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Simulated moving bed (SMB) chromatographic separation technology is a new adsorption separation technology with strong
separation ability. Based on the principle of the adaptive neural fuzzy inference system (ANFIS), a soft sensing modeling
method was proposed for realizing the prediction of the purity of the extract and raffinate components in the SMB
chromatographic separation process. The input data space of the established soft sensor model is divided, and the premise
parameters are determined by utilizing the meshing partition method, subtractive clustering algorithm, and fuzzy C-means
(FCM) clustering algorithm. The gradient, Kalman, Kaczmarz, and PseudoInv algorithms were used to optimize the conclusion
parameters of ANFIS soft sensor models so as to predict the purity of the extract and raffinate components in the SMB
chromatographic separation process. The simulation results indicate that the proposed ANFIS soft sensor models can effectively
predict the key economic and technical indicators of the SMB chromatographic separation process.

1. Introduction

SMB chromatographic separation technology is a new sepa-
ration technology developed on the basis of traditional fixed
bed adsorption operation and true moving bed (TMB) chro-
matographic separation technology [1]. As the main modern
adsorption separation technology, SMB chromatography has
been utilized more and more in the complex mixture separa-
tion process, such as petrochemical, fine chemical, biophar-
maceutical, and food processing. SMB chromatography
technology is the cutting-edge technology in separation sci-
ence, which preserves the high separation rate, low energy
consumption, and low material consumption of the chro-
matogram. It also introduces the continuous, countercur-
rent, rectification, reflux, and other mechanisms of moving
bed technology. Compared with the existing chemical sepa-
ration technology (distillation, extraction, single-column
chromatography), this technology can achieve automatic

continuous separation, which can increase separation capac-
ity and improve product yield, yield, and efficiency. It is the
key technology for the chemical separation process and can
also reuse the stationary phase and mobile phase to reduce
cost and energy consumption [2]. In the cyclical operation
of continuous production, the SMB system fully reflects its
nonlinear, nonideal, and nonequilibrium characteristics.
This multidegree-of-freedom system finds it difficult to
make the important performance indicators, such as product
purity, yield, and mobile phase consumption, in periodicity
optimal states [3, 4].

The adaptive neural fuzzy inference system is an artificial
intelligence inference technology with the advantages of
fuzzy logic and neural network [5], which is a good nonlinear
mapping technique. ANFIS can construct a clear input-
output mapping structure, which provides a powerful learn-
ing and decision-making process for target systems including
nonlinear systems and has been successfully applied in the
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prediction of short-term electricity prices [6], clay expansion
capacity [7], wind speed profile estimation [8], and the ther-
mal error compensation on the CNC machine [9]. The
ANFIS fuzzy neural network model was used to predict the
cutting speed in WEDM [10]. The ANFIS model was used
to predict the density of ionic liquids at various temperatures
[11]. The particle swarm optimization (PSO) algorithm was
used to obtain appropriate subtractive clustering (SC)
parameter settings, and an adaptive ANFIS model was built
to predict the business success rate [12]. ANFIS and artificial
neural network (ANN) models were established for predict-
ing the drying characteristics of potato, garlic, and canta-
loupe in convection hot air dryers [13]. The polynomial
equation of the bank section by utilizing the hybrid ANFIS
was used to stabilize the design and implementation of the
river section [14]. A data-driven model of the debutanizer
based on ANFIS was established for realizing the real-time
composition monitoring [15]. ANFIS was applied to develop
an accurate temperature-dependent intelligent model for
correlating the loading capacity of amino acid salt solutions
for a variety of amino acids [16]. The combination of the
ANFIS and CFD method provides the nondiscrete domain
in various dimensions and makes a smart tool to locally pre-
dict multiphase flow [17]. The ANFIS prediction model was
established for the response during the stainless steel 202
turning operation [18].

In this paper, an ANFIS-based soft modeling method
for the SMB chromatography separation process was pro-
posed, which lays a foundation for the SMB system to
achieve the periodic optimum stable working condition.
The structure of the paper is described as follows. Section
2 introduces the SMB chromatographic separation tech-
nique and the structure of the established soft sensor
model. Three input data space partitioning methods and
four conclusion parameter optimization algorithms of
ANFIS are introduced in Section 3. Section 4 describes
the experimental simulation and result analysis. Finally,
the conclusion is listed in the last part.

2. SMB Chromatography Separation
Technology and Soft Sensor Modeling

2.1. SMB Chromatography Separation Technology. SMB
chromatographic separation technology simulates the
reverse flow of a stationary phase adsorbent by continuously
switching the positions of each feed and discharge port. The
basic principle of typical SMB is described as follows. The
several chromatographic columns are connected to form a
loop. The relative countercurrent of the stationary phase
and the mobile phase is simulated by orderly moving the elu-
ent inlet, the extract outlet, the feed liquid inlet, and the raf-
finate outlet in the direction of the mobile phase so as to
achieve the separation of two components [19]. Taking the
separation of two components as an example, the working
principle is briefly explained. The working principle of the
typical SMB chromatographic separation process is shown
in Figure 1 [20, 21]. It is assumed that two components to
be separated are A and B, respectively. The adsorption capac-
ity of component A is stronger than that of component B. D

is the desorbent, E is the extract, F is the feed, and R is the raf-
finate. The entire bed can be divided into four zones (respec-
tively, referred to as I, II, III, and IV or 1, 2, 3, and 4)
depending on the location and function of the liquid inlet
and outlet. Each zone performs a specific function.

