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There are a large number of insulators on the transmission line, and insulator damage will have a major impact on power supply
security. Image-based segmentation of the insulators in the power transmission lines is a premise and also a critical task for power
line inspection. In this paper, a modified conditional generative adversarial network for insulator pixel-level segmentation is
proposed. The generator is reconstructed by encoder-decoder layers with asymmetric convolution kernel which can simplify the
network complexity and extract more kinds of feature information. The discriminator is composed of a fully convolutional
network based on patchGAN and learns the loss to train the generator. It is verified in experiments that the proposed method
has better performances on mIoU and computational efficiency than Pix2pix, SegNet, and other state-of-the-art networks.

1. Introduction

Insulators are widely used in the power transmission system.
Once cracked, there would be great failure of power grid
system, causing significant economic loss and social chaos
[1]. Therefore, it is very necessary to detect the insulators
for power line inspection. With the continuous improvement
of robotics and image processing technologies, the manual
inspection is being replaced by inspection robots or UAVs
capable of autonomous inspection, mounted cameras as the
sensors for environment perception or defect detection.
However, it is very difficult to extract and identify the insula-
tor components from the insulator images, because the
insulators have different colour textures, resolution, and
spectrum, also with various positions and postures [2]. In
addition, the images are always with cluttered background,
which makes the insulators difficult to be recognized [3].
Besides, the insulator images may be blurred due to jitter
during the movement of the inspection robot [4].

Segmentation of insulators in the aerial images has been a
basic problem of insulator inspection. Various researches

have focused on this area. Traditional methods usually lever-
age various features for insulator inspection. Zhao et al. [5]
adopt a localization approach of insulators based on shape
points and equidistant model. They use the orientation angle
detection and the binary shape prior knowledge to detect
different kinds of insulators. The method of [6] benefits from
the saliency and adaptive morphology, which fuses the colour
and gradient features to detect the insulators. But this
method cannot be applied to locate various insulators with
inconspicuous colour. Zhai et al. [7] present bunch-drop
fault detection to determine the coordinates of insulators,
but this method can only be used for glass and ceramic
insulators. In [8], the multiscale and multifeature descriptor
is proposed to represent the local features. They obtain spa-
tial order features from the local features, then the region of
insulators is determined using spatial order features. These
methods have similar disadvantage. They present undesir-
able results when the insulator is very close to the
background environment or the background is complex.

Compared with traditional methods, machine learning
approaches are robust and accurate for target detection.
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Shang et al. [9] locate the insulators’ position based on the
maximum between cluster variance and the Adaboost classi-
fier. But this method requires independence between the
insulators. The studies in [10] extract the features based on
Local Directional Pattern (LDP). A classification model
based on Support Vector Machine (SVM) is integrated into
sliding window framework for locating insulators. In [11],
Binary Robust Invariant Scalable Keypoints (BRISK) and
Vector of Locally Aggregated Descriptors (VLAD) are
adopted to detect the insulators. These mixed features are
classified by SVM. But this method is limited to infrared
images. Yan et al. extract the histogram of oriented gradients
(HOG) and local binary pattern (LBP) and use sliding
window method and SVM to realize the insulator detection
[12]. These approaches are basically designed for a specific
type of insulators, leading to a lack of adaptability.

While moving ahead with deep learning technology, the
above algorithms are gradually replaced. Deep learning has
achieved very efficient results in various tasks such as detec-
tion, recognition, and segmentation. The studies in [13]
construct the saliency area detection framework based on
generative adversarial network. However, they use synthetic
insulator samples in the training processing and real images
in the test experiments, which lack sufficient reliability. In
[14], the single shot multibox detector (SSD) combined with
a strategy of two-stage fine-tuning is adopted for identifying
the insulators. But this method is only used for porcelain
insulators and composite insulators. Siddiqui et al. propose
a rotation normalization and ellipse detection method. The
proposed Convolutional Neural Network- (CNN-) based
detection framework achieves detecting 17 different types of
insulators [15]. In [16], authors improve the anchor genera-
tion method and nonmaximum suppression (NMS) in the
region proposal network (RPN) of the faster R-CNN model,
which enhance the accuracy and efficiency. But these
methods cannot realize real-time detection. Arnab et al.
propose that high-order consistency occurs in the CNN-
based segmentation method [17]. In [18], authors show that
semantic segmentation based on GAN can solve the high-
order consistency problem.

