. And the string sorting
consists of 2 algorithms:

(1) The comparison of 2 strings: The length of each
string is equal to the BWT block size N, so this string
comparison has the time complexity O(N).

(2) The sorting of data elements: In BWT encoding, a
data element is a string, and the amount of the strings
is equal to the block size N. Some traditional sorting
algorithms such as quick sort and heap sort have
the time complexity O(NIbN), and it has been proven
that O(NIbN) is the fastest level in all comparison-
based algorithms.

From the above 2 algorithms, we find that the fastest
traditional BWT encoding has the time complexity
O(N?IbN). It is not fast enough. As mentioned in Section 2,
the current well-known fastest string sorting algorithm is
SA-IS, which has the time complexity O(N). So we compare
CZ-BWT encoding which is used in ComZip and the SA-IS
encoding which is used in BWA.
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FIGURE 11: Primary hardware design of bucket sort.
TasLE 1: Comparison of typical BWT algorithms.
BWT. Software Time . Space. Memory Advantages Weaknesses
algorithm complexity complexity — usage
Traditional . 5 . Small block size; low compression ratio;
BWT bzip2 O(N“IbN) O(N) 2.5N Simple for general usage weak big data support
BWT with Well known fastest Slower enco@mg than CZ._BWT;
BWA O(N) O(N) 537N complex implementation;
SA-IS standard BWT . .
difficult hardware design
BWT with GitHub: o) o) 16N The first linear nonrecursive  Slower encoding and more memory
GSACA gsaca SA algorithm for BWT consumption than SA-IS and CZ-BWT
. Slower decoding than standard BWT;
CZ-BWT ComZip O(N) O(N) 4N Faster than BWT with need larger block size for higher

SA-IS; simple hardware design

compression ratio

According to Algorithm 1, we find that the bucket sorting
also has the time complexity O(N), but we can compare
more details.

SA-IS requires special ending symbol for the block
and recursive reduction to a shorter string [2, 13], which
are more complex than CZ-BWT. SA-IS needs to scan
the BWT block for more than 3 times, while according
to Algorithm 1, CZ-BWT encoding just scan the block
twice in phases 1 and 2. Thus, CZ-BWT encoding is
faster indeed.

GSACA also requires special ending symbol. It is nonre-
cursive, and it also has 2 phases [14], but each phase has
much more operations than simply scanning the block in
CZ-BWT encoding. These operations makes GSACA slower
than SA-IS and CZ-BWT currently.

4.2. Space Complexities. The memory usage is important for
the sensors. SA-IS, GSACA, and CZ-BWT have the same
space complexity O(N). In detail, BWA uses the RAM
(random access memory) of 5.37N; GSACA uses 12N besides
4N for the suffix array, and CZ-BWT uses 4N to store the
links for the block size up to 2 GB. Moreover, it is easy for
CZ-BWT to use 5N for the block size of up to 512 GB. In this

view, CZ-BWT needs less memory for the block than BWA
with SA-IS and the GSACA program.

But CZ-BWT requires extra RAM for the bucket array. If
the block size is not more than 2 GB, a bucket counter uses
4B, and a bucket array has 256" elements. If k = 3, a bucket
array uses 64 MB, which is feasible in a heavy sensor node.
And if k =4, it needs 16 GB, which is feasible in the current
cloud platforms.

4.3. Complexities of Hardware Design. Hardware accelera-
tion is valuable for the sensors which have limited com-
puting resources. Due to the complexity of SA-IS, it is
difficult to implement the hardware BWT with SA-IS.
As a contrast, CZ-BWT is simpler and easier for the
hardware acceleration.

The figures in [16] show that the truncated BWT fits the
hardware design, but it uses merge sort, which has the time
complexity O(N’IbN). CZ-BWT uses bucket sort, which is
both fast and easy for the hardware design. Figure 11 shows
the primary hardware design of bucket sort. We take
Figure 11(a), for example. The accumulator can indicate the
current position of the block (0,...,N —1); thus, it can
directly connect to the address bus of the block data RAM.
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TABLE 2: x86/64: comparison of compressed file (book.htm) size (B).