Zone I. The strong adsorption component A was resolved
from the stationary phase adsorbent by using desorbent D.
The fresh desorbent enters from the bottom of zone I and
contacts with the adsorbent, and component A is rinsed out
and then discharged from the extract outlet at the top of
the zone to obtain an extract.

Zone II. This is the analytical zone of weakly adsorbed com-
ponent B. In the liquid entering zone II from zone I (includ-
ing A and D), since component A has a stronger adsorption
capacity than component B, component B in zone II is con-
tinuously displaced by component A and enters zone III
along with the flowing liquid and the fresh feed (A and B).

Zone III. Strongly adsorbed component A is adsorbed by the
adsorbent in this zone. B is discharged from the raffinate out-
let through a liquid flowing downward to obtain the raffinate.

Zone IV. Its function is to achieve regeneration of eluent D
and reduce the amount of eluent D. Since the concentration
of D in zone IV is much higher than the concentration of D
flowing into zone IV from the zone III region (because the
region is zone I in the last switching cycle, eluent D is
adsorbed by the adsorbent after being flushed with A, so its
concentration is higher). Therefore, the adsorption equilib-
rium will be reestablished and eluent D will be resolved to
achieve regeneration. The regenerated eluent D and the fresh
eluent D flow into zone I together. In this way, the reverse
flow of the stationary phase adsorbent is simulated by contin-
uously switching the liquid inlet and outlet position in the
switching direction shown in Figure 1, thereby achieving an
effect equivalent to TMB.
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Figure 1: Working principle of the SMB cinematographic
separation process.
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The feeding and discharging ports divide the SMB flow
system into different zones. For the SMB with three zones,
the functions of each zone are described as follows.

Zone I. Elution zone: it desorbs the adsorbed substances on
the stationary phase and flows out from the E port to com-
plete the regeneration process of the stationary phase.

Zone II. Distillation zone: continuous elution with the mobile
phase makes the fast and slow components further separated
in the chromatographic column.

Zone III. Adsorption zone: the raw materials from the inlet
flow into this zone and are adsorbed and separated, so
that fast components flow out of the outlet (R port) of this
zone and slow components are adsorbed in the stationary
phase.

2.2. Soft Sensor Modeling for the SMB Chromatography
Separation Process. In the SMB chromatography adsorption
separation process, the purity of the product components in
the extraction solution and raffinate is more important.
However, the online measurement of the component purity
as a quality index is difficult to achieve, and there are many
factors affecting the product component purity in the SMB
separation process. Therefore, the soft sensor modeling
method for predicting the component purity in the SMB
chromatography separation process has theoretical signifi-
cance and application value [22]. The basic idea of soft sens-
ing technology is to combine the automatic control theory
with the knowledge of the production process. According to
some optimal criteria, because some important variables are
difficult to measure or temporarily unable to measure, the
computer technology is used to select other variables that
are easy to measure and to infer or estimate by constructing
a mathematical relationship. The soft sensor model can be
expressed as

X̂ = f d, u, y, X∗, tð Þ, ð1Þ

where X̂ is the dominant variable estimated value, d is the
measurable disturbance, u is the control input variable, y is

the measurable output variable, and X∗ is the off-line sam-
pled value or the analytically calculated value of the esti-
mated variable. The optimal estimate of X can be
obtained by constructing the relationship between these
variables. Equation (1) reflects the relationship between
the dominant variable X and the input variable u, the aux-
iliary variable y, and the measurable disturbance d2, while
the off-line sample value X∗ is often used for self-
correction of the model. The structure of the soft sensor
model for the SMB chromatographic separation process
established in this paper is shown in Figure 2.

The auxiliary variables in the soft sensor model are
selected from the measurement variables that can be pro-
vided in the control system based on the technique mecha-
nism of the production process. Based on the technique
mechanism and prior knowledge of the SMB chromatogra-
phy separation process, the following variables are selected
as the auxiliary variables of the soft sensor model.

(1) Flow rate of the injection pump (F pump) of the raw
material liquid inlet, whose unit is ml/min

(2) Flow rate of the flushing pump (D pump) of the
flushing fluid inlet, whose unit is ml/min

(3) Valve switching time, whose unit is min

Select the following variables as the output variable of the
established soft sensor model.

(1) The purity of the target in the effluent of the E port. If
there is impurity at the E port, this purity is smaller
than 1

(2) The purity of the impurity in the outlet effluent of the
R port. If there is target material at the R port, this
purity is smaller than 1

(3) Divide the mass of the target in the E port by the tar-
get injection quality so as to obtain the yield of the
target at the E port

(4) Divide the mass of the impurity in the R port by the
impurity injection quality so as to obtain the yield
of the impurity at the R port

SMB 
chromatographic 
separation process

ANFIS soft sensor model

Learning algorithm

Direct measurable 
variables

Process input 
variables

Auxiliary variable Dominant variable

Predictive 
value

+
–

Figure 2: Structure of the soft sensor model.
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The auxiliary variables are used as inputs, and the purity
of the target in the E port and the purity of the impurities in
the R port are output variables. ANFIS is used to fit the non-
linear relationship among them so as to establish a predictive
model of the corresponding economic and technical indica-
tors. Based on a SMB chromatographic separation process,
a soft sensor modeling method on the purity and yield of E
and R ports is proposed by utilizing ANFIS. The historical
data of the SMB chromatographic separation process were
collected, and 1000 sets of historical data with uniformity
and representative shown in Table 1 are selected as the
modeling data. Before carrying out the soft sensor modeling
with these data, it is necessary to perform data normalization
shown in Equation (2) in order to eliminate the influence of
variable unit on modeling accuracy.

y = x − vmin
vmax − vmin

, ð2Þ

where x is the initial value of the data set, y is the data after x
being normalized, vmax is the maximum in the data set, and
vmin is the minimum in the data set.