In summary, current insulator segmentation methods all
have some deficiencies. Feature-based traditional methods

cannot deal with various types of insulators with different
scales or shapes. CNN-based segmentation networks lead to
high-order consistency that cannot be used in real-time
situation. To address these issues, a more adaptive method
needs to be devised. In this paper, we use an end-to-end
GAN network to achieve pixel-level insulator segmentation.
The trained model can achieve segmenting insulators
without manually set parameters. It is verified in experiments
that the network can produce high-quality pixel-level
segmentation of insulators in real time on embedded devices
in the routine inspection.

The contributions of this paper are the following: Firstly,
a lightweight end-to-end generator with asymmetric convo-
lution kernel is devised to produce pixel-level segmentation
of insulators with the original RGB image as input. Secondly,
we explore the patchGAN classifier in the discriminator,
presenting a punishing function at the scale of image patches.

The rest of this paper is organized as follows: Section 2
discusses the pipeline of our modified conditional generative
adversarial network. Section 3 presents the dataset establish-
ment. The experimental evaluation and discussions are pro-
posed on Section 4, and we conclude this paper in Section 5.

2. Modified Conditional Generative
Adversarial Network

2.1. Modified Model. In this section, we introduce the overall
description of the proposed network. As shown in Figure 1,
the framework is a fully convolutional GAN, which is consti-
tuted by two components: a lightweight generator based on
encoder-decoder network and a discriminator with classifica-
tion model based on patchGAN. The generator produces
fake segmentation result for a given image. The discriminator
takes in both the fake segmentation images and ground truth
real images and tries to discriminate real images from fake
generated images. During the training process, the generator
model is concurrently trained to generate more realistic
images, which are hard to discriminate from the ground truth
real images.

2.2. Generator. The generator follows the encoder-decoder
architecture and the details are listed inTable 1. It is composed
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Figure 1: Network architecture.
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of 5 layers of encoding and 5 layers of decoding. Each encod-
ing layer consists of convolutional layer, batch normalization
(BN), rectified linear units (ReLU), andmax pooling layer. BN
is adopted to stabilize training, speed up the convergence, and

regularize the model [19]. Max pooling with a 2 × 2 window
and the stride of 2 is inserted between two encoding layers,
which achieves subsampling the feature map by a factor of 2.
Furthermore, we store the max pooling indices to capture

Table 1: Generator architecture.

Set Layer name Type of layers Output size

Input RGB image 256 × 256 × 3

Encoder1

Conv1 Conv+BN+ReLU, fs = 3 ; 1ð Þ 256 × 256 × 64
Conv2 Conv+BN+ReLU, fs = 1 ; 3ð Þ 256 × 256 × 64
MP1 Max pooling (window 2 × 2) 128 × 128 × 64

Encoder2

Conv3 Conv+BN+ReLU, fs = 3 ; 1ð Þ 128 × 128 × 128
Conv4 Conv+BN+ReLU, fs = 1 ; 3ð Þ 128 × 128 × 128
MP2 Max pooling (window 2 × 2) 64 × 64 × 128

Encoder3

Conv5 Conv+BN+ReLU, fs = 3 ; 1ð Þ 64 × 64 × 256
Conv6 Conv+BN+ReLU, fs = 1 ; 3ð Þ 64 × 64 × 256
Conv7 Conv+BN+ReLU, fs = 3 ; 3ð Þ 64 × 64 × 256
MP3 Max pooling (window 2 × 2) 32 × 32 × 256

Encoder4

Conv8 Conv+BN+ReLU, fs = 3 ; 1ð Þ 32 × 32 × 512
Conv9 Conv+BN+ReLU, fs = 1 ; 3ð Þ 32 × 32 × 512
Conv10 Conv+BN+ReLU, fs = 3 ; 3ð Þ 32 × 32 × 512
MP4 Max pooling (window 2 × 2) 16 × 16 × 512

Encoder5

Conv11 Conv+BN+ReLU, fs = 3 ; 1ð Þ 16 × 16 × 512
Conv12 Conv+BN+ReLU, fs = 1 ; 3ð Þ 16 × 16 × 512
Conv13 Conv+BN+ReLU, fs = 3 ; 3ð Þ 16 × 16 × 512
MP5 Max pooling (window 2 × 2) 8 × 8 × 512

Decoder1

UP1 UpSampling 16 × 16 × 512
Deconv1 Deconv+BN+ReLU, fs = 3 ; 1ð Þ 16 × 16 × 512
Deconv2 Deconv+BN+ReLU, fs = 1 ; 3ð Þ 16 × 16 × 512
Deconv3 Deconv+BN+ReLU, fs = 3 ; 3ð Þ 16 × 16 × 512

