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An integrated navigation scheme based on multiple optical flow sensors and a strapdown inertial navigation system (SINS) are
presented, instead of the global position system (GPS) aided. Multiple optical flow sensors are mounted on a micro air vehicle
(MAV) at different positions with different viewing directions for detecting optical flow around the MAV. A fault-tolerant
decentralized extended Kalman filter (EKF) is performed for estimating navigation errors by fusing the inertial and optical flow
measurements, which can prevent the estimation divergence caused by the failure of the optical flow sensor. Then, the
estimation of navigation error is inputted into the SINS settlement process for correcting the SINS measurements. The results
verify that the navigation errors of SINS can be effectively reduced (even more than 9/10). Moreover, although the sensor is in a
state of failure for 400 seconds, the fault-tolerant integrated navigation system can still work properly without divergence.

1. Introduction

In recent years, unmanned air vehicles have been widely used
in military and civil fields. State-of-the-art navigation
schemes for unmanned aerial vehicles (UAVs) typically rely
on the high-quality global position system (GPS). However,
the GPS signal is not always available (indoor places, for
example), so the overreliance on GPS is becoming a promi-
nent insufficiency of UAVs [1]. As a result, the increasing
interest in navigation for a GPS-denied environment has
heightened the need for novel GPS-free integrated navigation
schemes. Inspired by flying insects (e.g., honeybees) that have
the ability to fly with great agility, scientists hope that micro
air vehicles (MAVs) could fly like the insects without the aid
of GPS signals [2]. Experiments show that one of the naviga-
tion information sources is measuring the moving velocity of
the image in the world appearing in the eye when honeybees
fly to their destination [3]. Researchers think that what the
honeybees are mainly relying on is the apparent motion of
the objects in their field of view, namely, optical flow, which

contains egomotion information relative to the environment
of the flying insects [4].

On the other hand, the requirement for more self-reliant
(autonomous) navigation systems and the need for MAV
with a greater understanding of their environment are
becoming more and more urgent. It is obvious that insects
like honeybees, even with their small brains and limited intel-
ligence, have the accurately autonomous navigation ability
described above. Accordingly, bioinspired optical flow sen-
sors are developed with the advantage of smaller size, lighter
weight, low power requirement, higher frequency, and lower
cost compared to other equipments such as lidar, radar, and
magnetometer [5].

Chahl [6] has also pointed out that the largest develop-
ment opportunities may exist in small and micro UAV
domains as a result of the novelty of aerospace engineering
on a small scale. Therefore, autonomous navigation or pose
estimation using optical flow sensors is valuable for MAVs.
This has motivated many researches into optical-flow-based
MAV navigation systems and algorithms.
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Ruffier and Franceschini [7] have developed an optical
flow regulation loop-based MAV which is able to take off,
cruise, and land automatically. The MAV can also react
appropriately to wind disturbances. This MAV can keep
the downward optical flow at a constant value. Further-
more, the two-degree-of-freedom (DOF) tethered MAV
was shown to land safely on a platform set into motion
along two directions, vertical and horizontal, without
ground height or groundspeed information [8]. The results
show that their MAV works very well. However, the MAV
has only two DOF, which is a little far from the 6 DOF
practical MAV.

As stated earlier, the optical flow contains the egomotion
information of honeybees orMAVs. Consequently, it is a rea-
sonable navigation frame that combines the optical flow and
the inertial navigation system (INS) measurement informa-
tion in order to improve the navigation precision.

Sabo et al. [9] performed an approach for bioinspired
navigation using optical flow. Hallway navigation results
show that the roll, pitch, and thrust can be tuned and con-
trolled as expected. The deficiency is that the optical flow
was calculated off-board using a computer vision algorithm,
rather than taking advantage of optical flow sensors with
small computation and short response time.

Zhang et al. [10] fused strapdown inertial navigation sys-
tem (SINS) information with optical flow through a Kalman
filter for correcting the SINS attitude when it is diverged.
Simulation results show that the estimated vehicle attitude
is of good performance with smaller error. Nevertheless, the
placement scheme of optical flow sensors is not shown in this
paper. In addition, it is considered that the pitch angle is
sinusoidal, yet the roll angle and yaw angle are all zero, which
is a little far from the practical situation.

In order to overcome the drift of INS, Shen et al. [11]
designed an INS/optical flow/magnetometer integrated navi-
gation scheme for a GPS-denied environment. The gyro,
accelerator, and magnetometer information is properly fused
for estimating the attitude of the MAV. The results show that
the proposed scheme can effectively reduce the errors of nav-
igation parameters and improve navigation precision. How-
ever, too many devices are involved in navigation, and the
corresponding functions can be realized only by fusing opti-
cal flow and inertial information.

Lyu et al. [12] designed a fault-tolerant filter based on
optical flow and inertial measurements. The velocity estima-
tion accuracy is greatly improved. In want of perfection, the
utilization of optical flow information needs to be further
improved, not only for estimating velocity.

In this paper, a multiple optical flow sensor/SINS on-
board integrated navigation scheme for a GPS-denied envi-
ronment is proposed. Multioptical flow sensors are fixed
on the given MAV, referencing an optimal placement
scheme in order to make the optical flow sensors as sensi-
tive as possible to the motion state change of a MAV. Con-
sidering that the MAV may make a big maneuverer so that
some optical flow sensors may face the sky, which causes
the failure of optical flow sensors, an adaptive decentralized
filter with fault detection and isolation ability is therefore
developed to conquer this problem. 6 DOF flight simulations

are carried out for validating the effectiveness of the naviga-
tion algorithm.