Data window/block size ComZip with CZ-BWT filter bzip2 ComZip without CZ-BWT filter p7zip

0.1 MB — 6,554,263 — —

0.2MB — 4,819,250 — —

0.3 MB — 4,130,297 — —

0.4 MB — 3,767,164 — —

0.5MB — 3,524,473 — —

0.6 MB — 3,355,229 — —

0.7 MB — 3,220,144 — —

0.8 MB — 3,122,484 — —

0.9 MB — 3,041,287 — —

1 MB 3,647,168 — 4,793,400 5,876,069

2MB 3,351,504 — 4,615,872 5,797,084

4MB 3,131,992 — 4,474,424 5,724,417

8 MB 2,953,456 — 4,387,672 5,667,650

16 MB 2,823,168 — 4,318,288 5,614,144

32 MB 2,709,192 — 4,264,320 5,563,178

64 MB 2,588,584 — 4,227,920 5,518,719

128 MB 2,467,504 — 4,200,928 5,481,954

256 MB 2,397,504 — 4,187,456 5,464,699

512MB 2,306,528 — 4,186,576 5,464,344

And this RAM can provide the data, for example, “LXY,” to x 106 Comparison of compressed file size

the address bus of the bucket array RAM. Then, the latter 7 ' e

RAM provides the current counter value to the ALU 6594 1

(arithmetic and logic unit), which will update the value and 61" i

write it back to the RAM. We can use simple sequence- ~ \ BRSPS

control logic circuits to make this module work. In the view 2 S Fr@egenn

of hardware, both (a) and (b) in Figure 11 are succinct and g 5 \Q -

easy to optimize the hardware speed. £ 45 \ M j
2 \

4.4. Weaknesses. As a truncated BWT, CZ-BW'T cannot use § 47 Q'b i

the standard BWT decoding, which can be used by the § 3.5 1 \<>\0 1

BWT with SA-IS. Both CZ-BWT and the standard BWT 3 %o i

decoding have the time complexity O(N), but the latter is 25 ] |

faster. According to Algorithm 2, CZ-BWT decoding has to
scan the block for 4 times from phases 1 to 4, while the
standard BWT decoding can scan the block only twice.

This weakness is acceptable for the sensors. Although
CZ-BWT decoding is slower than the standard BWT, its
speed is still in the linear level. And it has no complex
implementation such as the special ending symbol and the
recursive algorithm, so the hardware acceleration for CZ-
BWT can be used to the sensors in a relatively easy way.
Moreover, the typical scene in Figure 1 infers that most
of the BWT decoding events occur in the cloud platform,
which has plenty of computation resources. So the speed
of CZ-BWT decoding is fast enough in this case.

Another weakness is that the truncated BWT has lower
compression ratios than the standard BWT. But we can use
a larger block in CZ-BWT to keep up with the compression
ratio. The experiment results show this accomplishment.

Table 1 shows the comparison of typical BWT
algorithms. We ought to distinguish the concepts of BWT:
CZ-BWT is a kind of truncated BWT, while bzip2, SA-IS,

2
0.1 02 04 07 2 4 8 16 32 64 128 256 512
Data window/block size (MB)

—— ComZip w/ CZ-BWT —e— ComZip w/o CZ-BWT
- bzip2 ~o-- p7zip

FiGure 12: Compressed file size and data window/block size in
Table 2.

and GSACA use standard BWT, but bzip2 uses the tradi-
tional BWT, which is slow.

5. Experimental Results

We have done some experiments to compare ComZip,
WinRAR, and 7-zip in [5]. The results indicate that ComZip
with a large data window has better compression ratio than
WinRAR and 7-zip in most cases, and its compression speed
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TABLE 3: x86/64: comparison of file (book.htm) compression/decompression time (seconds).
Data window/ o Compression time . o Decompression tirpe .
block size ComZip with bip2 ComZip without p7zip ComZip with brip2 ComZip without p7zip
CZ-BWT filter CZ-BWT filter CZ-BWT filter CZ-BWT filter