Decoder2

UP2 UpSampling 32 × 32 × 512
Deconv4 Deconv+BN+ReLU, fs = 3 ; 1ð Þ 32 × 32 × 512
Deconv5 Deconv+BN+ReLU, fs = 1 ; 3ð Þ 32 × 32 × 512
Deconv6 Deconv+BN+ReLU, fs = 3 ; 3ð Þ 32 × 32 × 256

Decoder3

UP3 UpSampling 64 × 64 × 256
Deconv7 Deconv+BN+ReLU, fs = 3 ; 1ð Þ 64 × 64 × 256
Deconv8 Deconv+BN+ReLU, fs = 1 ; 3ð Þ 64 × 64 × 256
Deconv9 Deconv+BN+ReLU, fs = 3 ; 3ð Þ 64 × 64 × 128

Decoder4

UP4 UpSampling 128 × 128 × 128
Deconv10 Deconv+BN+ReLU, fs = 3 ; 1ð Þ 128 × 128 × 128
Deconv11 Deconv+BN+ReLU, fs = 1 ; 3ð Þ 128 × 128 × 64

Decoder5

UP5 UpSampling 256 × 256 × 64
Deconv12 Deconv+BN+ReLU, fs = 3 ; 3ð Þ 256 × 256 × 64
Deconv13 Deconv+tanh, fs = 4 ; 4ð Þ 256 × 256 × 3
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the image’s boundary information in the encoder feature
maps. In particular, we use two asymmetric spatial filters of
3 × 1 and 1 × 3 instead of 3 × 3, which deepen the network
structure and increase the degree of its nonlinearity. In
addition, the 3 × 1 and 1 × 3 filters reduce the number of
parameters and yield amore compact generatormodel, which
helps in improving its computational efficiency [20]. The
encoder layers predict both low-level and high-level feature
maps, which have excellent feature expression capability.

Each decoding layer has a corresponding encoder layer.
UpSampling layer is applied to upsample the input feature
map utilizing the max pooling indices. As one of the most
successful methods in segmentation, the max pooling indices
that are stored by the corresponding encoder feature map
pass to decoder feature maps, which preserves the boundary
details and leads to high segmentation accuracy. BN is
inserted between the deconvolution and ReLU. The asym-
metric spatial filters are also used to each of these maps. In
the absence of asymmetric spatial filters, the entire network
parameters have increased by more than 19M, which has a
great impact on processing speed.

The generator was built as a lightweight network, but the
number of layers is a comprehensive trade-off between time-
consuming and segmentation accuracy. The final output of
the generator is a 256 × 256 × 3 segmentation result, which
is fed to discriminator model with the input image.

2.3. Discriminator. The discriminator model structure is
presented in Table 2. The concatenation of the generated
image and ground truth real image is the input of the
discriminator. The discriminator model has 5 blocks and
consists of convolutional layer, LeakyReLU, and BN. The
convolutional filter is 4 × 4, with the stride of 2. BN is added
to this model except the first block, which is leveraged to
accelerate the network convergence process. LeakyReLU is
used to guarantee that neurons will not die when the input
is less than 0.

It is well-known that the L1 loss produces blurry results in
the generator, which help to force low-frequency correctness
[21]. L1 loss can be defined as follows:

L1 Gð Þ= x,y,z ky − G x, zð Þk1½ �: ð1Þ

Hence, the discriminator is motivated to model the high-
frequency structure. For this end, the patchGAN is adopted
as the discriminator structure. Based on insulator segmenta-
tion experiment, we choose patch size 16 × 16 instead of 70

× 70 in [22], which are verified in the effect in the experi-
mental section. The patchGAN maps from 256 × 256 image
to a 16 × 16 array of outputs X, where each Xij signifies
whether the patch ij in the image is real or fake. It is worth
noting that we only use the discriminator during the training
phase, so the efficiency is not primary in the experiments.

2.4. Objective. The objective function of the network can be
defined as follows:

G = arg min
G

max
D

LGAN G,Dð Þ + λL1 Gð Þ,
LGAN G,Dð Þ= x,y log D x, yð Þ½ �+x,z log 1 −D x,G x, zð Þð Þð Þ½ �,

ð2Þ

where λ is the weight parameter, Gðx, zÞ is the predicted
segmentation image, y is the ground truth, and L1ðGÞ stands
for L1 loss.

As the formula shows, it has two parts. First, G tries to
minimize the accuracy of the discriminator D that tries to
maximize it. In addition, the generator is trained to achieve
both fooling the discriminator and producing more realistic
image which is similar to the ground truth in an L1 sense.

