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In wireless sensor networks, an improved throughput capacity region can be achieved by equipping multiple channels. However,
such approach inevitably brings the issue of solving the coupled channel assignment and scheduling problem. This paper put
forward a low-complexity distributed channel assignment and scheduling policy for multichannel wireless sensor networks with
single-hop traffic flows, named LDCS, as well as its multihop multipath extension. Under the proposed algorithms, random
access and backoft time techniques are introduced to keep the complexity low and independent of the number of links and
channels. Through theoretical analysis and simulation experiments, it is proved that the proposed algorithms are throughput
guaranteed, and in some network scenarios, the achieved capacity region can be larger than that of other comparable distributed

algorithms.

1. Introduction

In wireless networks, datagrams are transmitted from source
to destination through a routing selection mechanism in net-
work layer associated with scheduling in MAC layer. When
the paths for all users are fixed, scheduling policies play a
key role in utilizing limited bandwidth effectively to achieve
better throughput performance. There have been a number
of findings and research results on the topic of improving
throughput capacity region via designing efficient scheduling
algorithms. It has been demonstrated that the maximum
capacity region can be guaranteed by the throughput-
optimal scheduling algorithms such as max-weight schedul-
ing [1] for single-path traffic and back-pressure scheduling
[2] for multipath cases. However, such policies require
centralized management along with great limitation. The
centralized scheduling algorithms require management node

or base station in the network to collect information flow and
carry out global control, and as a consequence, it is difficult to
implement in many network scenarios such as wireless
sensor networks (WSN) and ad hoc networks (MANET).

In order to enhance the adaptability, a series of distrib-
uted maximal scheduling (MS) algorithms that are more
applicable in practice have been proposed under various
interference models [3, 4]. So-called “distributed” refers to
the behavior of network nodes deciding to forward data or
not according to their own conditions and the information
obtained from neighborhood without centralized control. It
has been proved that MS is throughput guaranteed. That is,
it can achieve at least a certain fraction of the maximum
throughput capacity region. Even so, such maximal-
matching-type algorithms need to execute a maximal match-
ing finding process at each time slot, which requires a
remarkable number of iterations increasing logarithmically
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with the number of links in the system [5] and consequently
causes nontrivial implementation complexity. Considering
such drawback, designing distributed scheduling policies
with low complexity is worth further research. The authors
in [6] presented a distributed Q-SCHED algorithm based
on random access and backoff time techniques [7], whose
throughput performance could be arbitrarily close to that of
MS. The complexity of Q-SCHED is low and independent
of the network size, which argues its applicability for large-
scale network systems.

The achievements mentioned above are all acquired on
single-channel conditions. In fact, the application of multi-
channel technology can significantly improve the throughput
performance of WSN. At present, IEEE 802.11 series has
provided resource base for the application of multichannel,
such as 802.11a with 12 nonoverlapping channels operating
on 5GHz band and 802.11b/g with 3 channels on 2.4 GHz
frequency band. In multichannel environments, channel
assignment and scheduling are usually combined with each
other to jointly affect the throughput performance [8-10],
which poses a technical challenge for designing distributed
algorithms that solve the coupled channel assignment and
scheduling problem. Through in-depth research, we find that
many single-channel scheduling algorithms cannot be
extended straightforward to multichannel networks because
such extension may lead to poor throughput performance.
Due to the existence of channel diversity, the designing of
distributed channel assignment and scheduling strategy in
multichannel networks is much more complicated than that
in single-channel scenarios. Until now, there have been a
series of research results on this issue. However, these exist-
ing results still have problems to be solved, such as complex-
ity. Obviously, the application of multichannel in wireless
networks is bound to bring an increased implementation
complexity of the distributed algorithms.

In view of the above-discussed facts, the goal (or the main
contribution) of this paper is to devise distributed algorithms
for multichannel wireless networks with low complexity. We
present a channel assignment and scheduling algorithm,
named LDCS, for cases with single-interface nodes. In order
to keep the complexity low, LDCS extends the idea of the
above-mentioned Q-SCHED to fit into multichannel circum-
stances. It is theoretically proved that LDCS is throughput
guaranteed, and the achieved capacity region can be larger
than that of other comparable distributed algorithms in a
variety of scenarios. After that, we extend the policy to the
cases of multipath routing with multihop flows. The simula-
tion experiments verify our theoretical analysis.