3. ANFIS and Training Algorithms

3.1. Basic Principles of ANFIS Based on Mesh Generation. In
the early 1990s, Jang proposed an ANFIS based on the T-S
model [5], which is a new type of neural network structure
combining fuzzy theory. It uses a neural network to realize
three basic processes of fuzzification part, fuzzy inference
part, and defuzzification in fuzzy control so that the estab-
lished system has the advantages of both theories and realizes
the adaptive adjustment on the research object [23]. The typ-
ical structure of the ANFIS is shown in Figure 3. The proto-
type ANFIS adopts the meshing partition method to linearly
divide the input space so as to determine the number of fuzzy
rules [24].

Assume that the fuzzy inference system under consider-
ation has two inputs x and y and a single output f . For the
first-order Sugeno fuzzy model, the general rule set with
two if-then rules is represented as follows.

Rule 1. If x is A1 and y is B1, then

f1 = p1x + q1y + r1: ð3Þ

Table 1: Data of the SMB chromatography separation process.

Number
Feed

concentration
(mg/ml)

Flow rate
of F pump
(ml/min)

Flow rate
of D pump
(ml/min)

Switching
time (min)

Purity of E
port (%)

Purity of E
port by simulated
calculation (%)

Recovery of
R port (%)

Recovery of R
port by simulated
calculation (%)

1 5.6 0.1 1.0 15.5 95 99.99 71 69.6

2 10 0.1 0.828 17 98.1 99.99 90 88.3

3 10 0.1 0.7 19 98.2 99.99 97.2 99.9

4 10 0.1 1.0 14.5 96.9 99.99 83 84.6

5 10 0.1 0.7 19.5 96 99.99 91 93.2

6 14.3 0.2 0.6 19 98.2 99.99 83 83.1

7 5.3 0.3 0.6 19.5 97.5 99.99 80 81

8 10 0.2 1.0 14.5 96.6 99.99 43 44.3

9 10 0.2 0.4 29 98.5 99.99 64 65.2

… … … … … … … … …

1000 10.4 0.2 0.7 19.5 95.7 99.99 48 46.1
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Figure 3: Structure diagram of typical ANFIS.
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Rule 2. If x is A2 and y is B2, then

f2 = p2x + q2y + r2: ð4Þ

Nodes in the same layer have the same function. Here,
the output of the jth node in the layer l is Ol,j.

Layer 1. This layer node obscures the input signal.

O1,j = μAj
xð Þ, j = 1, 2 orO1,j = μBj−2

xð Þ, j = 3, 4, ð5Þ

where x or y is the input node and O1,j is the membership of
the fuzzy set A (A1,A2, B1, or B2). Here, the membership
function of A takes a bell-shaped function, which can be rep-
resented as

μA xð Þ = 1
1 + x − cj/aj
�� ��2bj , ð6Þ

where {aj, bj, cj} is called the antecedent parameters.

Layer 2.Multiply all input signals passed in the previous layer
as the output of this layer.

O2,j = μAj
xð ÞμBj

yð Þ, j = 1, 2: ð7Þ

Layer 3. The output in this layer is the normalized excitation
intensity. The principle is that the jth node calculates the
ratio of the excitation strength of the jth rule to the sum of
the excitation strengths of all the rules.

O3,j = �wj =
wj

w1 +w2
, j = 1, 2: ð8Þ

Layer 4. All nodes in this layer are used as adaptive nodes
with the node functions.

O4,j = �wjf j = �wj pjx + qjy + rj
� �

, j = 1, 2, ð9Þ

where �wj is the normalized excitation intensity from the third
layer and {pj, qj, rj} is the conclusion parameters or conse-
quent parameters.

Layer 5. The last layer sums all the signals to calculate the sys-
tem output.

O5,1 =〠�wjf j =
∑jwj f j
∑jwj

, j = 1, 2: ð10Þ

It can be seen from the structure of ANFIS that the
system has two adaptive layers (layer 1 and layer 4). The
first layer has three adjustable antecedent parameters asso-
ciated with the input membership functions. Layer 4 has
three adjustable consequent parameters associated with
the first-order polynomial. The linear combination of the

consequent parameters can be used to obtain the output
of ANFIS, which can be expressed as

f = �w1 f1 + �w2 f2 = �w1 p1x + q1y + r1ð Þ + �w2 p2x + q2y + r2ð Þ
= �w1xð Þp1 + �w1yð Þq1 + �w1ð Þr1 + �w2xð Þp2 + �w2xð Þq2 + �w2ð Þr2
= Aθ,