3. Establishment of Our Dataset

3.1. Data Collection UAV System. To accomplish this task, a
UAV data acquisition system is designed and shown in
Figure 2. The data acquisition system is composed of a
Pan-Tilt camera of Zenmuse and a DJI M200 UAV platform
and an insulator segmentation method to be proposed. The
camera captures the images of insulators on the transmission
line, including various types like porcelain insulators and
composite insulators.

3.2. Datasets and Implementation Details. The insulator
datasets are acquired in two ways: the UAV data acquisition
system and the Internet. Samples are enhanced by random
rotation, mirroring, colour perturbation, and blurring and
resized to 256 × 256 × 3 before training. The datasets consist
of 6000 insulator images with more than 6 types, and each
image contains 1 to 10 insulators, with an average of 4 insu-
lators per image, adding up to a total of 24,000 insulators.
They are divided into a training set of 5000 images, a valida-
tion set of 500 images, and a test set of 500 images. It is worth
mentioning that a whole strip of connected domains covering
the insulator is used as the insulator label, ignoring its edge

Table 2: Discriminator architecture.

Set Layer name Type of layers Output size

Input RGB and generated 256 × 256 × 6
Encoder1 Conv1 Conv+LeakyReLU, fs = 4, 4ð Þ, s = 2 128 × 128 × 64
Encoder2 Conv2 Conv+LeakyReLU+BN, fs = 4, 4ð Þ, s = 2 64 × 64 × 128
Encoder3 Conv3 Conv+LeakyReLU+BN, fs = 4, 4ð Þ, s = 2 32 × 32 × 256
Encoder4 Conv4 Conv+LeakyReLU+BN, fs = 4, 4ð Þ, s = 2 16 × 16 × 512
Encoder5 Conv5 Conv+LeakyReLU+BN, fs = 4, 4ð Þ, s = 2 16 × 16 × 1
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details because for the insulator identification there is no
need to mark the shape. Besides, this labeling method not
only reduces network complexity but also improves the
processing efficiency.

4. Experiments

In this section, we carry out several experiments to dem-
onstrate and validate the following goals. First, we describe
the evaluation metrics used in the experiments. Next, we
demonstrate the improvement of segmentation accuracy
and efficiency comparing our model with state-of-the-art
methods. Then, we conduct some experiments to verify the
capacity of our generator. Besides, we compare the segmenta-
tion results of different patch sizes in the discriminator.
Furthermore, the influence of training set image number is
evaluated. Finally, we analyse the segmentation results of
insulators in different sizes.

All the networks are implemented based on Keras frame-
work using TensorFlow backend. The network is checked out
on NVIDIA Tesla V100 server. During the training, we set
batch size of 8, Adam optimizer with β1 = 0:9, β2 = 0:99,
and learning rate of 0.0001.

4.1. Evaluation Metrics. Mean Intersection over Union
(mIoU) is a standard for defining the segmentation accuracy.
mIoU evaluates the prediction precision of the segmentation.
mIoU can be formulated as

mIoU = 1
nc

〠
i

nii
∑inij +∑jnji − nii

, ð3Þ

where nc is the number of the dataset classes and nii is the
calculated number of pixels of class i predicted to class i. nij
is the number of pixels of class i predicted to class j, and nji

is the number of pixels of class j predicted to class i.
The average segmentation time of different models is

compared in this paper, which is very important for the
real-time performance.

4.2. Analysis of Architecture. To verify the superiority of the
modified network, we compare our method with Pix2pix
[22], SegNet [23], Unet [24], and FCN [25]. FCN uses a fully
convolutional network to transform image pixels to pixel
categories for semantic segmentation. The segmentation-
equipped VGG16 net [26] is adopted as the front structure
in this experiment. Figure 3 illustrates the segmentation
performance of the five models. Table 3 shows the quantita-
tive comparison results. We can see that Unet performs as
good as SegNet, and it has the lowest time consumptions.
FCN has a slight increase of mIoU, but it has the most
parameters and the longest processing time. Pix2pix
performs relatively well due to the adoption of GAN, which
is similar to our model. The GAN model can correct the
higher order inconsistencies between the generated segmen-
tation image and ground truth real image. Our method is
superior to other methods with the highest mIoU, the fewest
parameters, and the lowest time consumption. It shows that
our model with asymmetric spatial filters and patchGAN
boosts the performance.

