
Research Article
Efficient Aggregation Processing in the Presence of Duplicately
Detected Objects in WSNs

Jun-Ki Min ,1 Raymond T. Ng,2 and Kyuseok Shim3

1School of Computer Science and Engineering, KoreaTech, Republic of Korea
2Department of Computer Science, University of British Columbia, Canada
3School of Electrical and Computer Engineering, Seoul National University, Republic of Korea

Correspondence should be addressed to Jun-Ki Min; jkmin@koreatech.ac.kr

Received 4 July 2018; Revised 7 January 2019; Accepted 17 January 2019; Published 15 May 2019

Academic Editor: Tomasz Wandowski

Copyright © 2019 Jun-Ki Min et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor networks (WSNs) have received increasing attention in the past decades. Owing to an enhancement of MEMS
technology, various types of sensors such as motion detectors, infrared radiation detectors, ultrasonic sensors (sonar), and
magnetometers can detect the objects within a certain range. Under such an environment, an object without an identifier can be
detected by several sensor nodes. However, existing studies for query processing in WSNs simply assume that the sensing
regions of sensors are disjoint. Thus, for query aggregation processing, effective deduplication is vital. In this paper, we propose
an approximate but effective aggregate query processing algorithm, called DE-Duplication on the Least Common Ancestor∗

(abbreviated as DELCA∗). In contrast to most existing studies, since we assume that each object does not have a unique
identifier, we perform deduplication based on similarity. To recognize the duplicately detected events earlier, we utilize the
locality-sensitive hashing (LSH) technique. In addition, since the similarity measures are not generally transitive, we adapt three
duplicate semantics. In our experiments, by using a transmission cost model, we demonstrate that our proposed technique is
energy-efficient. We also show the accuracy of our proposed technique.

1. Introduction

As a key element for Internet of Things (IoT) applications,
wireless sensor networks (WSNs) have received increasing
attention in recent years. A sensing circuit measures the
parameters from the environment surrounding the sensor
and transforms them into an electric signal. Distributed sen-
sors allow us to detect events over a wider area. Thus, multi-
ple sensors are generally placed on fields of interest, and
objects there are monitored continuously. A sensor network
is a network of spatially distributed autonomous small
devices with homogeneous or heterogeneous sensors.

Sensor networks have a broad range of applications in
various domains such as environment and habitat monitor-
ing applications [1] that collect meteorological data (e.g.,
temperature, pressure, and humidity), combat field surveil-
lance applications [2] that track the movement of personnel
or detect potentially hazardous chemicals, and disaster man-
agement applications that detect forest fire or flood. Since

sensor nodes have limited battery power and it is often
impractical or hard to replace the batteries of sensor nodes
in the environments of its applications, minimizing energy
consumption at sensor nodes has been one of the most
important objectives. Thus, to prolong the lifetime of a net-
work, much work for in-network query processing has been
proposed [3–5].

In the existing literature for WSNs, a common assump-
tion is that the sensing regions of sensors are disjoint. This
assumption simplifies the in-network query processing for
WSNs. However, due to an enhancement of MEMS tech-
nology, various types of sensors such as motion detectors,
infrared radiation detectors [1], ultrasonic sensors (sonar),
and magnetometers [2] detecting objects within a certain
detection range of a sensor become cheap. Thus, it is eco-
nomically feasible to deploy multiple sensors, with overlap-
ping sensing ranges. When multiple sensor nodes are
placed, it is possible that an identical object is detected
by several sensors whenever it appears in the overlapping

Hindawi
Journal of Sensors
Volume 2019, Article ID 1496208, 15 pages
https://doi.org/10.1155/2019/1496208

http://orcid.org/0000-0003-3987-201X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1496208

detection area of those sensor nodes. Furthermore, due to
some errors resulted from the device noises, calibration
errors, and so on, the sensing values of several sensors
for an identical object may be different. Such detection of
duplicates by several sensor nodes makes the in-network
query evaluation very problematic.

To alleviate the drawback of observing multiple sensing
values for an identical object, deduplication of the dupli-
cately observed objects by several sensor nodes is critical
for aggregate query processing. A brute-force method to
solve this problem is to force every sensor node to send its
detected objects to the base station so that the base station
computes the aggregation result after performing deduplica-
tion. However, this scheme would waste a lot of sensor
energy unnecessarily, since communication consumes much
more power than local computation and memory access [6].
In this paper, we study the effective processing of in-network
aggregation queries in sensor networks when the duplicates
of an identical object are detected by several sensor nodes.
In particular, in contrast to the scheme studied in [7], in
which an exact aggregation is computed by utilizing the
identifier of each detected object, we propose an approxi-
mate but effective in-network aggregation algorithm, called
DELCA∗ which is the abbreviation of DE-Duplication on
the Least Common Ancestor∗. To the best of our knowl-
edge, this is the first study for approximate in-network
aggregation when an identical object can be detected by
several sensor nodes and each object does not have a
unique identifier.

For habitat monitoring (such as [8]), a small sensor,
called a collar, is sometimes attached on each animal, pro-
viding an identifier. For such environments, an efficient
aggregate query processing technique in WSNs was pro-
posed in [7]. By using the identifier of each object, dupli-
cates can be easily and accurately identified. However, in
many other applications, such as military applications with
battle fields, an object of interest may not have a prear-
ranged identifier. For instance, the population of enemy
agents in a combat field is quite important information to
a commander. In order to detect the number of agents,
the collaboration of the sensor nodes scattered in the battle
field is required. However, in this case, it is hard to assign a
unique identifier to each enemy agent. A similar scenario
occurs in ocean monitoring of sea mammals, when the
mammals are not tagged with collars. Thus, an approxi-
mate but effective in-network aggregate query processing
is vital. Recall that for an identical object, the sensed attri-
bute values of the object may not be the same due to device
noises, calibration errors, and so on. Thus, the similarity
measures such as cosine distance and Lp distance can be
utilized to identify the duplicates in such an environment.
More specifically, in order to recognize the duplicates, since
the detected objects do not have identifiers, some attributes
of the detected objects are used to form the feature vectors
(e.g., location) of the detected objects, and we approxi-
mately recognize the duplicates for each identical object
based on similarity.

Similar to the related study in [7], our proposed algo-
rithm DELCA∗ consists of two phases, called the potential

duplicate detection phase and the partial in-network aggre-
gation phase, to minimize the cost of transmitting the sensor
readings of the duplicate objects to the base station. During
the first phase of detecting potential duplicates, collaboration
with sensor nodes is required. However, to recognize the
duplicates of an identical object, if each node sends and/or
receives the sensor readings to/from the other nodes, it tends
to waste a lot of energy due to the large volume of sensor
readings. Thus, to reduce the communication overhead for
the collaboration, sensor nodes send and receive the compact
representation of their detected objects. Specifically, we use
locality-sensitive hashing (LHS) [9] as a compact representa-
tion. Conceptually, each sensor node si transmits the com-
pact representation to several neighboring sensor nodes sp
and then finds the potential duplicates among its readings
by using the compact representations coming from those
other sensor nodes.

After potential duplicates are identified, the partial in-
network aggregation phase is performed. During this phase,
an aggregation function AGG such as COUNT, MIN,
MAX, and AVG is applied to the uniquely detected objects
to obtain a partial aggregation result. Then, each sensor node
sends the partial aggregation result and the potential dupli-
cates to its coordinator node which performs the deduplica-
tion and aggregation. Note that, since each node can send a
single partial aggregation result instead of uniquely detected
objects to its coordinator node, we can reduce the communi-
cation overhead. To identify the duplicates among the poten-
tial duplicates at the coordinator, a similarity measure
between the feature vectors of objects is used. When a subset
of the potential duplicates for an identical object has been
determined, another aggregation function to the subset is
applied to produce a representative value for the identical
object, such as taking the average. Then, the aggregation
function AGG is applied to the representative values for the
subsets of the potential duplicates. The generated partial
result is passed to the base station by exploiting the hierarchi-
cal property of a routing tree.