The rest of this paper is organized as follows. Section 2
introduces the mathematical model of optical flow sensors.
The optical flow sensor/SINS integrated navigation algo-
rithm based on the extended Kalman filter (EKF) is described
in Section 3. Section 4 gives the optimal placement scheme of
multiple optical follow sensors fixed on a MAV. Section 5
presents an application of the centralized EKF. A fault-
tolerant integrated navigation scheme is proposed in Section
6. In the last section, the author arrives at the conclusion that
the fault-tolerant optical flow sensor/SINS integrated naviga-
tion algorithm is effective.

2. Optical Flow Sensor Model

The magnitude of optical flow is defined as the angular rate at
which a point on an object point moves relative to an optical
flow sensor. The perspective projection model of the optical
flow sensor [10, 11] is illustrated in Figure 1.

2.1. Optical Flow Definition. Let PG = xG, yG, zG
T be a point

on the ground in the three-dimensional optical flow sensor
reference coordinate frame SOF oOFxOFyOFzOF . Let the opti-
cal axis of the optical flow sensor be the Z-axis of the optical
flow sensor coordinate system. f is the focal length and the
origin oOF is the centre of projection. W and H are the pixel
numbers of the optical flow sensor image plane along the xOF
and yOF directions, respectively. The projection of point PG
on the image plane is given by

p = f
PG
ZG

, 1

Point PG has the following relative motion to the optical
flow sensor under the sensor coordinate system SOF:

VG = −TG − ω × PG, 2
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Figure 1: Perspective projection model of an optical flow sensor.
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where ω is the angular velocity and TG the translational com-
ponent of the motion relative to the optical flow sensor.

Let (2) be expanded in three dimensions; we get the
following equation:

VGx

VGy

VGz

=

−TGx

−TGy

−TGz

−

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

×

xG

yG

zG

=

−TGx + ωzyG − ωyzG

−TGy − ωzxG + ωxzG

−TGz + ωyzG − ωxyG

3

Taking the derivative of both sides of (1) with respect
to time, the relation between the velocity of PG in the
optical flow sensor coordinate system and the velocity or
the optical flow of p in the image plane [13] is obtained.

f low
Δtime ≙ v = f

VGzG − PGVz

z2G
4

Let (4) be expressed in x and y components, we get

vx = f
VGx
zG

−
f VGzxG

z2G
, 5

vy = f
VGy
zG

−
f VGzyG

z2G
6

Substituting (3) into (5) and (6), the following equa-
tions are achieved:

vx =
TGzx − TGx f

ZG
− ωy f + ωzy +

ωxxy − ωyx
2

f
,

vy =
TGzy − TGy f

ZG
+ ωx f − ωzx +

ωxy
2 − ωyxy

f
,

7

where vx and vy are the optical flow components on direc-
tions x and y, which can be calculated by a matching algo-
rithm, such as the sum of absolute differences (SAD).

When an optical flow sensor is mounted on aMAV flying
in a three-dimensional space, the optical flow is a function of
the MAV motion state (translation states vx, vy, vz and rota-
tion states ωx , ωy, ωz) and the distance d from the optical flow
sensor to the object point, as shown in Figure 2.

In order to make the optical flow sensor work prop-
erly, the object plane should have adequate texture, and
it should be sufficiently illuminated for the sensor to distin-
guish and track features. The optical flow sensor measures
only two quantities which are the x and components of the
mean optical flow within its field of view. The local optical
flow vector OF in the viewing direction n (i.e., the direction

of the optical axis) experienced by the optical flow sensor at
velocity v and rotational rate ω is [14]

OF = v − v ⋅ n n

d
+ ω × n , 8

where d is the distance between the object point and the opti-
cal flow sensor in direction n .

For a simple example, Figure 2 depicts an optical flow
sensor moving relative to its object plane at a right veloc-
ity v, a height above the ground h, and a yaw rate ω. The
angle between the viewing direction (the direction of the
optical axis) of the optical flow sensor and the plumb line
is θ. The optical flow OF detected by the optical flow sensor
in the plane formed by the optical axis and the velocity
vector is [5]

OF = v cos θ
h/cos θ + ω = v cos2 θ

h
+ ω 9

The physical unit of OF in (8) and (9) is “rad/s”.

2.2. Reference Coordinate Systems. In order to describe the 6
DOF motions of a blended wing body [15] MAV with multi-
ple optical flow sensors in three-dimensional space, three
reference coordinate systems as can be seen in Figure 3 [16]
are defined.
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Figure 2: An optical flow sensor is moving relative to its object
plane at a velocity v, a height above the ground h, and a yaw rate
ω. The angle between the optical axis and the plumb line is θ. f is
the focal length of the optical flow sensor.
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(i) Navigation coordinate system (Sn − onxnynzn): a
local ENU (east-north-up) frame fixed to a world is
selected as the navigation frame. Absolute motion
states of the MAV are defined in this frame. If the
rotation of the Earth is neglected, the ENU reference
coordinate system can be considered as an inertial
coordinate system.