ð11Þ

where the elements of the column vector θ constitute a
set of conclusion parameters {p1, q1, r1, p2, q2, r2}. If there
are t groups of input and output data pairs and given
the antecedent parameters, the order of the matrix A, θ,
f is t × 6, 6 × 1, and t × 1, respectively. In general, the
number of sample data is much larger than the number
of unknown parameters, that is to say, t>>6. The least
squares method (LSM) is used to obtain the best estimate

of the conclusion parameter vector bθ in the sense of
minimizing kAθ − f k2, namely,

bθ = ATA
� �−1

AT f : ð12Þ

Then, based on the identification result of the conclu-

sion parameters bθ , the estimated output f̂ of ANFIS is
calculated by

f̂ = Abθ: ð13Þ

The root mean square error (RMSE) under the cur-
rent antecedent and conclusion parameters can be calcu-
lated by Equation (14).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
t

k=1

f̂
k − f k

� �2
t

vuuut : ð14Þ

3.2. Antecedent Parameter Determination Algorithm of
ANFIS. In essence, the prototype structure of ANFIS uses
the mesh generation method to divide the input space by
default. If the input is complex nonlinear data, it will
inevitably lead to the exponential growth of the number
of fuzzy rules, which will inevitably bring about dimen-
sionality disasters. In addition, the linear division of the
grid partition method cannot accurately reflect the spatial
distribution of input data. Therefore, the subtraction clus-
tering and fuzzy C-means clustering algorithms are uti-
lized to realize the segmentation of data space and the
determination of the antecedent parameters.

3.2.1. Subtractive Clustering Algorithm. In a certain group of
data, each data point is regarded as a candidate point of the
cluster center, and an independent and fast single-time clus-
tering algorithm that can calculate the number of clusters
and the class centers is named as the subtractive clustering
method [25]. According to the subtractive clustering method,
there is a simple linear relationship between the number of
data points and the calculation amount, which is not
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necessarily related to the dimension of the research object.
Assuming that the n data points ðx1, x2,⋯,xcÞ in the M
-dimensional space have been normalized to a hypercube
space, the density index at the data point xi is set as

Di = 〠
n

j=1
exp −

xi − xj
�� ��2
ra/2ð Þ2

 !
, ð15Þ

where ra is a positive integer representing a neighborhood
radius of such data points. It can be seen that a data point
with multiple data points in the vicinity has a high density
value, and a point outside a certain field has a minimal influ-
ence on its density index.

In the subtractive clustering algorithm, the class center
may be any point. Therefore, the density index of the point
and its surrounding points in the neighborhood must be cal-
culated with each point as the class center. The possibility of
this point as the class center is analyzed. After the above
operations, the first class center is the point with the highest
density index selected from it, which is written as xc1 and
whose density value is Dc1. The corrected density index of
any point xiði = 1, 2,⋯Þ can be obtained by Eq. (16).

Di =Di −Dc1 exp −
xi − xc1k k2
rb/2ð Þ2

 !
, ð16Þ

where rb ∈ Z.
Obviously, the closer the data point is to xc1, the smaller

the density value and then, the less likely it is a class center.
In the neighborhood with radius rb, the density value shows
a decreasing trend. In general, in order to prevent the situa-
tion of the closer class centers, usually rb > ra, for example,
rb = 1:5ra. After the density values of all the points are mod-
ified, the calculations of other class centers are deduced by
the same method, and the density value correction is per-
formed for all the points of the nonclass center. In this paper,
the subtractive clustering method is used for pattern decom-
position. Suppose the degree of the input and output belong-
ing to a certain kind of center is FjðxÞ and the input set
X = fX1, X2,⋯,XPg contains p input and output data,
wherein each point is expressed as

Xk = Xk
1, Xk

2,⋯,Xk
n, Xk

n+1,⋯,Xk
n+m

n o
, ð17Þ

where the input of the kth input and output data pair is rep-
resented as fXk

1, Xk
2,⋯,Xk

ng and the corresponding output is
Xk
n+1,⋯, Xk

n+m.
The steps of pattern extraction based on the subtractive

clustering algorithm are described as follows.

Step 1. There are p vectors vk, k = 1, 2,⋯, p, and the ini-
tial value vk = Xk is defined

Step 2. Let vk be the reference vector and vl be the com-
parison vector. Then, calculate the relationship
between the two vectors

Fj xð Þ = exp − vk − vl
�� ��2

σ2
ij

" #
, ð18Þ

where k = 1, 2,⋯, p, l = 1, 2,⋯, p, and kvk − vlk2 indicates
the Euclidean distance between the two vectors. The variance
σ of the Gaussian function is calculated by the mean square
error of the performance index

Step 3. Update the relationship degree between the refer-
ence vector and the comparison vector by

Fj xð Þ =
0, Fj xð Þ < ε,
Fj xð Þ, Other,

(
ð19Þ

where ε is a small positive number (ε = 0:01)

Step 4. Calculate ωk = fωk
1, ωk

2,⋯,ωk
n+mg by Eq. (20).

ωk = ∑p
l=1F

j xð Þvl
∑p

l=1F
j xð Þ

: ð20Þ

Step 5. When all ωk and vk are the same, the algorithm
continues; otherwise, let vk = ωk and go to Step 2

Step 6. According to the final vk obtained in the above
steps, the number of clusters is equal to the
number of convergence vectors. The original
data with the same convergence vector is
divided into one class with the convergence
vector as the center

3.2.2. FCM Clustering Algorithm. The FCM clustering
algorithm [26] divides the feature points in the feature
space X = ðx1, x2,⋯,xnÞ into c classes ð2 ≤ c ≤ nÞ, and the
cluster center of the ith class is represented by vi, where
any feature point xj belongs to the membership degree
uij of the ith class, and uijð0 ≤ uij ≤ 1Þ satisfies the follow-
ing conditions.