2. Preliminaries

In this section, we first present our assumptions for
WSNs and the query syntax to be considered for aggre-
gate query processing and then explain how locality-
sensitive hashing (LHS) is utilized for recognizing the
duplicates of identical objects.

2.1. Aggregate Query Processing in WSNs. The structure of a
WSN considered in this paper is the same as that used
in [7]. Let us consider a set of stationary sensor nodes
S = s1, s2,⋯, sn . The sensor readings are collected at the
base station with unlimited energy supply where the base sta-
tion serves as an access point to users to process their aggre-
gate queries. Essentially, the sensor readings are collected at
the base station by using a tree routing protocol [10]. A pair
of nodes capable of bidirectional wireless communication
directly is referred to as neighbors to each other. The base
station has the information regarding the locations of sensor
nodes and the tree routing hierarchy among the sensor

2 Journal of Sensors

nodes. Similar to [7], we do not consider the link failures and
node failures here. Link failures can be solved with the
retransmission protocols or the multipath routing [11]. In
addition, to handle node failures, every alive node broadcasts
a beacon signal periodically and detects the failure of other
nodes that do not send any beacon signal for a long time.

For a sensor node si, another sensor node whose sens-
ing region overlaps with that of si is called an oneighbor,
and the least common ancestor of the sensor node si and
its oneighbors in the routing path is called the coordinator
of si [7]. For instance, consider a simple WSN shown in
Figure 1 where the dotted circle of a sensor node denotes
its sensing region and the solid line represents the routing
path of a given sensor network. The oneighbors of s4 are
s3, s5, s6 , and the coordinator of s4 is s1. Meanwhile, the
coordinator of s6 is s4 since s4 is the least common ancestor
of s6 as well as the oneighbor of s6. Since the sensing
regions of some sensor nodes may overlap each other, an
identical object can be observed by several sensor nodes.
Thus, deduplication by the collaboration of sensor nodes
is necessary. The aggregate query Q that we consider has
the syntax (see Figure 2).

In the above SQL-like query, an aggregation function
AGG is applied to an attribute ak (with 1 ≤ k ≤m) coming
from the result of the inner statement ofQ. In the inner state-
ment, we introduce the DUPLICATE BY clause to describe
the condition to be satisfied for a set of detected objects to
be regarded as the duplicates for the same object. By using
the expression sim S f eature vec ≥ δ, a user is requesting
the query processor to handle duplicates based on a simi-
larity measure sim(S.feature_vec) where feature_vec consist-
ing of some attributes (e.g., {x-positions, y-position}) is the
feature vector of each objet and δ is the minimum similar-
ity threshold.

As mentioned previously, due to the sensor noise and
calibration errors, each node may observe different values
in the attributes of an identical object. Thus, the SELECT
clause in the inner statement of Q specifies the representa-
tive values of every attribute attri for each distinct object
by using an aggregation function AGGi for 1 ≤ k ≤m. To
express the condition of the target objects to apply the
aggregation function AGG, we use the WHERE clause in
the outer statement. Since the representative attributes ai
of an object are also used for the selection predicate p of
the query Q, the result (i.e., a1,⋯, am) of the inner state-
ment must contain the attributes used in the selection
predicate p as well as the aggregation attribute ak.

Table 1 lists the several popular similarity/distance mea-
sures between a pair of the feature vectors u and v. Typically,
the Lp distance and Hamming distance are used in the litera-
ture [9, 12]. However, distance measures such as the Lp and
Hamming distances can be easily transformed to a similarity
measure with normalization. We define the Lp similarity and
the Hamming similarity as follows:

Definition 1. Let u and v be a pair of d-dimensional vectors
and the domain of the i-th dimension be dom i . Then, the
maximum Lp distance in a d-dimensional space becomes

∑i dom i p 1/p
, where dom i is the length of dom i .

The Lp similarity simLp
u, v of u and v is the closeness of

two vectors according to the normalized Lp distance. That is,

simLp
u, v =

∑i dom i p 1/p − Lp u, v
∑i dom i p 1/p

= 1 −
Lp u, v

∑i dom i p 1/p

1

Table 1: Similarity/distance measure.

Similarity Formula

Cosine similarity cos θ u, v = u ⋅ v
u ⋅ v

Jaccard coefficient J u, v = u ∩ v
u ∪ v

Lp distance Lp u, v = 〠
i

ui − vi
p

1/p

Hamming distance dH u, v = u − v ∪ v − u

Base station

Sensor node

Sensing region

Routing path

S1 S2

S5S4
S3

S6

S

Figure 1: A simple sensor network consisting of 6 sensor nodes.

Q: SELECT AGG (ak)
FROM (

SELECT AGG1 (S.attr1) as a1, ···, AGGm (S.attrm) as am
FROM Sensor S
DUPLICATE BY sim(S.feature_vec) ≥ 𝛿,

)
WHERE p(a1, ···, am)

Figure 2: A query syntax.

3Journal of Sensors

Definition 2. Let u and v be a pair of vectors in a d-dimen-
sional Hamming space. The Hamming similarity simH u, v
of u and v is the fraction of common bits between u and v.
In other words,

simH u, v = 1 − dH u, v
d

2

For brevity, we simply refer to the similarity between the
feature vectors of a pair of objects as the similarity between
the pairs of objects. Furthermore, when the feature vectors
of a pair of objects are similar according to a similarity mea-
sure, we simply say that the pairs of objects are similar.

2.2. Locality-Sensitive Hashing (LSH). In this section, we
briefly present the locality-sensitive hashing (LSH).

Definition 3. A locality-sensitive hashing scheme is a distri-
bution on a familyℋ of hash functions operating on a collec-
tion of objects, such that for two objects x and y,

Ph∈ℋ h x = h y = sim x, y , 3

where sim x, y is a similarity between x and y.

Given a hash function family ℋ that satisfies equation
(3), we say thatℋ is a locality-sensitive hash function family
corresponding to the similarity measure. Note that the more
similar a pair of objects is, the higher the collision (or match-
ing) probability is. Definition 3 is slightly different from the
original definition in [9]. However, they are fundamentally
the same and many LSH functions satisfy this definition
[13]. LSH families have been developed for several similarity
measures in the past [9, 13, 14].

It is convenient to have a hash function family that maps
objects to 0, 1 (i.e., a single bit number) since a k-bit hash
value for an object is the concatenation of the k different hash
functions. We refer to such a k-bit hash value as a LSH vector.
The similarity between a pair of objects u and v is estimated
by counting the number of matching coordinates in their
corresponding LSH vectors. Actually, we can always find
such a binary hash function family with a slight change for
any similarity measure whose locality-sensitive hash function
family exists, as the following lemma states:

Lemma 1 (see [13]). Given a LSH function family ℋ corre-
sponding to sim u, v , we can obtain a LSH function family
ℋ ′ that maps objects to 0, 1 and corresponds to the similar-
ity function 1 + sim u, v /2.

For instance, although a LSH function for the Lp dis-
tance [14] does not generate a single bit number, we can
get a binary hash function family for the Lp distance by
Lemma 1.