(ii) MAV body coordinate system (Sb − obxbybzb): a
coordinate system fixed on the MAV body. Its origin
is the centre of gravity of the MAV body. The Y-axis
is parallel to the longitudinal axis of the MAV body
and points forward. The Z-axis points upward.

(iii) Optical flow sensor coordinate system (SOF − oOF
xOFyOFzOF): a coordinate system fixed to a optical
flow sensor. Its origin is the focus of the optical
flow sensor. The Z-axis is the optical axis of the
optical flow sensor. The X-axis and Y-axis are
parallel to the optical flow sensor’s X-axis and
Y-axis, respectively.

The transformation matrix from the MAV body coordi-
nate system Sb to the optical flow sensor coordinate system
SOF is

COF
b = Cy η Cx μ =

cos μ 0 −sin μ

sin η sin μ cos η sin η cos μ
cos η sin μ −sin η cos η cos μ

,

10

where μ and η are the mounting angles of the optical flow
sensor fixed on the MAV. Namely, μ is the angle around
the xb axis for rotating Sb to SOF, and then η is the angle
around the yb axis.

Thus, the transformation matrix from the local coordi-
nate system Sn to the optical flow sensor coordinate system
SOF is

On

xn

yn

Zn

xOF
yOF

zOF

OOF

xb

yb

zb

Ob

rnOF

rnb

rbOF

Figure 3: Three coordinate systems used for modelling the blended
wing body MAV [17]. rnb, rbOF, and rnOF are used to express the
relative position of the origin of each coordinate system.

COF
n = COF

b Cb
n, 11

where Cb
n is the transformation matrix from the local coordi-

nate system Sn to the MAV body coordinate system Sb.

2.3. Expression of Optical Flow in Three-Dimensional Space.
As the measurements of optical flow sensors are based
on the optical flow sensor coordinate system SOF, the motion
states of the MAV in the inertial coordinate system Sn
need to be projected onto the optical flow sensor coordinate
system SOF.

Therefore, based on the coordinate systems defined in the
above section, the optical flow experienced by an optical flow
sensor in Figure 3 is

OFOF =
OFx
OFy

=

VnOF OF,x
dOFg

+ ωnOF OF,y

VnOF OF,y
dOFg

− ωnOF OF,x

, 12

whereOFx andOFy are the x and y component magnitude of

OF defined in (8), which are the measurements of the optical
flow sensor. VnOF and ωnOF are the velocity and rotation rate
of the optical flow sensor in the inertial frame Sn, respectively.
SubscriptsOF, x andOF, y denote the x and y components in
the optical flow sensor coordinate system SOF, respectively.
dOFg is the distance along zOF from the lens centre of the opti-
cal flow sensor to the ground.

Next, we need to find the relationship between the optical
flow measurements in the optical flow sensor coordinate sys-
tem SOF and the motion state of the aircraft in the inertial
coordinate system Sn.

First, the velocity vector of the optical flow sensor in the
inertial frame Sn can be expressed as

VnOF =
drnOF
dt

= d
dt

rnb + rbOF = drnb
dt

+ drbOF
dt

13

The projection of VnOF in the SOF coordinate system is

VnOF OF = COF
n

d rnb n
dt

+ COF
b

d rbOF b
dt

+ ωnb b × rbOF b

= COF
n Vn + COF

b ωnb b × rbOF b
14

As mentioned earlier, the navigation coordinate system
Sn can be considered as an inertial coordinate system, when
the rotation of the Earth is neglected. Then, it should be
noted that ωnb b is indeed the rotational angular velocity
of the MAV in the inertial reference system, which can be
directly measured by SINS.
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Second, the direction vector of zOF is defined as kOF,
which means that kOF OF = 0 0 1 T . Thus, the projec-
tion of kOF to Sn is

kOF n = Cn
OF kOF OF = Cn

bC
b
OF kOF OF 15

Therefore, the cosine of the angle between zOF and yn
is − kOF n,z , and

kOF n,z = C13 cos η sin μ − C23 sin η

+ C33 cos η cos μ,
16

where Cij is the corresponding element of Cb
n.

The distance along the axis zOF from the origin of the
optical flow sensor coordinate system SOF (i.e., the focus of
the optical flow sensor) to the ground is

dOFg =
rnOF n,z
kOF n,z

= −
rnb + rbOF n,z

kOF n,z

= −
rnb n,z + Cn

b rbOF b z

kOF n,z

= −
h + Cn

b rbOF b z

kOF n,z

17

Third, the rotational angular velocity of the optical flow
sensor in the optical flow sensor coordinate system is

ωnOF OF = ωnb OF = COF
b ωnb b 18

Finally, substituting (14), (17), and (18) into (12), the
measurements of an optical flow sensor are

The measurement noise of OFOF in (19) is modelled by a
white noise vector with zero mean in the following simula-
tion, whose variance matrix is R = diag r2OF r2OF , where
rOF = 0 001 rad/s.

3. Information Fusion Using EKF

In order to improve the precision of SINS, the navigation
errors are taken as the state vector in this study instead of
navigation parameters. This is because the navigation errors
are much smaller than the value of the navigation parame-
ters, and the change of navigation errors is slow. Therefore,
the state transmission of navigation errors can be expressed
accurately with linear equations, and the estimation precision
of the state can be easily guaranteed.