〠
c

i=1
uij = 1, for j = 1, 2,⋯, n, 0 < 〠

n

j=1
uij < n, for i = 1, 2,⋯, c:

ð21Þ

The objective function of the FCM clustering algo-
rithm is described as

Jm U , Vð Þ = 〠
c

i=1
〠
n

j=1
uij
� �m xj − vi

�� ��2, ð22Þ

where m > 1 is the index weight that affects the degree
of fuzzification of the membership matrix. The cluster-
ing problem is to find the membership degree matrix
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U = ½uij�c×n and the category center V = ðv1, v2,⋯,vcÞ to
make Equation (3) minimized. When utilizing the FCM clus-
tering algorithm, a parameter that needs to be determined in
advance is the number of classifications of the data set. The
clustering validity function used in this paper is described
as follows [27].

Vp U , cð Þ = 1
n
〠
n

k=1
max

i
uikð Þ − 1

K
〠
c−1

i=1
〠
c

j=i+1

1
n
〠
n

k=1
max uik, ujk

� � !
,

ð23Þ

where

K = 〠
c−1

i=1
i: ð24Þ

This clustering criterion combines the tightness and sep-
aration of fuzzy partitioning. By combining the clustering
ISODATA algorithm with the proposed criterion function
to obtain the optimal fuzzy partition, the algorithm proce-
dure is described as follows.

Step 1. Specify the maximum number of cluster centers
cmax (cmax ≤

ffiffiffi
n

p
), the maximum number of itera-

tions T , the index weight m, and the stop thresh-
old ε > 0

Step 2. Initialize the fuzzy clustering center V0 = f v10,
v20,⋯,vc0 g for the number of cluster centers c =
2, 3,⋯, cmax

Step 3. For the number of iterations t = 1, 2,⋯, T , calcu-
late the membership matrix and cluster center
according to Eq. (24) and Eq. (25).

uij, t =
1/ xi − vj
�� ��2h i1/ a−1ð Þ

∑c
j=1 1/ xi − vj

�� ��2h i1/ a−1ð Þ , ð25Þ

vj,t =
∑n

i=1 uij,t
	 
mxi

∑n
i=1 uij,t
	 
m , ð26Þ

where i = 1, 2,⋯, n and j = 1, 2,⋯, c. If kVt −Vt−1k < ε, go to
the next step; otherwise, repeat Step 3

Step 4. Calculate VpðU , cÞ by Equation (23). If c < cmax,
go to Step 2; otherwise, stop the iteration and out-
put the optimal cluster number c = cb, which sat-
isfies VpðU , cbÞ =min fVpðU , cÞg, c = 2, 3,⋯,
cmax.

3.3. Consequent Parameter Optimization
Algorithms of ANFIS

3.3.1. Gradient Algorithm. The gradient descent method, also
known as the fastest descent method, is a multidimensional

unconstrained optimization problem calculation method
based on gradients [28]. Considering an unconstrained opti-
mization problem,

min
x∈Rn

f xð Þ, ð27Þ

where f ðxÞ has a first-order continuous partial derivative.
Starting from any point x0 ∈ Rn, the Taylor formula shows
that the f ðxÞ decreases fastest along the direction of the
negative gradient. Carry out the first-order Taylor spread
on f ðxÞ at x along p to obtain

f x + λpð Þ = f xð Þ + λ∇T f xð Þp + σ λ2
� �

, ð28Þ

where λ is the searching step size and p is a unit vector,
that is to say, kpk = 1.

Carry out the transposition on Equation (28) to get

f x + λpð Þ − f xð Þ = ∇T f xð Þp + o λ2
� �
λ

" #
λ: ð29Þ

It can be seen from Equation (29) that if ∇T f ðxÞp < 0,
there are �λ > 0 and 0 < λ < �λ. The term of the square
brackets in Equation (29) is negative, and thus, f ðx + λpÞ
< f ðxÞ, where p is the descending direction of f ðxÞ at x.
Based on the principle of the Cauchy-Schwarz theory,
obtain

∇T f xð Þp ≥ − ∇f xð Þk k ⋅ pk k, ð30Þ

p = −
∇f xð Þ
∇f xð Þk k : ð31Þ

Equation (30) is the only condition for Equation (31)
to take the equal sign. For the k + 1 iteration, get

x k+1ð Þ = x kð Þ + λkp
kð Þ, ð32Þ

where pðkÞ = −∇f ðxðkÞÞ. So, the iteration formula of the
steepest descent method can be represented as

x k+1ð Þ = x kð Þ − λk∇f x kð Þ
� �

, ð33Þ

where k is the number of iterations and λ is a constant.
The expression of the Jth component in Equation (33)
can be described as

x k+1ð Þ
j = x kð Þ

j − λk
∂f
∂xj

 !
: ð34Þ

3.3.2. Kalman Algorithm. Information fusion is the core
of the Kalman algorithm [29]. The probability distribu-
tion with position as the variable obeys the Gaussian dis-
tribution, which is described as
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pi xð Þ = 1
σi

ffiffiffiffiffiffi
2π

p exp −
x − �xð Þ2
2σ2

( )
  i = 1, 2ð Þ: ð35Þ

The probability of x is proportional to p12ðxÞ = pðx1Þ
pðx2Þ, and the result of the product also obeys a new
Gaussian distribution due to

p12 xð Þ = exp −
x − �x1ð Þ2
2δ12

−
x − �x2ð Þ2
2δ22

( )
,

dp12
dx

= −
�x12 − �x1

σ21
+ �x12 − �x2

σ21

� �
⋅ p12 �x12ð Þ = 0:

ð36Þ

The item in parentheses is 0, so there is

�x12 =
σ22

σ2
1 + σ2

2

 �
x1 +

σ21
σ2
1 + σ22

 �
x2: ð37Þ

Substitute the mean into pðx12Þ to get

σ212 =
σ2
1σ

2
2

σ2
1 + σ2

2
: ð38Þ

The above description can convert two Gaussian dis-
tributions into one Gaussian distribution. When there
are multiple Gaussian distributions, they can be merged
one by one. So the x̂1 = x1 and bσ2

1 = σ21 can be replaced
with the optimal estimate, that is to say,

�x2 =
σ2
2bσ2

1 + σ22
x1 +

σ21bσ2
1 + σ2

2
x2,

x̂2 = x̂1 +
bσ2
1bσ2

1 + σ22
x2 − x̂1ð Þ:

ð39Þ

There are also bσ2
1 = σ2

1 and bσ2
2 = σ2

2bσ2
1/ðbσ2

1 + σ22Þ.
Arrange the equations to obtain a new covariance for-
mula:

bσ2
2 = 1 − bσ2

1bσ2
1 + σ22

 !
bσ2
1: ð40Þ

Iteratively update the scale factor K by Equation (41).

K = bσ2
1bσ2

1 + σ22
: ð41Þ

Feed K into the mean to get

x̂2 = x̂1 + K x2 − x̂1ð Þ ð42Þ

Bring K into the covariance formula to obtain

bσ2
1 = 1 − Kð Þbσ2

1: ð43Þ

3.3.3. Kaczmarz Algorithm. The basic principle of the
Kaczmarz algorithm is described as follows [30]. Let the
map f i from Rn to Rn be defined as

f i xð Þ = x −
x, aið Þ − bi

aik k22
ai, i = 1, 2,⋯,m: ð44Þ

The mapping from Rm+n to Rn can be defined as

F b, xð Þ = f1 ∘ f2∘⋯∘f m xð Þ = f1 f2 f3 ⋯ f m xð Þð Þ⋯ð Þð Þð Þ:
ð45Þ

Optionally select xð0Þ = Rn and calculate the iterative
sequence fxðiÞg by utilizing the recursive formula.

x i+1ð Þ = F b, x ið Þ
� �

, i = 0, 1, 2,⋯, ð46Þ

where F is defined by Equations (44) and (45).
The orthogonal projection Pi from Rn to the Ith plane

hai, xi = 0 can be defined as

pi = I −
1
aik k22

aia
T
i = δkl −

aikail
aik k22

: ð47Þ

So the mapping shown in Equation (47) is then
expressed as

f i xð Þ = Pix +
bi
aik k22

ai, i = 1, 2,⋯,m: ð48Þ

Let Qi = P1P2 ⋯ Piði = 1, 2,⋯,mÞ, where Q0 = I, and
matrix R satisfies the following relationship:

Rb = 〠
m

i=1

bi
aik k22

Qi−1ai: ð49Þ

According to the above equations, the expression of
Fðb, xÞ can be deduced.

F b, xð Þ =Qx + Rb, ð50Þ

where Q =Qm, and matrix R depends on matrix A. Based
on Equations (49) and (50), the Kaczmarz iterative may be
described as

x ið Þ =Qix 0ð Þ + 〠
i−1

j=0
QjR

 !
b: ð51Þ

Let ~Q =QPRðAT Þ, where PRðAT Þ is the orthogonal projec-

tion from Rn to RðATÞ. Then, define
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G = I − ~Q
� �−1

R: ð52Þ

Based on Equation (52), matrix G has the following
property:

AGA = A,
GAG =G,
GA = PR ATð Þ,
AG = P,

ð53Þ

where P is a projection along NðRÞ to RðAÞ and GA =
PRðAT Þ, which can be replaced by ðGAÞT =GA.

3.3.4. PseudoInv Algorithm. The PseudoInv algorithm is
implemented using the Moore-Penrose generalized inverse
[31]. It is often applied to obtain the least norm least squares
solution (least squares method) on the nonuniform linear
equations and makes the form of the solution simple. The
Moore-Penrose generalized inverse of the matrix is unique
in both the real and complex domains and can be obtained
by the singular value decomposition. The pseudoinverse of
matrix A can be defined as

A+ = lim
a→0

ATA + αI
� �−1

AT : ð54Þ

The actual algorithm for calculating the pseudoinverse
adopts Eq. (55).

A+ =VD+UT : ð55Þ

When the number of columns of matrix A is more than
the number of rows, solving the linear equation using pseu-
doinverse is one of the many possible solutions. Specifically,
x = A+y is jxj2 with the smallest Euclidean norm in all feasible
solutions for this equation. When the number of rows in
matrix A is more than the number of columns, there may
be no solution. In this case, x obtained by pseudoreverse is
a solution that minimizes the Euclidean distance jAx − yj2
of Ax and y.