3. Related Work

As one of the most important elements for the IoT platform,
WSN is used in a broad class of IoT applications. In the

database community, several sensor data management sys-
tems such as Cougar [3] and TinyDB [10] have been intro-
duced. One of the well-known approaches to reduce the
energy drain of sensor networks is the in-network aggrega-
tion. Tiny AGgregation (abbreviated as TAG) proposed by
Madden et al. in [5] is the first study for in-network aggrega-
tion to decrease the battery usage by reducing the communi-
cation overheads. In TAG, the partial aggregation values are
computed incrementally with routing up from the leaf nodes
to the base station in the routing tree.

Several approximate in-network aggregation techniques
have also been developed [11, 15–19]. Considine et al. [15]
proposed a robust method by using a Flajolet-Martin sketch
(abbreviated to FM sketch) and the multipath routing for
processing approximate aggregate queries in the presence of
failures. Shrivastava et al. [16] presented the q-digest struc-
ture to approximately compute quantile queries. Nath et al.
[11] introduced a general framework based on synopsis diffu-
sion for various approximate aggregate queries. For aggrega-
tion functions such as MIN and MAX, Silberstein et al. [17]
developed an algorithm with the goal of minimizing the com-
munication cost in a sensor network while guaranteeing the
accuracy of aggregate query results. Xu et al. [19] proposed
an approximated aggregation technique using data compres-
sion to reduce the amount of transmitted data. Recently, Xiao
et al. [18] presented an energy-efficient aggregation tech-
nique for an unreliable network based on a probabilistic net-
work model. Some aggregation techniques for a spatial
region in sensor networks have also been proposed [20–22].
Soheili et al. [21] proposed a distributed spatial index, called
SPIX, to compute an aggregate value for a user-defined spa-
tial region. Zhuang and Chen [22] introduced a max regional
aggregate query to find a region with the maximum aggrega-
tion value. In [20], Choi and Chung presented a technique
using the smallest enclosing circles to process a max regional
aggregate query.

All the studies mentioned so far do not allow the sensing
regions to overlap and thus cannot handle the detected dupli-
cates of an identical object. Due to the recent enhancement of
MEMS technology, some types of sensors detecting the
objects within a certain range become economical. For
instance, in [23], an effective technique for actuating the
camera sensors in a certain region collaborated with other
types of sensors, called scalar sensors. Thus, if the sensor
readings measured by the scalar sensors for a certain region
exceed the predefine threshold, the camera sensors for the
region are activated. The most relevant work to ours is [7]
in which an exact in-network aggregation method, called
LCA EA, was proposed for the case of when sensor nodes
detect an object simultaneously. Although LCA EA consists
of two phases like ours, since the basic assumption is that
each object has a unique identifier, the exact aggregation
result is computed by using the identifiers of the detected
objects. However, for many applications, it is hard to assign
a unique identifier to each object in practice. Thus, we pro-
pose an approximate but effective in-network aggregation
algorithm for the case of when an identical object can be
detected by several sensor nodes and each object does not
have a unique identifier.

4 Journal of Sensors

4. Effective Aggregation in the Presence of
Duplicately Detected Objects

4.1. An Overview of the Proposed DELCA∗ Algorithm. If each
node can effectively identify the unique objects among its
detected objects, since each node can send the partial aggre-
gation result generated from the unique objects and the
(potential) duplicate objects instead of sending all of the
detected objects to its coordinator, the communication over-
head can be reduced significantly. To achieve this goal, in this
paper, we propose the DELCA∗ algorithm.

In our DELCA∗ algorithm, the processing of an aggregate
queryQ is split into two phases: the potential duplicate detec-
tion phase and the partial innetwork aggregation phase.

(i) Potential duplicate detection phase: during this
phase, each node identifies the potential duplicates
among its detected objects. To recognize the poten-
tial duplicates, each sensor node si requires the
information of the objects detected by its oneigh-
bors whose sensing regions overlap with that of si.
Thus, each node first broadcasts the compact
representation (i.e., LSH vectors) of its detected
objects’ feature vectors to its oneighbors. Then, after
receiving the compact representations from its
oneighbors, each node splits the detected objects
into the potential duplicate partition and unique
object partition

(ii) Partial in-network aggregation phase: each node
computes a partial aggregation result with the unique
objects satisfying the selection predicates p of a given
query Q. The partial aggregation results and the
potential duplicates are continually routed up from
the leaf nodes to the base station. When a node
receives the partial aggregation results from its child
nodes, it updates its partial aggregation result with
those of the child nodes. It also merges its potential
duplicates with the received potential duplicates.
When the duplicates of an identical object are col-
lected at the coordinator, it computes the representa-
tive value of the duplicates with respect to the
SELECT clause of the inner SQL statement of the
query Q. Then, the duplicates of an identical object
are removed from the potential duplicate objects. In
addition, the node updates the aggregation result
with the aggregation attribute values of the represen-
tatives satisfying the selection predicate p. Finally, the
node sends the updated partial aggregation result and
the remaining potential duplicates to its parent node
in the routing path

Figure 3 illustrates the behavior of our proposed
DELCA∗ algorithm. Let us assume that the sensor nodes s3
and s4 detect an object u as u′ and u″, respectively, because
u appears in the overlapped area of the sensing regions of
s3 and s4 as illustrated in Figure 3(a). Moreover, the sensing
values of the same object detected by several sensors can be
different. Meanwhile, another object v is detected by s4 only,

since v is located within the nonoverlapped sensing region of
s4 as illustrated in Figure 3(a).

During the potential duplicate detection phase of
DELCA∗, s4 broadcasts the set of LSH vectors lu″ , lv to its
oneighbors s3, s5, and s6. Similarly, s3 broadcasts lu′ to its
oneighbor s4 as shown in Figure 3(b) where lu′ , lu″ , and lv
are the LSH vectors for the u′, u″, and v, respectively. Note
that owing to the nature of LSH, if the pairs of objects are
similar, their LSH vectors tend to be similar too. Thus, by
using the received LSH vectors lu″ , lv , s3 could determine
that u′ is a potential duplicate object since lu″ from s4 tends
to be similar to lu′ in s3. Similarly, s4 decides that u″ is a
potential duplicate and v is a unique object.

In the partial in-network aggregation phase, s4 computes
the partial aggregation result ParAgg using the unique object
v if v satisfies the selection predicate p of the query Q. Then,
as illustrated in Figure 3(c), s4 sends the partial aggregation
result ParAgg and the potential duplicate u″ to its parent s1.
In contrast, s3 has duplicate object u′ only; s3 just sends u′
to s1.

Since s1 is the coordinator of s4 and s3, s1 first calculates
the representative of duplicates u′ and u″ and updates the
partial aggregation result ParAgg using the computed repre-
sentatives. Then, the updated aggregation result ParAgg is
transmitted to the base station as shown in Figure 3(d).

In Sections 4.2 and 4.3, we present the details of the
potential duplicate detection phase and the partial in-
network aggregation phase, respectively.

4.2. Potential Duplicate Detection Phase. During this phase,
each sensor node distinguishes unique objects and potential
duplicates from its detected objects by the collaboration with
its oneighbors. The pseudocode of the first phase is presented
in Figure 4.