The state vector is taken as [17]

X = δL, δλ, δh, δVE, δVN, δVU, ϕE, ϕN, ϕU,
εcx , εcy , εcz , εrx , εry, εrz , ∇x, ∇y, ∇z

T ,
20

where the subscripts E,N, andU stand for the components in
the corresponding axis of the east-north-up local coordinate
system Sn; x, y, and z stand for the components in the corre-
sponding axis of the MAV body coordinate system Sb; δL, δ
λ, δh denote the position errors of SINS; δVE, δVN, δVU
denote the velocity errors of SINS; ϕE, ϕN, ϕU denote the atti-
tude errors of SINS; εcx, εcy, εcz denote the random bias errors
of the gyro in SINS; εrx, εry, εrz denote the random walk

process errors of the gyro in SINS; and ∇x, ∇y , ∇z denote
the random walk process errors of the accelerometer in SINS.

Then, the state equation of the EKF can be represented as

X = FX +Gw, 21

where F is a 18× 18 SINS error matrix [17] and G is a 18× 9
system noise allocation matrix given by

G =

06×3 06×3 06×3
Cn
b 03×3 03×3

03×3 03×3 03×3
03×3 I3×3 03×3
03×3 03×3 I3×3

22

ω is the system noise vector with zero mean, that is,

ω = ωgx ωgy ωgz ωrx ωry ωrz ωax ωay ωaz
T ,
23

where ωgx , ωgy , an ωgz are the gyro random white noises; ωrx,
ωry , and ωrz are the first-order Markov-driven white noises of
gyro; and ωax , ωay , and ωaz are the first-order Markov-driven
white noises of the accelerometer.

OFOF =
−

kOF n,z COF
n Vn + COF

b ωnb b × rbOF b x

h + Cn
b rbOF b z

+ C f
b ωnb b y

−
kOF n,z COF

n Vn + COF
b ωnb b × rbOF b y

h + Cn
b rbOF b z

− C f
b ωnb b x

19
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The covariance matrix of system noise vector ω is

Q = diag q2ωgx
q2ωgy

q2ωgz
q2ωrx

q2ωry
q2ωrz

q2ωax
q2ωay

q2ωaz
,

24

where qωgx
= qωgy

= qωgz
= 10 deg/hour, qωrx

= qωry
= qωrz

= 1
deg/hour, and qωax

= qωay
= qωaz

= 0 005 g/hour.
The estimated navigation errors are expected to be used

for correcting the navigation parameters of SINS. There are
two methods to correct the navigation parameters [18]: one
is to directly correct the outputs of SINS by taking the esti-
mated value of the navigation error as the feedback, which
is called the output correction method; the other way is to feed
the estimation value of the navigation error into the SINS set-
tlement process, which is called the feedback correction
method. The output correction method only changes the
accuracy of the output, rather than the error state inside the
inertial navigation system. In this way, the errors will accu-
mulate gradually over time, making the difference between
the ideally mathematical model and the actual navigation
system larger and larger, and the accuracy of the integrated
navigation system becomes poor. Therefore, the feedback
correction method is adopted in this paper in order to
increase the accuracy of SINS.

Finally, the structure of the optical flow sensor/SINS inte-
grated navigation scheme based on EKF is shown in Figure 4.
It is mainly composed of the following four modules.

(1) SINS. The microelectromechanical system- (MEMS-)
based SINS outputs the attitudes, position, and velocity
measurements with drifts and high noises. As time goes
by, the navigation errors of SINS will gradually increase,
so some other navigation devices should take the role of
correcting the SINS errors, such as the optical flow
sensors introduced before.

(2) A Group of Multiple Optical Flow Sensors. Multiple
optical flow sensors are mounted on a MAV at different
positions with different viewing directions. As a result,
the optical flow information in different directions
around the MAV can be adequately detected.

(3) Prediction of the Optical Flow Using the SINS
Measurements. Optical flow can be predicted by using
(19) with the SINS measurements as the input. δOF is
the difference of the optical flow sensor measurements
and the predicted ideal optical flow. The optical flow
difference δOF is taken as the measurements of EKF. So
the measurement equation of EKF is

Z =HX + υ, 25

where

Z = δOF =
δOFx
δOFy

, 26

H is the measurement matrix [17], and υis the mea-
surement noise vector with zero mean, whose covari-
ance matrix is R = diag r2OF r2OF where
rOF = 0 001 rad/s.

(4) Extended Kalman Filter (EKF). A centralized
extended Kalman filter is first performed in this study
for fusion of inertial and optical flow information. The
state equation of EKF is expressed by (21), and the mea-
surement equation is expressed by (25). The navigation
errors of SINS can be corrected by using the navigation
error estimation feedback of the EKF.

4. Sensor Placement Optimization

As mentioned in the previous section, multiple optical flow
sensors are fixed on the MAV. So the placement scheme of
optical flow sensors should be taken into account, which con-
sists of the following three issues:

(a) The positions where the optical flow sensors are
mounted

(b) The orientations which the optical flow sensors are
facing

(c) The number of optical flow sensors

4.1. Mounting Position of Optical Flow Sensors. As illustrated
in Figure 3, different rbOF means that the optical flow sensors
are fixed on different positions of the MAV. Several magni-
tudes of rbOF are used for investigating the influence of opti-
cal flow sensor positions on the navigation performance. The
placement position and angle of the optical flow sensors in
the MAV body frame Sb are shown in Tables 1–4. The sensor
mounting angles in each case are identical.