0.1 MB — 56 — — — 5 — —
0.2MB — 64 — — — 6 — —
0.3 MB — 73 — — — 6 — —
0.4 MB — 78 — — — 6 — —
0.5MB — 83 — — — 5 — —
0.6 MB — 86 — — — 6 — —
0.7 MB — 91 — — — 6 — —
0.8 MB — 91 — — — 6 — —
0.9 MB — 95 — — — 6 — —
1 MB 38 — 3 19 23 — 6 1
2MB 32 — 3 20 19 — 6 1
4MB 28 — 3 19 16 — 5 1
8 MB 25 — 4 19 15 — 5 1
16 MB 24 — 4 20 15 — 5 1
32MB 24 — 4 20 10 — 5 1
64 MB 24 — 3 20 15 — 6 1
128 MB 24 — 4 20 15 — 6 1
256 MB 26 — 4 20 17 — 5 1
512 MB 29 — 5 21 16 — 5 1
is faster than 7-zip. But those experiments do not use the 100 Comparison Oflcomlfresslion time

BWT filter, which has CZ-BWT algorithms for ComZip. o

In this paper, we compare the following softwares in the 901 <>,<>’w

experiments: ComZip with CZ-BWT, bzip2, ComZip with- 5 807 s

out CZ-BWT, and p7zip (7-zip for Linux). When we test g 204 k%

ComZip without CZ-BWT, we observe its data window size. g s
When we test ComZip with CZ-BWT, we observe its block g 603

size and use a fixed 4 MB data window for its LZ77 algorithm 250 1

[8]. We choose a small data window of 4 MB to extrude the 2 40

abilities of CZ-BWT, and a data window smaller than 4 MB =

may reduce the performance of the BWT filter. £ 301 w

The experiments in this paper are on 2 hardware © 201 @ g g B BB Byl

platforms: x86/64 and ARM. Their performances may 10 1
provide references to the future and current heavy sensor o O_e_e,’e—e—e\e,/e—e——e

nodes. The operating systems of both experiment platforms
are Linux. We have developed ComZip for Linux, and we still
provide ComZip in the website. Researchers may use it to do
more experiments with new data. It can be downloaded from
http://www.28x28.com/doc/cz_bwt.html.

5.1. Tests on the x86/64 Platform. This platform is a common
laptop with the following equipments: Intel Core i7-4700MQ
4-core & 8-thread CPU, 16 GB DDR3 RAM, and 128 GB SSD
(Solid State Disk) and Ubuntu Linux 12.10 (x64). We regard
this laptop as a future high-end mobile sensor when the fuel
cell can provide enough energy. The software versions are
ComZip v20171019 (64b), bzip2 1.0.6, and p7zip 9.18.

In this experiment, we use different data windows or
block sizes to compress the same original file named
“book.htm,” which is an example that some kinds of data
can show the advantage of BWT in the compression ratio.

0.1 02 04 07 2 4 8 16 32 64 128 256 512
Data window/block size (MB)

—— ComZip w/ CZ-BWT —e— ComZip w/o CZ-BWT
-0 - bzip2 .- p7zip

FiGure 13: Compression time and data window/block size in
Table 3.

This is a real Chinese bookshop data file of storage records
in HTML/XML format. Its original length is 346,499,594 B.
It can be downloaded from http://www.28x28.com/doc/
book.htm.bz2.

Table 2 and Figure 12 show the relationship of the com-
pressed file size and the data window/block size. From (1), we
can find that this relationship is virtually the relationship of
the compression ratio and the window size.


http://www.28x28.com/doc/cz_bwt.html
http://www.28x28.com/doc/book.htm.bz2
http://www.28x28.com/doc/book.htm.bz2
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TaBLE 4: ARM: comparison of compressed file (book.htm) size (B).