Since the detected objects do not have any identifiers,
duplicity is determined by the similarity of the feature vectors
of the detected objects. As addressed in Section 2.2, the sim-
ilarity between a pair of objects is estimated by utilizing their
corresponding k-bit LSH vectors. Thus, each sensor node
generates a set of LSH vectors LSHvects for the set of its
detected objects E (lines 1-4 in Figure 4). Let hi be a hash
function in a locality-sensitive hash function familyℋ satis-
fying equation (3) that maps a vector to 0, 1 and u.feature_
vec be the feature vector of an object u. Each sensor node gen-
erates a k-bit LSH vector lu for each object u in E by concat-
enation of k hash functions h1 ,⋯, hk ∈ℋ (line 3 in
Figure 4) and each generated k-bit LSH vector lu is added into
LSHvects (line 4). Then, each sensor node si broadcasts a set
of LSH vectors LSHvects = l1, l2,⋯, l∣E∣ to its oneighbors
(line 5). At the same time, si also receives the multiple k-bit
LSH vector sets from its oneighbors (line 6). Then, si iden-
tifies the potential duplicates among the objects in E by using
the set of k-bit LSH vector sets coming from its oneighbors,
denoted as L.

We now explain how to compute the similarity of two
objects by using their corresponding LSH vectors in order
to recognize the duplicates. The similarity of two objects u
and v can be estimated by counting the number of common

5Journal of Sensors

Base station

Detected objects in S3 = {u′}
Detected objects in S4 = {u″, v}

S1

S3 S4 S5

S6

S2

u

v

(a)

Base station

Detected objects in S3 = {u′}

{lu″, lv}

{lu″, lv}{lu″, lv}

{lu′}

Detected objects in S4 = {u″, v}

S1

S4

S6

S5S3

S2

(b)

Base station

S1

S3 S4 S5

S6

S2

{u′}
ParAgg, {u″}

(c)

Base station

S1

S3 S4 S5

S6

S2

ParAgg

(d)

Figure 3: The behavior of DELCA∗.

Procedure DELCA⁎_1ST (𝛿, E)

(i) LSHvects = Ø
(ii) for each object u ⋲ E do

(iv) add lu to LSHvects
(v) Send LSHvects to the oneighbors of this node

(iii) lu = h1 (u.feature_vec) · h2 (u.feature_vec) · · · · · hk (u.feature_vec)
where h1 (with 1 ≤ i ≤ k) is in H satisfying Eq. (2)

(vi) Let L be {LSHvects1, LSHvectsi2, . . . , LSHvectsm} where LSHvects, is the LSH
vectors coming from the i-th oneighor and m is the number of its oneighbors

(vii) for each LSH vectore lu ⋲ LSHvects do
(viii) for each LSH vectore lu ⋲ LSHvects, in L do

(x) Add u to potential_duplicates
(xi)

end
unique_objects = E-potential_duplicates

(ix) if k − dH (lu, lv) ≥ [k · 𝛿] (or [k ·

𝛿: user defined threshold, E: a set of detected objects at this node
begin

1 + 𝛿] for simLP
)2

Figure 4: The procedure for the potential duplicate detection phase in DELCA∗.

6 Journal of Sensors

bits in two k-bit LSHvectors lu and lv. The number of common
bits between lu and lv can be expressed by k − dH lu, lv where
dH lu, lv is the Hamming distance between lu and lv.

Let us assume that a user uses the Hamming similarity si
mH of Definition 2 to recognize the duplicates. Then, the
LSHfunction familyℋ H presented in [9] is applied toproduce
a k-bit LSH vector for each object. The probability that the
hash values of two objects u and v are the same is equal to the
similarity of u and v (i.e., Prh∈ℋH

h u = h v = simH u, v).
Thus, with a minimum similarity threshold δH , if the num-
ber of common bits of lu and lv (i.e., k − dH lu, lv) is at least
k ⋅ δH , we regard that the two objects u and v are similar,
and thus, they become potential duplicates. For instance, let
8-bit LSH vectors lu and lv for objects u and v be 00000000
and 01000100, respectively. Then, dH lu, lv is 2. When δH is
0.7, we regard that u and v are duplicates since k − dH lu, lv
= 6 = 8 − 2 is greater than k ⋅ δH = 5 = 8 ⋅ 0 7 .

Since locality-sensitive hash function families for L1
similarity [12] and cosine similarity [13] also map objects
to 0, 1 (i.e., a single bit number), similar arguments hold
on a minimum threshold δL1 on L1 similarity simL1

and a
minimum threshold δθ on cosine similarity.

Given a minimum threshold δLp for the similarity simLp

by Definition 1, the LSH function family ℋ Lp presented in
[14] is applied. Unlike the other hash families, a hash function
in ℋ Lp generates a scalar value rather than 0, 1 . However,
based on Lemma 1, we can identify the potential duplicates
when the Lp similarity simLp

is used too. Given a pair of two

objects u and v, let a pair of k-bit LSH vectors lu and lv be gen-
erated by using a hash function family Λ which operates on
the domain of the functions in ℋ Lp for Lp similarity and
maps the elements in the domain to 0, 1 . Then, if the num-
ber of common bits for lu and lv is at least k ⋅ 1 + δLp /2 ,

we can regard that simLp
u, v is at least δLp . By Lemma 1, we

can obtain a binary hash function family and the correspond-
ing similarity measure of two objects u and v is changed to s

im′ u, v = 1 + simLp
u, v /2.

Thus, if simLp
u, v ≥ δLp , we have sim′ u, v ≥ 1 +

δLp /2 since simLp
u, v = 2sim′ u, v − 1 ≥ δLp . In addition,

by the k stochastic repetitions, the similarity is estimated as
sim′ u, v = 1 − dH lu, lv /k. Thus, if the number of com-
mon bits (i.e., k − dH lu, lv) between lu and lv is at least
k ⋅ 1 + δLp /2 , we obtain simLp

u, v ≥ δLp .

As explained above, for a LSH vector lu in LSHvects of a
sensor node si, if there is a similar LSH vector lv ∈ LSHvects
in L such that k − dH lu, lv ≥ k ⋅ δ (or k ⋅ 1 + δ /2 for
simLp

), the corresponding object u is inserted into poten-

tial_duplicates (lines 4-7 in Figure 4). After obtaining the
potential duplicates, each sensor can extract the set of
uniquely detected objects from E and insert it into unique_
objects (line 8).

Let the total number of detected objects be n. Then, for a
sensor node si, since the number of the detected objects at si is
at most n and we can compute a LSH vector for each object
with O 1 time by using hash functions, LSHvects is

constructed in O n time as well as the size of LSHvects
is O n . In addition, the number of the LSH vectors in
L received from its oneighbors is also O n . Then, for each
lu in LSHvects, we check whether there is a similar LSH
vector lv in L. Thus, the time complexity of this phase
becomes O n2 .

In the second phase, potential duplicates are sent to coor-
dinators so that further deduplication can take place. Mean-
while, for unique objects, early aggregation can be performed.

4.3. Partial In-Network Aggregation Phase. During the sec-
ond phase, each node computes a partial aggregation result
with the uniquely detected objects satisfying a selection pred-
icate p of a given query Q. Partial aggregation results are
gradually merged along the routing path to the base station.
By a definition of the coordinator, the duplicates of an iden-
tical object detected by oneighbors of si are collected at si’s
coordinator. Thus, when a coordinator of si receives the
potential duplicates from si and si’s oneighbors, the coordina-
tor computes the representative value of each attributes by
using the potential duplicates of itself as well as its oneigh-
bors. Then, the duplicates for an identical object are removed
to avoid the redundant reflection of duplicates. If the repre-
sentative satisfies the selection predicate p, the aggregation
attribute value of the representative of each detected object
is reflected into the partial aggregation result.