It can be concluded from Figure 5 that the navigation
performances of each case are nearly the same, though the
mounting positions of each case are very different. In other
words, mounting positions of the optical flow sensors have
little influence on the performance of the navigation system.
On the other hand, if the distances between each optical flow
sensor and the gravity centre of the MAV are as long as pos-
sible (case 4), the longitudinal velocity navigation error is

SINS

OFS1

…
OFSn

Optical flow
prediction 

EKF

Correction of SINS errors 

Attitude, position, and velocity

Optical flow 𝛿OF

X

−

+

Figure 4: Optical flow sensor/SINS integrated navigation system.
OFS: optical flow sensor.
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slightly smaller than the ones in other cases, which means
that the navigation performance is slightly better.

4.2. Mounting Orientation of Optical Flow Sensors.We expect
that the optical flow sensors can be as sensitive as possible to
the motion state changes of MAV. From (15), (16), (17), (18),
and (19), it can be found that the magnitude of optical flow is
a function of the MAV motion state x and the optical flow
sensor mounting angles μ, η . Thus,

OF = OF2x + OF2y = g x, μ, η , 27

where g · is a function of x, μ, and η.

Let ΔOF represent the optical flow sensitivity, the sensi-
tivity ΔOF can be defined as

ΔOF = g x0 + Δx0, μ, η − g x0, μ, η , 28

where x0 is the motion state of MAV at a certain moment and
Δx0 is the motion state change of MAV. Here, the motion
state and its change of a MAV for investigating the influence
of mounting angles on the sensor sensitivity are shown in
Table 5.

Based on the current state shown in Table 5, the mount-
ing angles μ and η change from 120 to 240 degrees and −60 to
60 degrees, respectively. The relationship between the mea-
suring sensitivity and the mounting angles of optical flow
sensors is illustrated in Figure 6. The results indicate that
when the optical flow change is the most obvious (in other
words, when the sensitivity of the optical flow sensor is the
highest), the ranges of mounting angles are

μ ∈ 130°, 185° ∩ η ∈ −50°, −30° ,
μ ∈ 175°, 225° ∩ η ∈ 30°, 50°

29

4.3. Number of Optical Flow Sensors. As we know, more opti-
cal flow sensors provide more measurement information,
and the redundancy of the navigation system can also be
enhanced, making the system more reliable. However, too
much information input from optical flow sensors will

Table 1: Case 1: optical flow sensors are mounted at the centre of
gravity of the MAV.

Sensor identifier xb (m) yb (m) zb (m) μ (rad) η (rad)

1 0 0 0 π π/6
2 0 0 0 5π/6 0

3 0 0 0 7π/6 0

4 0 0 0 π −π/6

Table 2: Case 2: optical flow sensors are mounted closely on the
MAV.

Sensor identifier xb (m) yb (m) zb (m) μ (rad) η (rad)

1 0 0.1 0 π π/6
2 0.1 0 0 5π/6 0

3 −0.1 0 0 7π/6 0

4 0 −0.1 0 π −π/6

Table 3: Case 3: the coordinate values of the sensor mounting
positions are half of those in case 4.

Sensor identifier xb (m) yb (m) zb (m) μ (rad) η (rad)

1 0 0.1 0 π π/6
2 0.38 0 0 5π/6 0

3 −0.38 0 0 7π/6 0

4 0 −0.1 0 π −π/6

Table 4: Case 4: mounting positions of optical flow sensors are
wingtips, nose, and tail of the MAV (The distances between each
sensor and the gravity centre of the MAV are as long as possible.)

Sensor identifier xb (m) yb (m) zb (m) μ (rad) η (rad)

1 0 0.2 0 π π/6
2 0.76 0 0 5π/6 0

3 −0.76 0 0 7π/6 0

4 0 −0.2 0 π −π/6

1
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0
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−0.4
0 200 400 600
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800 1000 1200

𝛿
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Case 2 

Case 3
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0.242

0.24
700.5 701 701.5

Figure 5: History of the longitudinal velocity navigation error.

Table 5: Motion state of the MAV at a certain moment and its
change.

Parameters
Velocity
(m/s)

Height
(m)

Pitch
angle
(deg)

Yaw
angle
(deg)

Roll
angle
(deg)

x0 10 10 5 5 0

Δx0 0.1 0.1 0.1 0.1 0.1

7Journal of Sensors



increase the computational burden of the on-board com-
puter on MAV. As a result, the real-time performance of
the integrated navigation algorithm may fall. Moreover, too
many optical flow sensors will also increase the payload mass
of MAV. In contrast, too few optical flow sensors will lead to
poor estimating accuracy of the EKF filter.

Different quantities of optical flow sensors are fixed on
the MAV for investigating the influence on the navigation
performance. The first one, the first two, the first three, and
all optical flow sensors in Table 4 are installed on the MAV
in turn.

Taking the longitudinal velocity error as an example, the
results shown in Figure 7 indicate that, with the aid of optical
flow information, the navigation error is obviously smaller. If
the number of optical flow sensors is more than one, the nav-
igation error will be further reduced, about 1/10 of the navi-
gation error from the one optical flow sensor-aided inertial
navigation system.

Moreover, if the quantity of optical flow sensors is greater
than two, the navigation performance of the integrated nav-
igation system is the same as the inertial navigation system
aided with two optical flow sensors. Considering the naviga-
tion accuracy, computational cost, payload mass, and redun-
dancy, three optical flow sensors are recommended to be
mounted on the MAV.