Data window/block size ComZip with CZ-BWT filter bzip2 ComZip without CZ-BWT filter p7zip
0.1 MB — 6,554,263 — —
0.2MB — 4,819,250 — —

0.3 MB — 4,130,297 — —

0.4 MB — 3,767,164 — —
0.5MB — 3,524,473 — —

0.6 MB — 3,355,229 — —

0.7 MB — 3,220,144 — —

0.8 MB — 3,122,484 — —

0.9 MB — 3,041,287 — —

1 MB 3,647,176 — 4,793,424 5,876,069
2MB 3,351,448 — 4,615,888 5,797,084
4MB 3,131,976 — 4,474,472 5,724,417
8 MB 2,953,472 — 4,387,688 5,667,650
16 MB 2,823,152 — 4,318,312 5,614,144
32 MB 2,709,176 — 4,264,304 5,563,178
48 MB 2,605,088 — — —

56 MB 2,603,848 — — —

64 MB Insufficient RAM — 4,227,920 5,518,719
96 MB — — 4,210,688 —

Table. 3 and Figure .13 show the relationship .of the % 106 Comparison of compressed file size

compression/decompression time and the data window/ 7 ————————
block size. Figure 13 hides the decompression time because
this weakness of CZ-BWT is analyzed in Section 4. We focus 65 g‘.\
on the compression performance first, and the optimization 640

of decompression for ComZip is our future work.

In Table 2 and Figure 12, we observe that ComZip with
CZ-BWT has the best compression ratio among these soft-
wares, and p7zip has the worst except the 0.1 MB block of
bzip2. The 0.1 MB block is too small for the big data com-
pression. If the block is large enough, the standard BWT in
bzip2 has better compression ratio than truncated BWT
indeed. When bzip2 uses 0.9 MB block, ComZip has to use
about 7 MB block to gain better compression ratio.

But enlarging the block for bzip2 is not practical. Table 3
and Figure 13 show that bzip2 has the slowest compression
speed, and its curve raises rapidly, which can exhibit the anal-
ysis that traditional BWT has the time complexity O(N’IbN).
We can estimate the speed of bzip2 with a 512 MB block.

According to the compression speed shown in Figure 13,
ComZip with CZ-BWT is slower than p7zip, but their curves
are close. The curve from 1 to 8 MB show that a block smaller
than 8 MB may reduce the performance of CZ-BWT with
4MB data window, and the curve from 8 to 512 MB can
exhibit the analysis that CZ-BWT has the time complexity
O(N). If we can find an universal compression software with
SA-IS, we suppose its curve will like this one for CZ-BWT.

ComZip without CZ-BWT is much faster than others in
Figure 13. We can provide 2 possible reasons. The first reason
is the parallel CZ encoding pipeline, which is introduced in
[5]. This platform with 8-thread CPU, large RAM, and SSD
may release the good performance of the pipeline. The
second reason is the data file for this experiment fits the

5.5 1

5 1 \

Compressed file size (B)
<
-

4.5 4 N
4 - \
b\
3.5 1 Y
&
3 4 %o
25 e / r

01 02 04 07 1 2 4 8 16 32 64 96
Data window/block size (MB)

—— ComZip w/ CZ-BWT —e— ComZip w/o CZ-BWT

-0 - bzip2 o p7zip

FiGUure 14: Compressed file size and data window/block size in
Table 4.

optimized LZ77 algorithm, which is mentioned in [4], so
the performance of ComZip is evident.

Above all, the experiment results on this x86/64 platform
show that ComZip with CZ-BWT can have the best compres-
sion ratio among these softwares, and its compression speed
is near p7zip, which is practical for the big data.

5.2. Tests on the ARM Platform. This platform is a popular
Raspberry Pi 2 Model B with the following equipments:
ARM Cortex-A7 4-core CPU, 1 GB DDR RAM, 64 GB Micro
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TaBLE 5: ARM: comparison of file (book.htm) compression/decompression time (seconds).
Compression time Decompression time
Data window/block size ~ ComZip with brip2 ComZip without p72ip ComZip with brip2 ComZip without p72ip
CZ-BWT filter CZ-BWT filter CZ-BWT filter CZ-BWT filter