4. Simulation Experiment and Result Analysis

Based on the technique of the SMB chromatographic separa-
tion process, a soft sensor model on the target purity of E and
R ports is proposed by utilizing ANFIS. The ANFIS network
has three input variables and one output variable. The histor-
ical data of the SMB chromatographic separation process was
collected, and 1000 sets of historical data with uniformity and
representative were selected. Then, the processed data is
divided into two parts. The first 800 sets of data are used as
training data, and the last 200 sets of data are used to verify
the performance of the soft sensor models. According to
the reference data, it can be found that the target purity in
the E effluent and the yield of the impurity at the R port are
correlated, and the impurity purity in the R effluent and the

yield of the target at the E port are also correlated. Therefore,
in the experimental simulation stage, the target purity in the
E effluent and the impurity purity in the R effluent are
selected as the output. In order to measure the performance
of the predictive models, several performance indicators are
defined below, where ŷ is the estimated value and y is the
actual value [32]. The model performance indicators are
defined as shown in Table 2.

Based on the meshing partition method, subtractive clus-
tering algorithm, and FCM clustering algorithm, the input
data space of the SMB chromatographic separation process
is divided and the premise parameters are determined. The
Sugeno-type ANFIS soft sensor models based on three algo-
rithms are established. Then, these models are optimized by
the gradient, Kalman, Kaczmarz, and PseudoInv algorithms
to obtain the optimized conclusion parameters so as to
achieve the prediction of the target purity of the E port and
R port in the SMB chromatographic separation process.

4.1. ANFIS Soft Sensor Model Based onMesh Partition.When
the input data space of the soft sensor model is divided by the
meshing partition method, the membership function
selects the Gaussian function, and the number of member-
ship functions is 5. The membership function curves of
the input data of the Sugeno-type ANFIS model based
on meshing partition are shown in Figure 4. The number

Table 2: Definition of model performance indicators.

Root mean square
error (RMSE)

RMSE = 1/n〠n

i=1 y∧i − yið Þ2
h i1/2

Sum of squared
errors (SSE)

SSE =〠n

i=1 y∧i − yið Þ2

Mean absolute
percentage error
(MAPE)

MAPE =〠 ŷi − yij j/yið Þ × 100/n

Maximum positive
error (MPE)

MPE =max ŷ − yð Þ, 0f g
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Figure 4: Input membership function based on the meshing
partition method.
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of training iterations is 500, and the established soft sensor
models are tested by the utilized 200 sets of data with
average and representative. The predicted simulation
results are shown in Figures 5–8. Figure 5 shows the out-
put contrast of the target purity in the E port effluent in
the SMB chromatography process under the gradient,
Kalman, Kaczmarz, and PseudoInv algorithms to obtain
the optimized conclusion parameters of ANFIS. Figure 6
shows the predictive error comparison curves. Figure 7
shows the output contrast of the impurity purity in the
R port effluent in the SMB chromatography process
under the gradient, Kalman, Kaczmarz, and PseudoInv
algorithms to obtain the optimized conclusion parameters
of ANFIS. Figure 8 shows the predictive error compari-

son curves. Table 3 compares the predicted performance
indicators of the established soft sensor models.

According to the above simulation results, it can be
seen that the input data spatial division and premise
parameter determination are realized by the meshing
partition method and ANFIS soft sensor models based
on the gradient, Kalman, and PseudoInv algorithms for
optimizing conclusion parameters have the better predic-
tion results on the key economic and technical indicators
of the SMB chromatographic separation process. In order
to distinguish the optimization performance of the four
algorithms, based on the adopted four performance indica-
tors (RMSE, SSE, MAPE, and MPE), the ANFIS soft sen-
sor model based on the meshing partition method and
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Figure 5: Effluent purity prediction results in the E port.
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the gradient algorithm has higher prediction accuracy than
the other three algorithms.

4.2. ANFIS Soft Sensor Model Based on the Subtractive
Clustering Algorithm. When the input data space of the
soft sensor model is divided by the subtractive clustering
algorithm, the membership function selects the Gaussian
function. The membership function curves of the input
data of the Sugeno-type ANFIS model based on the sub-
tractive clustering algorithm are shown in Figures 9–11.
The number of training iterations is 500, and the estab-
lished soft sensor models are tested by the utilized 200
sets of data with average and representative. The pre-
dicted simulation results are shown in Figures 12–15.
Figure 12 shows the output contrast of the target purity
in the E port effluent in the SMB chromatography pro-
cess under the gradient, Kalman, Kaczmarz, and Pseu-
doInv algorithms to obtain the optimized conclusion
parameters of ANFIS. Figure 13 shows the predictive
error comparison curves. Figure 14 shows the output
contrast of the impurity purity in the R port effluent in
the SMB chromatography process under the gradient,
Kalman, Kaczmarz, and PseudoInv algorithms to obtain the
optimized conclusion parameters of ANFIS. Figure 15 shows

the predictive error comparison curves. Table 4 compares the
predicted performance indicators of the established soft sen-
sor models.

Table 3: Comparison of predictive performance indicators of the ANFIS soft sensor model based on the meshing partition method.