The pseudocode of the second phase is presented in
Figure 5. Each sensor node first computes the partial aggre-
gation result ParAgg with the partial aggregation results ℙ
coming from its child nodes (lines 1-2 in Figure 5) and
updates ParAgg using unique objects (lines 3-4). Then, each
node accumulates the potential duplicates sent from its
child nodes into D. The potential duplicates of its own is
also kept in D (lines 5-6). Then, the node extracts a set D
of the duplicates for an identical object by invoking the
function chooseDup() according to the DUPLICATE BY
clause in Q and removes D from D (line 9). We will explain
the details of chooseDup() in Section 4.4.

If there is at least a single object e ∈D such that this node
is the coordinator of the sensor node s detecting e,D is a set of
multiple detected duplicates of an object appearing in the
overlapped sensing regions of s and s’s oneighbors. Thus, in
this case, the node first calculates the representative rep of
D by applying the aggregate functions AGGi to the attributes
ai (with 1 ≤ k ≤m) of all objects in D. Then, the partial aggre-
gation result ParAgg is updated if rep satisfies the predicate p
of the queryQ (lines 10-12). IfD does have such an object, we
add D into PDup to be sent to its parent node for later inves-
tigation (line 13). Finally, the partial aggregation result
ParAgg and the potential duplicates PDup are sent to the par-
ent node (line 14).

During the second phase, as shown in Figure 5, each
sensor node first computes the partial aggregation result
ParAgg with ℙ coming from its child nodes and unique_
objects. Let us assume that the total number of detected
objects is n and the number of child nodes of each sensor is
much smaller than n. Then, the time complexity for comput-
ing the partial aggregation result ParAgg with ℙ and unique_
objects is O n since |unique_objects| is at most n. Then, we

7Journal of Sensors

extract the duplicates D from an identical object from the
potential duplicates D by invoking chooseDup() iteratively
and then we update ParAgg with D. Since D is at most n,
chooseDup() is invoked at most n times. In addition, choo-
seDup() evaluates the similarities of O n · n − 1 /2 object
pairs in D. Thus, for the worst case, the time complexity of
this phase becomes O n3 . However, the number of detected
objects at each sensor as well as |unique_objects| and D is
much smaller than n since there are multiple sensors in a
sensing field. Thus, the second phase does not take much
time in practice.

4.4. Semantics of Duplicates. In this section, we present the
details of the function chooseDup() used in the procedure
DELCA∗_2ND shown in Figure 5. Note that many similarity
measures such as Hamming similarity, Lp similarity, and
cosine similarity are not transitive. For instance, when a
Hamming similarity threshold δH is 5/6, we can say that
“mother” and “mather” are similar since the Hamming dis-
tance between them is 1 and the lengths of them are 6. Sim-
ilarly, “mather” and “father” are also similar. However,
“mother” and “father” are not similar with δH = 5/6. In this
case, we have to decide whether “mother,” “mather,” and
“father” belong to an equivalence class or not since “mather”
can bridge the gap from “mother” to “father.” To solve this
problem, the previous work [24] ignores the nontransitivity
of the similarity measures. However, inspired by the studies
in [25, 26], we consider three duplicate semantics for the
equivalence classes: weak semantic, strict sematic, and
monoid semantic. Thus, we allow that each user can choose
a semantic out of the three duplicate semantics by declaring
with DUPLICATE BY sim f eature vec ≥ δ [WEAK|
STRICT|MONOID].

In [26], when a feature vector u is similar to another fea-
ture vector v and v is similar to the other feature vector w,
although u is not similar to w, the three feature vectors u, v,
and w are regarded as the members of the same equivalence
class, since v bridges the gap from u to w. We call such a
policy the weak semantic policy. In [25], the objects whose
feature vectors satisfy the transitivity of similarity are

considered duplicates. We call this policy the strict seman-
tic policy.

Depending on the application or even an individual
user, the above two semantics could be too weak or too
strong to identify the duplicates. Thus, to handle the non-
transitivity of a similarity measure, we offer a hybrid pol-
icy called the monoid semantic policy. In monoid semantic
policy, every member in an equivalent class is similar to
the monoid vector of the equivalent class where the
monoid vector consists of the mean value of the equivalent
class in each dimension.

The pseudocode of chooseDup() is presented in Figure 6.
To begin, a pair of objects ei, ej whose feature vectors are

the most similar inD is chosen as an equivalent class D (lines
1-6). Since we initially assign the user-provided threshold δ
to maxsim (line 1), the most similar pair whose similarity
measure is at least δ is selected (lines 4-6). If such a pair does
not exist,D does not have any duplicate object. Thus, we sim-
ply return an object inD (line 7). If there is such a pair, one of
the three duplicate semantics is applied (lines 8-26). The lines
8-12 are for the weak semantic policy, the lines 13-17 are for
the strict semantic policy, and the lines 18-26 are for the
monoid semantic policy.

With respect to the weak semantic policy, for an object ek
in D but not in D, if ek.feature_vec is similar to at least an ele-
ment in D, ek becomes a member of D (lines 10-11). Then, D
is returned (line 12). To process the strict semantic policy, if
an object ek in D but not in D is similar to all elements
in D, ek becomes a member of D (lines 14-16). By using
this mechanism, we produce the equivalent classes each
of which satisfies the strict semantic policy. To handle
the monoid semantic policy in chooseDup, the monoid
vector monoidvec for the most similar pair is computed
(line 19). For an object ek whose feature vector is similar
to monoidvec (line 20), chooseDup checks whether ek can be
a member of D or not. By the monoid sematic policy, every
object in D should be similar to monoidvec. Thus, we first
compute a temporary mean vector tempvec (line 21). If every
object e in D ∪ ek is similar to tempvec, ek becomes a member

Procedure DELCA⁎_2ND (𝛿)

(i) Let P be the set of partial aggregation values coming from its child nodes.
(ii) ParAgg = AGG (ℙ)

(iv)
Let 𝔻 be the set of potential duplicates coming from its child nodes si(v)
𝔻 = 𝔻 ∪ potentia_duplicates

(iii) for each object e ⋲ unique_objects do

(vi)
PDup = Ø(vii)
while 𝔻 ≠ Ø do(viii)

D = chooseDup (𝔻), 𝔻 = 𝔻 − D

(xi) rep = {AGG1 (D.attr1),. . . , AGGm (D.attrm)}
if p(rep) = TRUE then ParAgg = AGG (ParAgg,rep)

(x) if this node is the coordinator of a sensor node detecting e ⋲ D then

(xiii)
(xii)

end

else PDup = PDup ∪ D
(xiv) send ParAgg and PDup to its parent node

(ix)

𝛿: user defined threshold
begin

if p (e) = TRUE then ParAgg = Agg (PagAgg,e)

Figure 5: The procedure for the partial in-network aggregation phase in DELCA∗.

8 Journal of Sensors

ofD andmonoidvec is adjusted with ek (lines 23-24). Finally,
D is returned (line 25). By using D, a coordinator pro-
duces a representative aggregation value for duplicates.

5. Experiments

In this section, we demonstrate the efficiency of our proposed
DELCA∗ algorithm. We implemented three aggregate query
processing algorithms: brute-force (BF) method, DELCA∗,
and LCA∗. In the brute-force (BF) algorithm, each sensor
transmits its readings to the base station and aggregation is
processed at the base station. While DELCA∗ is the two-
phase algorithm introduced in Section 4, LCA∗ is a single-
phase algorithm that is exactly the same as the second phase
of DELCA∗. Thus, in LCA∗, each sensor node simply sends
its detected objects to its coordinator since LCA∗ does not
distinguish unique objects and potential duplicates. In other
words, in LCA∗, all sensor readings are regarded as the
potential duplicates and sent to the parent nodes. To com-
pare the performance of implemented methods, we measure
the transmission cost of each method based on the cost
model presented in [27].