In summary, the optimal placement scheme shown in
Table 6 is that three optical flow sensors are mounted on
the MAV, as far apart as possible from each other and the
gravity centre of the MAV. The optimal mounting angles
can be referred to Formula (29).

5. Numerical Simulation Using a
Centralized EKF

To test the performance of the optical flow sensor/SINS inte-
grated navigation scheme, three optical flow sensors are
mounted on the MAV using the optimal placement scheme
shown in Table 6. Some other initial parameters for this sim-
ulation can be seen in Table 7.

Navigation errors of the optical flow sensor/SINS inte-
grated navigation scheme using a centralized EKF compared
with the navigation system using SINS only are displayed in
Figure 8. The results indicate that the navigation errors
(including position, velocity, and attitude errors) become
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Table 6: Optimal placement scheme of the optical flow sensors.

Sensor identifier xb (m) yb (m) zb (m) μ (rad) η (rad)

1 0 0.2 0 π π/6
2 0.76 0 0 5π/6 0

3 −0.76 0 0 7π/6 0

Table 7: Initial parameters of the simulation.

Parameter Magnitude

Sampling period 0.01 s

Random bias of the gyro in
SINS

10 deg/h

Random walk process noise
standard deviation of the
accelerometer in SINS

0.005 g (g = 9 8m/s2)

Initial position λ = 120°, L = 30°, h = 1000m
Initial attitude
(pitch, roll, and yaw)

ϑ = π/6 rad, γ = 0 rad,
ψ = π/4 rad, ψ = π/4

Initial velocity
VE = 200m/s,VE = 200m/s

,VU = 0m/s
Initial error state X0 = 0
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much smaller after optical flow sensors aided. The correct-
ness and effectiveness of the optical flow aided inertial navi-
gation scheme are verified.

In contrast, the premise that the optical flow sensor
can work well is that the detection plane has sufficient
texture, and the illumination is sufficient. Hence, if the
MAV makes a big maneuver, some optical flow sensor(s)
may face the sky, which leads to the failure of optical
flow sensors as a result of zero measurement. In this
case, the navigation system will diverge, suffering from
inputting wrong information.

For example, let the output of the third optical flow sen-
sor in Table 6 be zero from 300 s to 700 s; the longitude error
of the integrated navigation system using centralized EKF is
illustrated in Figure 9.

As can be seen in Figure 9, the navigation error
immediately diverges, when one of the optical flow sen-
sors fails. Accordingly, an integrated navigation scheme
with fault detection and isolation ability is proposed in the
subsequent sections.

6. Fault-Tolerant Integrated Navigation Scheme

6.1. Decentralized Filter. There are two ways to achieve an
optimal integrated navigation system based on the extended
Kalman filter technology: one is centralized Kalman filter,
and the other is decentralized Kalman filter.

The centralized Kalman filter is the method used in the
previous sections, which utilizes only one Kalman filter to
process all the information of all the navigation subsystems
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(SINS and optical flow sensors). The centralized EKF inte-
grates the SINS subsystem with the optical flow sensor sub-
systems optimally to estimate the navigation error state and
then correct the SINS subsystem by using the optimal estima-
tion of the navigation error state. Thus, navigation precision
can be improved relative to the navigation system using the
SINS only.

The decentralized filter used in this study is a feder-
ated filter. By using the principle of “information distribu-
tion,” the best compromise can be obtained through
adjusting the distribution weights of subsystem informa-
tion in the navigation system. Therefore, the federal filter
used in this project can achieve the following advantages
against the centralized filter:

(1) The fault-tolerant performance of the decentralized
filter is better. When one or more navigation subsys-
tems fail, the fault can be detected and isolated. After-
wards, the remaining normal navigation subsystems
can be reassembled or reconfigured quickly to get
the required accurate filtering solution.

(2) For the centralized filter, the increase in state dimen-
sion will bring the so called curse of dimensionality,
which makes the computational cost increase dra-
matically. In addition, reducing the filter dimension
will lose the filtering accuracy and even cause filtering
divergence. As for the decentralized filter, the synthe-
sis (fusion) algorithms of both local filters and the
master filter are simple, with less computation, so
as to facilitate the real-time implementation of the
navigation algorithm.

Referring to Figure 10, the workflow of the federated filter
can be summarized as follows:

(1) The initial estimated covariance matrixes of local
filters and the master filter are set to γi (i = 1, 2,… ,

N ,m) times that of the integrated navigation system;
γi satisfies the principle of information conservation
equation, that is,

1
γ1

+⋯ + 1
γN

= 1,

0 ≤ 1
γi

≤ 1
30

(2) The process noise covariance matrixes of local filters
and the master filter are set to γi times that of the
combined system process.

(3) Each local filter obtains the local estimation by pro-
cessing its own measurement information.

(4) The local estimation of each local filter and the esti-
mation of the master filter are integrated according to

X̂g = Pg 〠
N

i=1
P−1
ii X̂i,

Pg = 〠
N

i=1
P−1
ii

−1

,
31

where X̂i is the ith local state estimation and Pii is the
corresponding estimated covariance matrix. The
local estimates are not related to each other, namely,
Pij = 0 i ≠ j . X̂g is the global optimal estimate, whose
corresponding covariance matrix is Pg.

(5) The global optimal estimate is used to reset the state
estimation and covariance matrix of local filters and
the master filter.