0.1 MB — 829 — — — 59 — —
0.2MB — 949 — — — 62 — —
0.3 MB — 1099 — — — 86 — —
0.4 MB — 1265 — — — 91 — —
0.5MB — 1667 — — — 100 — —
0.6 MB — 1851 — — — 106 — —
0.7 MB — 1990 — — — 107 — —
0.8 MB — 2045 — — — 97 — —
0.9MB — 2223 — — — 103 — —
1MB 325 — 156 303 151 — 27 19
2MB 226 — 156 309 107 — 27 16
4MB 178 — 162 309 83 — 25 18
8 MB 240 — 160 313 73 — 24 17
16 MB 407 — 160 310 69 — 24 23
32 MB 556 — 156 331 70 — 23 18
48 MB 511 — — — 67 — — —
56 MB 567 — — — 69 — — —
64 MB — — 159 320 — — 23 20
96 MB — — 164 — — — 23 —
SDXC (SD eXtended Capacity), and Raspbian Linux 7. We 5500 Ff"'n'lfflrisonlf’fCOH}PTeSS'iOﬂ til?ﬂe
regard this Raspberry Pi as a current heavy node of mobile
sensors, which is inexpensive. The software versions are )4
ComZip v20171019 (32b), bzip2 1.0.6, and p7zip 9.20. _ 2000 A 00 1

In this experiment, we still use different data windows or %’ /0
block size to compress the same original file “book.htm.” We g 14
can see the difference of the results between the platforms of g 1500 1 / T
x86/64 and ARM. = /.0'

Table 4 and Figure 14 show the relationship of the com- 2 1000 | e |
pressed file size and the data window/block size, and Table 5 g R
and Figure 15 show the relationship of the compression/ g
decompression time and the data window/block size. © 500 4 |

The only difference between Tables 2 and 4 is the size of e DB Be
the file compressed by ComZip. Even the data window or e o4

0

block size is the same; ComZip generates different com-
pressed file. The reason is explained in [5]. ComZip is also
a chaotic encryption software. If the same file is compressed
by ComZip twice, we will get 2 thoroughly different com-
pressed files. But the difference of the lengths is so tiny that
the influence on the compression ratio can be ignored.

This experiment is limited by the platform hardware,
especially the 1 GB RAM. When the block size is enlarged
to 64 MB, ComZip with CZ-BWT aborts for insufficient
RAM. Both the bucket array and the operating system
occupy extra RAM; thus, the total RAM capacity of 1 GB is
inadequate. If the RAM is enlarged to 2 GB, we estimate that
the workable block size may reach 300 MB.

Figure 15 shows bzip2 is much slower than the others,
and its curve also raises rapidly. ComZip with CZ-BWT is
faster than p7zip when their data window/block size is
between 2 and 8 MB and slower than p7zip in the other cases.

0.1 02 04 07 1 2 4 8 16 32 64 96
Data window/block size (MB)

—— ComZip w/ CZ-BWT —e— ComZip w/o CZ-BWT
- bzip2 o p7zip

FiGure 15: Compression time and data window/block size in
Table 5.

ComZip without CZ-BWT is also the fastest on this platform,
but the 4-core CPU limits the performance of the parallel CZ
encoding pipeline.

Above all, the experiment results on this ARM platform
also show that the compression speed of ComZip with
CZ-BWT is practical. Although the block size is limited
by the RAM, ComZip with CZ-BWT has the best com-
pression ratio among these softwares.
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Data window/block size ComZip with CZ-BWT filter bzip2 ComZip without CZ-BWT filter p7zip

0.1 MB — 324,209,650 — —

0.5MB — 316,111,009 — —

0.9 MB — 309,637,283 — —

1 MB 309,677,896 — 291,227,528 288,751,149

8§ MB 289,778,024 — 247,728,240 244,375,665

64 MB 285,257,552 — 238,947,232 235,146,686

512MB 194,737,904 — 126,284,264 122,996,451

TABLE 7: x86/64: comparison of file (lamp.vdi) compression/decompression time (seconds).