5.1. Test Environment. In our experiment, we place the sen-
sors based on two strategies: the grid placement strategy
and the random placement strategy. In the grid placement
strategy, the sensing field was divided into equisized grids
and a sensor node is placed in the center of each grid. In
the random placement strategy, sensor nodes were randomly
scattered at the sensing field following the uniform distribu-
tion. To deliver the aggregation results to a user, at least a

single sensor node has to be reachable to the base station.
Thus, in both sensor placement strategies, the base station
was located at the center of the sensing field. The routing tree
was constructed by using the FHF (First-Heard-Form)
algorithm [10].

Based on a probabilistic model developed in [7] for ani-
mals’movement that was calculated from a real data set con-
taining trajectories of Kruger Buffalos from Movebank [28],
we generated a synthetic data set to show the effectiveness
of our work. In the generated data set, there are three 4-
byte artificial attributes: body temperature, weight, and
height. The data value distribution of each data set is followed
by the distribution in [7]. However, in contrast to that of [7],
since there is no identifier annotated with each object in our
problem setting, we used the 8-byte position (2-dimensional
point) of a detected object as its feature vector. To reflect the
measurement errors of all the attributes including feature
vectors, we make the measured attribute values by adding a

Table 2: Parameters.

Parameter Default value

Sensor placement Grid or random

Size of sensing field (1,000m)2

Number of sensor nodes 1024

Communication distance 50m

Radius of sensing region (s) 20m

Packet size (p) 48 bytes

Number of objects (a) 10,000

Procedure chooseDup (𝔻)

(i) maxsim = 𝛿
(ii) for each ei ⋲ 𝔻 do

(iv)
D = {ei, ej}(v)
maxsim = sim (ei.feature_vec, ej.feature_vec)

(iii) for each ej (≠ ei) ⋲ 𝔻 do

(vi)
if D = Ø then return {ei}(vii)
case WEAK(viii)

for each ek ⋲ 𝔻 and ek ∉ D do

for each ek ⋲ 𝔻 and ek ∉ D do

(xi) D = D ∪ {ek}

D = D ∪ {ek}

D = D ∪ {ek}

return D

return D

return D

(x) if ∃ e ⋲ D s.t., sim (e.feature_vec, ek.feature_vev) ≥ 𝛿 then

if ∀ e ⋲ D, sim (e.feature_vec, ek.feature_vev) ≥ 𝛿 then

if ∀ e ⋲ D ∪ {ek}, sim (e.feature_vec, tempvec) ≥ 𝛿 then

(xiii)
(xii)

(xxv)
end

case STRICT

case MONOID

tempvec = mean (D ∪ ek.feature_vec)
for each ek in 𝔻 and ek ∉ D where sim (monoidvec, ek.feature_vec) ≥ 𝛿 do
monoidvec = mean ({ei.feature_vec, ej.feature_vec})

monoidvec = tempvec

(xiv)
(xv)

(xvi)
(xvii)

(xviii)
(xix)
(xx)

(xxi)
(xxii)
(xxiii)
(xxiv)

(ix)

begin

if sim (ei.feature_vec, ej.feature_vec) ≥ maxsim then

Figure 6: The procedure chooseDup().

9Journal of Sensors

random noise within the interval −1, 1 following the uni-
form distribution to actual values with the probability of 0.01.

With varying the radius of a sensing region, the number
of duplicately detected objects is changed. In the grid sensor
placement, the minimum distance between two sensor nodes
is 31.25m (=1000m/32) since there are 1024 (=322) sensors
at (1,000m)2-sized sensing field. Thus, the radius of the sens-
ing region s is greater than 31.25m, and every object is dupli-
cately detected by at least two sensor nodes. In contrast, when
s is less than 15.625m (=31.25m/2), sensing regions of sen-
sors do not overlap, and thus, there are no duplicately
detected objects. As the radius of sensing region increases,
the overlapped sensing region increases, and thus, the num-
ber of duplicate objects increases. In our experiments, we var-
ied s from 15m to 30m. The other parameters used in our
experiment are summarized in Table 2.

Similar to many related studies as in [7, 10, 11, 20, 22], we
use the transmission cost to estimate the energy consumption
of sensor nodes. As addressed in [27], radio wave propaga-
tion is highly variable and difficult to model. Thus, we adopt
the simplified free space channel model (c2 power loss) pre-
sented in [27], where c is the distance between two sensor
nodes. Under this model, to transmit and receive an l-bit

packet for distance c, a sensor spends ET l, c and ER l units
of energy, respectively, which are defined as

ET l, c = l ⋅ Eelec + ξamp ⋅ l ⋅ c
2,

ER l = l ⋅ Eelec,
4

where Eelec represents the energy consumption for running
the transmitter or receiver and ξamp denotes the energy con-
sumption for a transmit amplifier. In this experiment, we set
50 nJ/bit to the electronic circuit constant (Eelec) and
100 pJ/bit/m2 to the transmit amplifier constant (ξamp), as
in [7, 10, 11, 20]. Furthermore, in our experiments, we
do not consider retransmission caused by link failure and
so on in order to measure the bare transmission cost of
each algorithm.

In Figure 7, we report the aggregate queries used in our
experiments. Each query is similar to one in [7] except intro-
ducing the DUPLICATED BY clause containing the similar-
ity measure simL2

. Query Q1 is a simple aggregate query
which computes the number of animals having high body
temperatures. Query Q2 asks the maximum weight of

Name Definition

Q1 SELECT COUNT (avg_t)
FROM (

)
WHERE avg_t ≥ 38

SELECT AVG (body_temperature) AS avg_t
FROM ANIMAL
DUPLICATE BY simL2

 (position) ≥ 𝛿 [WEAK|STRICT|MONOID]

Q2 SELECT MAX (min_w)
FROM (

)
WHERE avg_t ≤ 38

SELECT MIN (weight) AS min_w, AVG (height) as avg_h
FROM ANIMAL
DUPLICATE BY simL2

 (position) ≥ 𝛿 [WEAK|STRICT|MONOID]

Q3 SELECT MAX (min_t)
FROM (

)
WHERE avg_t ≤ 38

SELECT MIN (body_temperature) AS min_t, MAX (weight) as max_w,
MAX (height) as max_h

FROM ANIMAL
DUPLICATE BY simL2

 (position) ≥ 𝛿 [WEAK|STRICT|MONOID]

Q4 SELECT R.pos R.min_b
FROM (

) AS R
WHERE R.min_b = S.max_b

)AS S,
(

SELECT MAX (min_t) as max_b
FROM (

SELECT AVG (position) as pos, MIN (body_temperature) as min_b
FROM ANIMAL
DUPLICATE BY simL2

 (position) ≥ 𝛿 [WEAK|STRICT|MONOID]

SELECT MIN (body_temperature) AS min_t
FROM ANIMAL
DUPLICATE BY simL2

 (position) ≥ 𝛿 [WEAK|STRICT|MONOID]

Figure 7: Query set.

10 Journal of Sensors

animals which satisfy the selection predicate (i.e., height ≤
200). Query Q3 requests the average body temperature of
small sized animals. Query Q4 is a more complex nested
query to obtain the position and body temperature of each
animal with the highest body temperature. In the above
queries, the default value of the minimum similarity thresh-
old δ is 0.995. The default semantic policy for duplicate iden-
tification is MONID, and the size of a LSH vector is 16 bits.