The determination of the information distribution coeffi-
cient βi = 1/γi is crucial to the decentralized filter [19]. In this
study, considering the fault tolerance and computational
complexity of the decentralized filter, the information distri-
bution coefficient of the master filter is βm = 0, and the infor-
mation distribution coefficient of each local filter is βi = 1/N
(i = 1, 2,… ,N ,m). Therefore, the estimation of the master
filter is actually the global estimation, namely,

X̂m = X̂g = Pg P−1
1 X̂1 +⋯ + P−1

N X̂N 32

6.2. Fault Detection and Isolation. In the fault-tolerant inte-
grated navigation system, the validity of the measurement
information of each local filter must be determined in real
time so as to determine which local state estimations are used
to calculate the global state estimation. This requires that a
real-time fault detection and isolation algorithm should be
performed in the local filtering process. As a result, once a
fault is detected, the fault can be isolated. Consequently, by
reconstructing the system information, the whole navigation
system will not fail due to the failure.
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A discrete system model with failure is expressed by

Xk =Φk,k−1Xk−1 + Γk−1Wk−1,
Zk =HkXk +Vk + f k,φγ,

33

where Zk ∈ Rm is the measurement of the navigation system.
Xk ∈ Rn is the system state. Φk,k−1 ∈ Rn×n is the one-step
transformation matrix of the system state. Γk−1 ∈ Rn×r is
the system noise matrix. Wk ∈ Rr and Vk ∈ Rm are mutually
independent Gauss white noise sequences with the following
constrains:

E Wk = 0, E WkWT
j =Qkδkj,

E Vk = 0, E VkVT
j = Rkδkj,

34

where δkj is the Dirac δ function. γ is a random vector,
which indicates the degree of a fault. f k,φ is a piecewise
function

f k,φ =
0, k ≥ φ,
1, k < φ,

35

where φ is the occurrence moment of the fault.
Here, the residual χ2 detection method is used to detect

and isolate the faults of the navigation system.
The residual of each local Kalman filter is

rk = Zk −HkX̂k/k−1, 36

where the forecast value X̂k/k−1 is

X̂k/k−1 =Φk/k−1X̂k−1 37

It can be proved that the residual of Kalman filter rk is a
Gauss white noise whose mean is zero when no fault occurs,
and its variance is

Ak =HkPk/k−1HT
k + Rk 38

When a fault occurs, the mean of residual rk is no lon-
ger zero. Therefore, by monitoring the mean of residuals,
it is possible to determine whether the navigation system
has failed.

The fault detection function is defined as

λk = rTkA
−1
k rk, 39

where λk is subject to χ2 distribution with m degrees of free-
dom, namely,

λk ∼ χ2 m , 40

where m is actually the dimension of measurement Zk.
Here, m = 2.

Finally, the fault criteria are as follows:

if λk > TD, a fault occurs,
if λk ≤ TD, no fault occurs,

41

where the preset threshold TD is determined by the false
alarm rate Pf . Given the false alarm rate Pf = α, the χ2 distri-
bution can give out the threshold value TD.

In this study, Pf = α = 0 001 andm = 2, then according to
the χ2 distribution, the threshold value TD = 13 82.

As each local filter is designed for the measurement infor-
mation from each optical flow sensor, the fault detection and
isolation algorithm in the local filter can be used for detecting
the invalid measurement information and the corresponding
local error state estimation. Using the remaining correct local
state estimation, the reliable state estimation of the whole
navigation system can be obtained according to the decentra-
lized filter proposed above. The structure of the above pro-
posed fault-tolerant optical flow sensor/SINS integrated
navigation scheme is shown in Figure 11.

6.3. Numerical Simulation Using the Fault-Tolerant
Integrated Navigation Algorithm. As before, three optical
flow sensors are mounted on the MAV using the optimal
placement scheme shown in Table 6. We assume that the
third optical flow sensor in Table 6 fails (or no apparent tex-
ture on its detected plane) during 300 s–700 s with zero
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outputs, as can be seen in Figure 12. Some other initial
parameters are shown in Table 7.

As shown in Figure 12, when the optical flow sensor fails,
the value of fault detection function λ3 sharply increases,
much greater than the threshold value TD = 13 82.

In the subsequent figures (Figures 13–15), the “fault
zone” is the period that the optical flow sensor fails, and the
normal working state is restored after 700 s.

The meanings of legends in each figure are as follows:

(1) “DF-no fault”: the navigation error of using the
decentralized filter for MAV navigation. During the
flight of MAV, the optical flow sensors have no fault.

(2) “DF-FDI”: the navigation error of using the decentra-
lized filter with fault detection and isolation (FDI)
capability for MAV navigation. During 300 s to

700 s, the outputs of the third optical flow sensor in
Table 6 are set to zero.

(3) “DF-no FDI”: as in the previous case, the outputs of
the third optical flow sensor in Table 6 are set to zero
during 300 s to 700 s. The difference is that the decen-
tralized filter does not have the FDI capability.

(4) “CF-no fault”: the navigation error history of using
the centralized filter for MAV navigation. During
the flight of MAV, the optical flow sensors have no
fault.