Performance RMSE SSE MAPE MPE

Purity of the E port

Gradient 3:3668e − 04 2:2670e − 05 0.0081 0.0026

Kalman 0.0112 0.0252 0.0087 0.1010

Kaczmarz 0.0612 0.7484 0.0337 0.6750

PseudoInv 0.0112 0.0250 0.0087 0.1068

Purity of the R port

Gradient 0.0114 0.0421 0.5512 0.0691

Kalman 0.0145 0.0421 0.5513 0.0900

Kaczmarz 0.0797 1.2699 0.5932 0.3585

PseudoInv 0.0145 0.0418 0.5516 0.0896

−1 −0.8 −0.6 −0.4 −0.2
Input 1

0 0.2 0.4 0.3 0.2 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Membership function of input 1 based on the subtractive
clustering method.
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Figure 11: Membership function of input 3 based on the subtractive
clustering method.
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According to the above simulation results, it can be
seen that the input data spatial division and premise
parameter determination are realized by the subtractive
clustering algorithm and ANFIS soft sensor models based
on the gradient, Kalman, and PseudoInv algorithms for
optimizing conclusion parameters have the better predic-
tion results on the key economic and technical indicators
of the SMB chromatographic separation process. In order
to distinguish the optimization performance of the four
algorithms, based on the adopted four performance indica-
tors (RMSE, SSE, MAPE, and MPE), the ANFIS soft sen-
sor model based on the meshing partition method and
the PseudoInv algorithm has higher prediction accuracy
than the other three algorithms.
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Figure 12: Effluent purity prediction results in the E port.
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Figure 14: Prediction results of impurity purity in the R port.
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Figure 15: Prediction error of impurity purity in the R port.

Table 4: Comparison of predictive performance indicators of the
ANFIS soft sensor model based on the subtractive clustering
method.

Performance RMSE SSE MAPE MPE

Purity of the E port

Gradient 0.0032 0.0021 0.0103 0.0204

Kalman 0.0068 0.0092 0.0091 0.0434

Kaczmarz 0.0042 0.0035 0.0093 0.0189

PseudoInv 0.0032 0.0020 0.0097 0.0203

Purity of the R port

Gradient 0.0280 0.1567 0.5517 0.1315

Kalman 0.0286 0.1633 0.5514 0.5514

Kaczmarz 0.0386 0.2981 0.5809 0.1624

PseudoInv 0.0280 0.1566 0.5515 0.1313
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4.3. ANFIS Soft Sensor Model Based on the FCM Clustering
Algorithm. When the input data space of the soft sensor
model is divided by the FCM clustering algorithm, the mem-
bership function selects the Gaussian function. The member-
ship function curves of the input data of the Sugeno-type
ANFIS model based on the FCM clustering algorithm are
shown in Figures 16–18. The number of training iterations
is 500, and the established soft sensor models are tested by
the utilized 200 sets of data with average and representative.
The predicted simulation results are shown in Figures 19–
22. Figure 19 shows the output contrast of the target purity
in the E port effluent in the SMB chromatography process
under the gradient, Kalman, Kaczmarz, and PseudoInv algo-
rithms to obtain the optimized conclusion parameters of
ANFIS. Figure 20 shows the predictive error comparison
curves. Figure 21 shows the output contrast of the impurity
purity in the R port effluent in the SMB chromatography pro-
cess under the gradient, Kalman, Kaczmarz, and PseudoInv

algorithms to obtain the optimized conclusion parameters
of ANFIS. Figure 22 shows the predictive error comparison
curves. Table 5 compares the predicted performance indica-
tors of the established soft sensor models.

According to the above simulation results, it can be
seen that the input data spatial division and premise
parameter determination are realized by utilizing the FCM
clustering algorithm and ANFIS soft sensor models based
on the Kalman, Kaczmarz, and PseudoInv algorithms for
optimizing conclusion parameters have the better predic-
tion results on the key economic and technical indicators
of the SMB chromatographic separation process. In order
to distinguish the optimization performance of the four
algorithms, based on the adopted four performance indica-
tors (RMSE, SSE, MAPE, and MPE), the ANFIS soft sensor
model based on the FCM clustering algorithm and the
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Figure 16: Membership function of input 1 based on the FCM
clustering method.
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Figure 17: Membership function of input 2 based on the FCM
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Input 3
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 18: Membership function of input 3 based on the FCM
clustering method.
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Figure 19: Effluent purity prediction results in the E port.
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PseudoInv algorithm has higher prediction accuracy than
the other three algorithms.

5. Conclusions

In this paper, a soft sensing modeling method of the SMB
chromatographic separation process based on ANFIS is
proposed. Three input data space division and antecedent
parameter determination methods are combined with four
consequent parameter optimization algorithms to realize
the ANFIS soft sensing models on the target purity of
the E port and R port in the SMB chromatographic sepa-
ration process. The simulation results verify that the pro-
posed models can obtain better prediction results on the

purity of components, which will supply the foundation
of the quality closed-loop control.
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Figure 22: Prediction error of impurity purity in the R port.

Table 5: Comparison of predictive performance indicators of the
ANFIS soft sensor model based on the FCM clustering method.

Performance RMSE SSE MAPE MPE

Purity of the E port

Gradient 0.0643 0.8281 0.0258 0.8410

Kalman 0.0485 0.4699 0.0258 0.5163

Kaczmarz 0.0517 0.5344 0.0196 0.6431

PseudoInv 0.0440 0.3874 0.0253 0.4297

Purity of the R port

Gradient 0.1245 3.0982 0.5547 0.4398

Kalman 0.087 1.5336 0.5557 0.4262

Kaczmarz 0.1131 2.5603 0.6397 0.5862

PseudoInv 0.0837 1.4009 0.5558 0.4129
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