5.2. Experimental Results

5.2.1. Varying the Sensing Radius (s).We varied the radius of
sensing region s from 15 meters to 30 meters. Each sensor
node detected the animals every minute, and we ran the sim-
ulator for 10 minutes. Figure 8 shows the energy consump-
tion of each algorithm for the four test queries with the grid
placement strategy of sensor nodes. Figure 9 shows the corre-
sponding energy consumption based on the random place-
ment strategy. As shown in Figures 8 and 9, BF shows the
worst performance as we expected since each sensor sends
its readings to the base station. In contrast, DELCA∗ shows
the best performance in most cases since the partial aggrega-
tion results of the unique objects and potential duplicates are
transmitted to the base station during the second phase. On

average, with the grid placement strategy, the performance
of DELCA∗ is 2.73 times and 1.25 times better than those
of BF and LCA∗, respectively. Note that as the sensing radius
becomes larger, the performance gap between DELCA∗ and
LCA∗ decreases, and LCA∗ even shows better performance
than DELCA∗ with the largest sensing radius. The reason is
that as the overlapped sensing region increases, the number
of duplicate objects increases. In LCA∗, each sensor node
simply sends its detected objects to its coordinator since
LCA∗ does not distinguish unique objects and potential
duplicates. Meanwhile, in DELCA∗, each sensor consumes
its energy to identify unique objects from its detected objects
by collaborating with its oneighbors during the first phase.
Thus, the gain of identifying the unique objects is compen-
sated with the overhead of the first phase. In those cases,
LCA∗ can show better performance.

With the grid placement strategy, when the sensing
radius is small (i.e., s = 15 meters), the performances of
LCA∗ and DELCA∗ are the same since the sensing regions
of the sensors are disjoint, and thus, each sensor node
becomes the coordinator of itself and every detected object
is unique. Meanwhile, with the random placement strategy,
due to the irregularity of the sensor locations, there are over-
lapped sensing regions, and thus, the energy consumptions of

14
12
10

8
6
4
2
0

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

J

27.5 m 30 m

Q1-grid
16
14
12
10

8
6
4
2
0

J

15 m 17.5 m 20 m 22.5 m 25 m
S

(a) (b)

(c) (d)

Q2-grid

BF
LCA⁎

DELCA⁎

27.5 m 30 m

14
16
18
20

12
10

8
6
4
2
0

J

Q3-grid

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

14
12
10

8
6
4
2
0

J

Q4-grid

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

Figure 8: Energy consumption on grid placement with varying s.

11Journal of Sensors

LCA∗ and DELCA are different from those with the grid
placement strategy. In addition, due to such irregularity,
since there are some nodes having no oneighbors and they
are the coordinators of themselves, we do not need to per-
form the deduplication for those nodes. Furthermore, since
LCA∗ does not perform the first phase of DELCA∗, the per-
formance gap between LCA∗ and DELCA∗ with the random
placement strategy is less than that with the grid placement
strategy. On average, DELCA∗ is 1.1 times better than
LCA∗ when compared with the random placement strategy.

5.2.2. Varying the Packet Size (p). We also varied the packet
size p from 24 bytes to 124 bytes. Figure 10 shows the results
of Q3 with the grid and random placement strategies. We do
not present the result of other queries since the performance
patterns are very similar. As addressed in [7], the energy con-
sumption of each algorithm is not much affected by the
change of the packet size, since the number of packets to be
transmitted is reduced but the energy to transmit a packet
increases as the packet size p increases. The results plotted
in Figure 10 also confirm this analysis.

5.2.3. Varying the Number of Objects (a). We next varied the
number of object a from 1,000 to 20,000 with the default
values of other parameters. In Figure 11, we plot only the

experimental result of Q3 with the grid placement and ran-
dom placement strategies since those of other queries show
the similar pattern. As illustrated in Figure 11, the energy
consumption of each scheme increases with growing the
number of objects since each node detects more objects.
Moreover, as the number of objects increases, the number
of unique objects also increases with the fixed radius of sens-
ing regions. Thus, BF shows the worst performance, and the
performance gap between LCA∗ and DELCA∗ increases.
On average, the performance of LCA∗ is 2.70 times better
than that of BF. In addition, DELCA∗ is 1.61 times better
than LCA∗.

5.2.4. Relative Error. Finally, we report the accuracy of the
tested algorithms with the three duplicate semantics (i.e.,
the weak, strict, and monoid semantics). To measure the
accuracy, we compared with an ideal system in which each
sensor node detects the objects accurately without any dupli-
cate detection. We computed the relative error err of every
algorithm with respect to the result of the ideal system such
that err = Aggideal − Agg /Aggideal, where Aggideal is the
aggregation result by the ideal system and Agg is that of each
algorithm. In Figure 12, we plotted the relative errors of the
aggregation results of query Q3 on the grid placement strat-
egy with. We plot the relative errors of the aggregation results

10

8
9

6
7

4
5

2
3

1
0

J

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

Q1-random

(a) Q1

12

8

10

6

4

2

0

J

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

Q2-random

(b) Q2

15
13
11

9
7
5
3
1

−1

J

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

Q3-random

(c) Q3

8
9

10

6
7

4
5

2
3

1
0

J

15 m 17.5 m 20 m 22.5 m 25 m
S

BF
LCA⁎

DELCA⁎

27.5 m 30 m

Q4-random

(d) Q4

Figure 9: Energy consumption on random placement with varying s.

12 Journal of Sensors

of Query Q3 on the grid placement strategy with δ = 0 995
and δ = 0 998.

As shown in Figure 12, as δ increases, the relative error
decreases. Furthermore, the relative error is much affected

by each of the query processing methods rather than the
duplicate semantics. In LCA∗ and BF methods, each coordi-
nator (and the base station) determines the unique objects
among the objects coming from its descendants irrespective

20

12
14
16
18

10
8
6
4
2
0

J

24 48 76 100
p (byte)

BF
LCA⁎

DELCA⁎

124

Q3-grid

(a) Q3-grid

20

12
14
16
18

10
8
6
4
2
0

J

24 48 76 100
p (byte)

BF
LCA⁎

DELCA⁎

124

Q3-random

(b) Q3-random

Figure 10: Energy consumption with varying p.

25

20

15

10

5

0

J

1000 5000 10000 15000
a

BF
LCA⁎

DELCA⁎

20000

Q3-grid

(a) Q3-grid

25

20

15

10

5

0

J

1000 5000 10000 15000
a

BF
LCA⁎

DELCA⁎

20000

Q3-random

(b) Q3-random

Figure 11: Energy consumption with varying a.

0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

0

er
r

Weak Strict

BF
LCA⁎

DELCA⁎

Monoid

Q3-grid

(a) Q3-grid when δ is 0.995

0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

0

er
r

Weak Strict

BF
LCA⁎

DELCA⁎

Monoid

Q3-grid

(b) Q3-grid when δ is 0.998

Figure 12: Relative error.

13Journal of Sensors

of the overlaps of the sensing regions. Thus, even though two
objects are detected by different sensor nodes whose sensing
areas are disjoint, these objects can be regarded as the dupli-
cates, if the similarity value is at least δ. Recall that each sen-
sor node determines the unique objects at the end of the first
phase by using LSH vectors in DELCA∗. Since the unique
objects are determined at each node by collaborating with
its oneighbors only, DELCA∗ is more accurate than the
other methods.