(5) “CF-fault”: the navigation error of using the central-
ized EKF for MAV navigation. Of course, the central-
ized filter does not have the FDI capability. During
300 s to 700 s, the outputs of the third optical flow
sensor in Table 6 are set to zero.
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For the centralized filter and decentralized filter without
FDI capability, the global estimation immediately diverges
when the optical flow sensor fails, causing the failure of the
whole system, namely, “failure of FDI-free filters,” shown in
the following figures. In contrast, the decentralized filter with
the FDI capability can detect and isolate the sensor failure in
time to make the navigation system work properly, namely,
“effectiveness of the FDI filter” as can be seen in the following
figures. The results verify the correctness and effectiveness of
the designed fault-tolerant optical flow sensor/SINS integrated
navigation scheme in the presence of system-level failures.

In addition, as can be seen in the figures, the curves of
“DF-no fault” and “CF-no fault” are consistent, and the
curves of “DF-no FDI” and “CF-fault” are consistent, which
indicates that the centralized filter and decentralized filter
are mathematically equivalent.

In order to detect the effect of the sampling period on
the performance of simulation, the 1200 s MAV flight sim-
ulation using the flight navigation scenarios proposed in
this manuscript are performed in desktop environments
(Intel® Core™ i7-6700 CPU at 3.40GHz, Matlab R2015a),
under different sampling periods (0.1 s, 0.02 s, 0.01 s,
0.002 s, and 0.001 s). The simulation results are obtained
from 50 runs of Monte Carlo.

Three navigation schemes are considered in the
simulation:

(1) Navigation only based on INS (inertial navigation
system), called “INS only” in Table 8

(2) Optical flow sensor/INS-based integrated navigation
scheme using the centralized EKF, called “centralized
EKF” in Table 8
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Figure 13: Position errors: (a) longitude error, (b) latitude error, and (c) height error.
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(3) Optical flow sensor/INS-based integrated navigation
scheme using decentralized EKF with FDI (fault
detection and isolation) ability, called “FDI-EKF” in
Table 8

Here, two criteria are used for evaluating the simulation
performance. One is the computing time and the other is
the navigation error. Furthermore, the criterion employed
for evaluating the navigation error with respect to the sam-
pling period is the RMSE (root mean square error), over M
Monte Carlo runs at a given time k, which is defined by

RMSExk =
1
M

〠
M

i=1
x i
k − x̂ i

k

2
1/2

k = 1, 2,… , 42

where superscript i denotes quantities on the ith run. x i
k

denotes the truth of one of the MAV motion states at time

k and for the ith run of Monte Carlo simulation; the
same is x̂ i

k but being the estimation of the state.
Taking the RMSE of VN as an example, as indicated

from Figure 16, the shorter the sampling period, the
smaller the navigation error. On the other hand, the aver-
age computing time spent in 50 Monte Carlo simulations
of different navigation algorithms under different sampling
periods is shown in Table 8. It can be found that the shorter
the sampling period, the longer the computation time used
for simulation. When the decentralized EKF with FDI ability
is deployed under the 0.001 s sampling period, the computing
time (1911.1021 s) has even exceeded the simulation time
(1200 s), which means that the navigation algorithm cannot
be implemented in real time.

Conversely, as can be seen in Table 8, the larger the sam-
pling period, the shorter the computing time. Actually,
increasing the sampling period makes the amount of compu-
tation smaller. However, as shown in Figure 16, if the sam-
pling period is too long (e.g., 0.1 s), the filter will diverge.
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Figure 14: Velocity errors: (a) eastward velocity error, (b) northward velocity error, and (c) upward velocity error.
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Accordingly, a series of sampling periods are employed in
the simulation in order to determine an appropriate one for
the optical flow sensor/INS-based integrated navigation
scheme using decentralized EKF with FDI ability (FDI-
EKF). As mentioned above, the filter diverges if the sampling

period is too long. For the FDI-EKF, after many simulations,
it is found that the navigation scheme can work correctly
when the sampling period is equal to or less than 0.02 s.

As portrayed in Figure 17, when the sampling period
is reduced from 0.02 s to 0.01 s (i.e., reduced by 1/2), the
navigation error is greatly reduced. However, although fur-
ther reduction in the sampling period will result in a slight
reduction in the navigation error, Table 8 indicates that the
computing time will multiply exponentially, even more than
the 1200 s simulation time. Finally, 0.01 s is selected as the
sampling period in Table 7 after the trade-off between the
navigation accuracy and computing time.

7. Conclusions

In this paper, an optical flow sensor/SINS integrated naviga-
tion scheme for MAV is developed for reducing the
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Figure 15: Attitude errors: (a) roll angle error, (b) pitch angle error, and (c) estimation of yaw error.

Table 8: Computing time under different sampling periods.

Sampling period (s)
Computation time (s)

INS only Centralized EKF FDI-EKF

0.1 0.9432 4.1114 —

0.02 3.8230 19.0431 95.7955

0.01 7.5288 37.9740 193.7792

0.002 37.9699 188.8640 959.3003

0.001 74.8733 372.7788 1911.1021
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navigation error of the inertial navigation system through the
decentralized EKF with fault detection and isolation ability.
The EKF fuses the inertial and optical flow measurement
information for estimating the navigation error. Then, the
estimated navigation error is used for correcting the SINS
measurements. The results show that the integrated naviga-
tion algorithm can effectively reduce inertial navigation
errors and isolate sensor failures. Some experiments will be
done to test the performance of the fault-tolerant optical flow
sensor/SINS integrated navigation scheme.
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