4.3. Influence of Generator Architecture. To show the time
consumption and segmentation accuracy of our model, we
compare several generator models. In this experiment, the
same discriminator model with patch size 16 × 16 is lever-
aged. We call the model that used the spatial filters 3 × 3 as
33 patch16 for convenience. The asymmetric spatial filters 1
× 3 and 3 × 1 are adopted in our models. In addition, we
use the same generator as the Unet network, which we call
Unet patch16. The difference between the Unet patch16
and Pix2pix is that they have different patch sizes. The
comparison results are shown in Table 4. This experiment
demonstrates that our method has a little advantage over
mIoU, and the parameters are much less than them. It can
be seen that the encoder-decoder architecture with asymmet-
ric spatial filters in the generator plays an important role in it.

4.4. Comparison of Patch Size in the Discriminator. The patch
size of our discriminator influences the segmentation perfor-
mance. Table 5 shows the qualitative results. We can see that
patchGAN with a 16 × 16 patch size is used in all our

Figure 2: UAV data acquisition system.
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experiments. Obviously, 1 × 1 means PixelGAN and 256 ×
256 means GAN. The 1 × 1 PixelGAN and 256 × 256 GAN
obtain results that are not very satisfactory. The 16 × 16 patch

size performs as good as the 64 × 64 patch size, but the 64
× 64 patch size has more parameters.

4.5. Influence of the Training Set Image Number on
Segmentation Results. To evaluate the influence of training
set image number, 1000, 2000, 3000, 4000, and 5000 images
are randomly selected to constitute different training data-
sets. We train the model using these datasets and verify its
performance on the same test datasets. Figure 4 shows the
mIoU results. The results show that the more training set
number, the higher mIoU. But mIoU grows slowly when
the training set reaches 3000 or more.

4.6. Analysis of Segmentation Results of Insulators in Different
Sizes. To verify the ability of our model about detecting
various insulators with different scale in the insulator images,
Figure 5 shows the segmentation results. The result demon-
strates that although the objects in the background are larger
than the insulators, our model can still segment the insulators
with high quality. Our model has the ability to realize the

Test
samples

Ground
truth

SegNet

UNet

FCN

Pix2pix

Ours

Figure 3: Segmentation results of different models.

Table 3: Results of different models.

Model mIoU Para (M) Average time (ms)

Pix2pix 0.862 30.81 28

SegNet 0.831 32.44 29

Unet 0.836 28.03 18

FCN 0.853 134.56 266

Ours 0.902 18.73 17

Table 4: mIoU and parameters for different generators.

Model mIoU Para (M)

Unet patch16 0.882 33.57

33 patch16 0.868 38.01

Ours 0.902 18.73
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segmentation of both the near insulators and the distant
insulators during the actual detection process.

4.7. Influence of Noise on Segmentation Results. To simulate
the different weather conditions, we add the salt and pepper
noise to the insulator images. In this experiment, three
kinds of training datasets are designed: all noisy dataset,
half noisy and half noise-free dataset, and noise-free data-
set, respectively. We train the three models which are called
model noise, model half noise, and model no noise for con-
venience. Then, we verify the segmentation performance on
the same test datasets which are images with salt and
pepper noise. Table 6 shows the quantitative comparison
results. Figure 6 illustrates the performance of segmenta-
tion. We can see that the noisy datasets used in the training
process boost the segmentation performance. Therefore, the
diversity of training datasets has an important impact on
the segmentation results.

5. Conclusion

In this paper, we introduce a pixel-level insulator segmenta-
tion network with modified conditional generative adversarial
network. Asymmetric spatial filters are adopted in the genera-
tor to reduce network parameters and improve computing
efficiency. In addition, we explore the patchGAN classifier in
the discriminator to model the high-frequency structure. The
network can produce high-quality segmentation of insulators
with high mIoU and less time cost compared with the existing
end-to-end segmentation methods. Furthermore, the train-
able parameters are restricted, which makes the proposed
network applicable to real-time segmentation on embedded
devices in the future. Additionally, the approach also can be
applied to other detection tasks in power inspection.
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Table 5: mIoU for different patch size.

Patch size 1 × 1 16 × 16 64 × 64 256 × 256
mIoU 0.836 0.902 0.901 0.842
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Figure 4: mIoU results of different training set numbers.
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Figure 5: Segmentation results of insulators in different sizes.

Table 6: mIoU for different training datasets.

Model mIoU

Model noise 0.766

Model half noise 0.689

Model no noise 0.302

Test samples

Ground truth

Model no noise

Model half noise

Model noise

Figure 6: Segmentation results of different training datasets.
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