6. Conclusion

In this paper, we study the situation when sensors can have
overlapping sensing regions, and the objects have no explicit
identifiers. When the sensing regions of sensors can overlap,
an object can be detected by several sensor nodes. Such detec-
tion of duplicates by several sensors makes the in-network
query processing in WSNs problematic. In this paper, we
propose an approximate but effective in-network aggregation
algorithm, called DELCA∗, to compute aggregation queries
for the objects without any identifiers. We utilize the LSH
to split the unique objects and potential duplicates in the first
phase of DELCA∗. Then, during the second phase, by per-
forming deduplication, partial in-network aggregation can
be conducted. In addition, to alleviate the nontransitivity
issue of the similarity measures, we consider three duplicate
semantics. To demonstrate the efficiency of our proposed
algorithm DELCA∗, we measure the transmission costs of
three aggregation processing methods: brute-force (BF)
method, DELCA∗, and LCA∗. In our experiments, BF shows
the worst performance since every detected object is trans-
mitted to the base station. Meanwhile, DELCA∗ shows the
best performance in most cases since the partial aggregation
result of the unique objects and potential duplicates are
transmitted to the base station during the second phase.
However, as the sensing radius becomes larger, the perfor-
mance gap between DELCA∗ and LCA∗ decreases as the
number of duplicated objects increases. In our experiments,
the relative error is more significantly affected by the query
processing methods used than the duplicate semantics. BF
and LCA∗ determine the unique objects without considering
the overlaps of the sensing regions. However, since each sen-
sor node identifies unique objects among its detected objects
by collaborating with its oneighhors, DELCA∗ is the most
accurate. In a future work, we will investigate a technique
that chooses DELCA∗ and LCA∗ adaptively by considering
the network configuration, sensing radius, and the number
of potential duplicates.

Data Availability

The Kruger Buffalos data used to support the findings of this
study have been deposited in the Movebank Repository
(http://www.movebank.org).

Conflicts of Interest

The authors declare that there is no conflict of interests
regarding the publication of this article.

Acknowledgments

This work was supported by the Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (2015
R1D1A1A01058909). It was also supported by Next-
Generation Information Computing Development Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT and Future Plan-
ning (NRF-2017M3C4A7063570).

References

[1] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton,
A. Mainwaring, and D. Estrin, “Habitat monitoring with sen-
sor networks,” Communications of the ACM, vol. 47, no. 6,
pp. 34–40, 2004.

[2] W. M. Merrill, F. Newberg, K. Sohrabi, W. Kaiser, and
G. Pottie, “Collaborative networking requirements for unat-
tended ground sensor systems,” in IEEE Aerospace Conference
Proceedings (Cat. No.03TH8652), Big Sky, MT, USA, March
2003.

[3] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao,
“The cougar project: a work-in-progress report,” ACM SIG-
MOD Record, vol. 32, no. 4, pp. 53–59, 2003.

[4] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,”
in Proceedings 2004 VLDB Conference, pp. 588–599, Toronto,
Canada, 2004.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
in Proceedings of the 5th symposium on Operating systems
design and implementation - OSDI '02, pp. 131–146, Boston,
Massachusetts, December 2002.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“The design of an acquisitional query processor for sensor net-
works,” in SIGMOD '03 Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data,
pp. 491–502, San Diego, CA, USA, June 2003.

[7] J.-K. Min, R. T. Ng, and K. Shim, “Aggregate query processing
in the presence of duplicates in wireless sensor networks,”
Information Sciences, vol. 297, pp. 1–20, 2015.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein, “Energy-efficient computing for wildlife track-
ing,” ACM SIGARCH Computer Architecture News, vol. 30,
no. 5, pp. 96–107, 2002.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors,”
in STOC '98 Proceedings of the thirtieth annual ACM sympo-
sium on Theory of computing, pp. 604–613, Dallas, TX, USA,
1998.

[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tinydb: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30,
no. 1, pp. 122–173, 2005.

[11] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” ACM
Transactions on Sensor Networks, vol. 4, no. 2, pp. 1–40, 2008.

[12] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proceedings of the 25th VLDB
Conference, pp. 518–529, Edinburgh, Scotland, 1999.

14 Journal of Sensors

http://www.movebank.org

[13] M. S. Charikar, “Similarity estimation techniques from round-
ing algorithms,” in Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing - STOC '02,
pp. 380–388, Montreal, Quebec, Canada, May 2002.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Local-
ity-sensitive hashing scheme based on p-stable distributions,”
in Proceedings of the twentieth annual symposium on Compu-
tational geometry - SCG '04, pp. 253–262, Brooklyn, NY,
USA, June 2004.

[15] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in Proceedings
20th International Conference on Data Engineering, pp. 449–
460, Boston, MA, USA, April 2004.

[16] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri,
“Medians and beyond: new aggregation techniques for sensor
networks,” in Proceedings of the 2nd international conference
on Embedded networked sensor systems - SenSys '04, pp. 239–
249, Baltimore, MD, USA, November 2004.

[17] A. Silberstein, K. Munagala, and J. Yang, “Energy-efficient
monitoring of extreme values in sensor networks,” in Proceed-
ings of the 2006 ACM SIGMOD international conference on
Management of data - SIGMOD '06, pp. 169–180, Chicago,
IL, USA, June 2006.

[18] S. Xiao, B. Li, and X. Yuan, “Maximizing precision for energy-
efficient data aggregation in wireless sensor networks with
lossy links,” Ad Hoc Networks, vol. 26, pp. 103–113, 2015.

[19] X. Xu, R. Ansari, and A. Khokhar, “Power-efficient hierarchi-
cal data aggregation using compressive sensing in WSNs,” in
IEEE International Conference on Communications (ICC),
pp. 1769–1773, Budapest, Hungary, June 2013.

[20] D.-W. Choi and C.-W. Chung, “Request: region-based query
processing in sensor networks,” in Database Systems for
Advanced Applications. DASFAA 2011. Lecture Notes in Com-
puter Science, vol 6588, J. X. Yu, M. H. Kim, and R. Unland,
Eds., pp. 266–279, Springer, Berlin, Heidelberg, 2011.

[21] A. Soheili, V. Kalogeraki, and D. Gunopulos, “Spatial queries
in sensor networks,” in Proceedings of the 2005 international
workshop on geographic information systems - GIS '05,
pp. 61–70, Bremen, Germany, November 2005.

[22] Y. Zhuang and L. Chen, “Max regional aggregate over sensor
networks,” in 2009 IEEE 25th International Conference on
Data Engineering, pp. 1295–1298, Shanghai, China, March
April 2009.

[23] G. Mali and S. Misra, “Topology management-based distrib-
uted camera actuation in wireless multimedia sensor net-
works,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 12, no. 1, pp. 1–33, 2017.

[24] C.-W. Ngo, W.-L. Zhao, and Y.-G. Jiang, “Fast tracking of
near-duplicate keyframes in broadcast domain with transitiv-
ity propagation,” in Proceedings of the 14th annual ACM inter-
national conference on Multimedia - MULTIMEDIA '06,
pp. 845–854, Santa Barbara, CA, USA, October 2006.

[25] C. Gong, Y. Huang, X. Cheng, and S. Bai, “Detecting near-
duplicates in large-scale short text databases,” in Advances in
Knowledge Discovery and Data Mining. PAKDD 2008. Lecture
Notes in Computer Science, vol 5012, T. Washio, E. Suzuki, K.
M. Ting, and A. Inokuchi, Eds., pp. 877–883, Springer, Berlin,
Heidelberg, 2008.

[26] F. Xu and C. Jermaine, “Randomized algorithms for data rec-
onciliation in wide area aggregate query processing,” in VLDB
'07 Proceedings of the 33rd international conference on Very
large data bases, pp. 639–650, Vienna, Austria, September
2007.

[27] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, no. 4, pp. 660–670, 2002.

[28] “MoveBank,” http://www.movebank.org.

15Journal of Sensors

http://www.movebank.org

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