Data window/ o Compression tim.e . o Decompression tirpe .

block size ComZip with brip2 ComZip without p7zip ComZip with brip2 ComZip without p7zip
CZ-BWT filter CZ-BWT filter CZ-BWT filter CZ-BWT filter

0.1 MB — 47 — — — 20 — —

0.5MB — 48 — — — 20 — —

0.9MB — 63 — — — 32 — —

1 MB 57 — 34 49 74 — 41 19

8§ MB 49 — 38 50 69 — 42 17

64 MB 55 — 43 60 77 — 40 15

512MB 84 — 28 58 104 — 25 8

5.3. Tests with Other Data. The compression ratio of BWT is
not always better than the others without BWT. We find that
only some kinds of special data fit the BWT compression
well. This experiment uses the same x86/64 platform, but
the data file is changed into “lamp.vdi,” which is a real virtual
machine image file of a Linux data partition. The original
length of this file is 527,467,008 B.

Table 6 shows the relationship of the compressed file size
and the data window/block size, and Table 7 shows the
relationship of the compression/decompression time and
the data window/block size.

In Table 6, we observe that bzip2 has the lowest
compression ratio among these softwares, and ComZip with
CZ-BWT has the second lowest compression ratio. In
Table 7, we observe that bzip2 and ComZip with CZ-BWT
cannot be faster than p7zip and ComZip with CZ-BWT.
Thus, the experiment results provide an example that some
kinds of data cannot get better compression ratio and speed
by using BWT.

This paper focuses on the BWT algorithms. Researchers
may use their own data to find what kind of data fit the
BWT well.

From all of the above experiment results, we can get some
support about the advantages of CZ-BWT: the compression
ratio for some kinds of data, and the compression time
contrasting to the other universal BWT compression
software. And these results provide some references to the
performance of CZ-BWT running on x86/64 and ARM
platforms, which may infer the feasibilities and practicalities
of using CZ-BWT in the future and current sensors.

But these results also reveal that BWT cannot always gain
better compression ratio than other compression algorithms.

Thus, the BWT filter in ComZip remains alternative. And
compared to the standard BWT, CZ-BWT has lower
compression ratio, and its decompression is slower. So we
regard the elimination of the weaknesses from CZ-BWT as
our future work.

6. Conclusions and Future Work

The rapid expansion of IoT leads to numerous sensors,
which generate massive data and bring the challenges of
data transmission and storage. A valuable way for this
requirement is data compression, and BWT can gain good
compression ratios for some kinds of data, which can be
used in the sensors.

But the problems of BWT in the sensors for big data still
exist. Due to the limited computation resources of each
sensor, enlarging the BWT block without the rapid decrease
of the encoding/decoding speed is a problem. If the sensor
needs hardware acceleration for BWT, simplifying the
complex BWT to design the hardware is another problem.

To solve these problems, this paper presents CZ-BWT
algorithm, a fast algorithm of truncated BWT using bucket
sort. CZ-BWT is implemented in the shareware ComZip. It
supports the BWT block up to 2 GB currently, and it is easy
to support a larger block, which meets the requirements of
big data compression.

The analyses indicate that CZ-BWT encoding has the
time complexity O(N), and it’s faster than the BWT encoding
with SA-IS. The space complexity of CZ-BWT encoding is
also O(N), and it uses less RAM than that with SA-IS, if the
block size is large enough and the RAM for bucket array
can be ignored. The primary hardware design of bucket sort
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infers that the hardware acceleration for CZ-BWT is
relatively easy to realize.

The experiment results support that ComZip with
CZ-BWT is obviously faster than bzip2, and it can obtain
better compression ratio than bzip2, p7zip, and ComZip
without CZ-BWT for some kinds of data. And these
results provide references to the performance of CZ-BWT
running on x86/64 and ARM platforms, which may infer that
using CZ-BWT in the future and current sensors is feasible
and practical.

On the other hand, these experiment results also provide
the proofs of the weakness analyses in the CZ-BWT.
Compared to the standard BWT, CZ-BWT has lower
compression ratio, and its decompression is slower. How
can the loss of the compression ratio be analyzed for the
truncated BWT? Can we enhance the truncated BWT
encoding to obtain better compression ratio? Can we change
CZ-BWT into standard BWT and keep its advantages? Can
we optimize the decompression algorithms of ComZip,
especially the CZ-BWT, to get better speed? Solving these
problems is the future work.
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