2. Related Work

In multichannel scenarios, it is truly difficult to guarantee
the throughput performance (characterized by capacity
region) in a distributed manner. The objective of this issue
is to maintain the system stable with finite queue lengths
inside a specific capacity region. The implementation of
scheduling algorithms should be combined with data flow
allocation and channel assignment because of channel
diversity. Toward this direction, in [9], a provably efficient
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algorithm (referred therein as SP) and its multipath exten-
sion MP have been developed for multichannel multi-
interface (MC-MI) networks. SP and MP were proved to
be throughput guaranteed, which implies that they can
ensure a certain fraction of the maximum capacity region.
In SP and MP, each link maintains multiple per-channel
queues as well as one common link queue. Arriving
packets first enter the common link queue and are then
assigned to each channel via executing a data flow alloca-
tion mechanism, as illustrated in Figure 1. According to
the per-channel queues, maximal scheduling is carried
out to determine the set of forwarding queues. Such
relay-forwarding-based process definitely has a negative
impact on system performance. At the same time, aiming
at achieving reliable throughput capacity region under SP
or MP, each link collects queue length and channel rate
information from neighborhood before allocating data
flow, which leads to extra overhead inevitably. In this
paper, we try to adopt a more concise way to implement
effective configuration of data traffic.

Besides SP and MP, for the purpose of solving the
coupled resource allocation problem systematically in MC-
MI networks, Cheng et al. raised another method, named
tuple-based MS [11]. In addition, a novel model was put
forward in [11] under which the original nodes, interfaces,
and channels are transformed into multiple node-radio-
channel tuples. A simple example is shown in Figure 2,
where the original link [ is composed of node m and n
while the mapped tuple link # is formed by tuple (m, i, c)
and (n,j,c). Such framework enables the single-channel
MS algorithm to be extended straightforward to MC-MI
wireless networks with guaranteed throughput perfor-
mance. Compared with SP, the tuple-based MS has been
shown to ensure a larger capacity region with lower average
backlog. However, it could be observed that, with regard to
SP, MP, and tuple-based MS, they all necessarily attempt to
operate a maximal matching process during each time slot,
which incurs significant complexity. In fact, at least O(log
|L||C|) number of iterations have to be conducted for the
purpose of obtaining a maximal schedule [12], where |L|
and |C| denote respectively the number of links and chan-
nels in the network. In order to reduce the complexity,
we employ random access and backoft time techniques.

In recent years, a series of research results on channel
allocation or scheduling in multichannel networks have
emerged from other different perspectives. Authors of [13]
developed a DES-Chan framework for distributed channel
assignment. However, such framework did not address the
scheduling issue or delve into throughput performance.
Some other efforts have been made on designing algorithms
for OFDM-based multichannel downlink relay networks
[14-16]. However, in OFDM-based systems, each channel
can only be occupied by one link at each time slot because
of opportunism. By comparison, our results apply to more
general scenarios where different links can operate on the
same channel provided that they do not interfere with each
other. In addition, there have emerged some appealing
results focusing on centralized schemes with low delay or
complexity [17, 18]. Differently, we only consider the online
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FIGURE 1: The relay-forwarding framework in SP and MP.
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FIGURg 2: Transformation process involved in the tuple-based
model.

fashion that is more suitable for distributed WSN in this
paper.

The rest of the paper is organized as follows. System
model and notations are introduced in Section 3. In Section
4, we propose the LDCS algorithm and prove that it can guar-
antee a certain fraction of the maximum throughput capacity
region with low complexity. We next extend our results to
multihop multipath cases in Section 5. Simulation results
are given in Section 6. Finally, we conclude in Section 7.

3. System Model and Notations

We consider a single-interface multichannel wireless network
where each node is equipped with one interface which is able
to switch among channels dynamically if necessary. Let L and
C denote respectively the set of all links and available non-
overlapping channels in the network. For any set I', |I'| refers
to the cardinality of I'. With single-hop data flows, each link
represents a transmission path for a pair of source and
receiver. Radio packets leave the system once they reach the
destination. The time is slotted and synchronized for all links
in the network. During each time slot, channel assignment
and scheduling policy jointly decide the sets of scheduled
links and occupied channels. Relevant definitions and termi-
nologies are introduced now.

With regard to the collision model, each link / corre-
sponds to an interference set I, that includes links interfering
with [ over the same channel and let / € I;. If [ and another
link in I; operate on the same channel simultaneously, neither
of them transmits successfully. Assume the interference
relationship is symmetric, ie., [ €I, if and only if keI,
Denote by K the maximum number of links that can be
scheduled on a given channel simultaneously within the
interference set of arbitrary link. Due to the single-interface

configuration, adjacent links cannot transmit simultaneously
even if they are scheduled on different channels. Thus, one
can split I; into two mutually exclusive subsets, denoted
respectively by I}, (1) and I, (1). Specifically, I}, (1) is com-
posed of links that are adjacent to [ (including [ itself) and
Icha (D) is formulated by Iy, (1) =1I;\ I, (I). Here, define K,
as the maximum number of links that can be scheduled at
the same time within I}, (I) of any link I Similarly, within
the set I, (/) of any link /, use K, to represent the maximum
number of links that can be scheduled on arbitrary channels
simultaneously. In this paper, I}, (I) and I, (I) are respec-
tively named by interface and channel interference set while
K/K,IK, are named respectively by link/interface/channel
interference degree.

The transmission rate (or capacity) of link [ on channel ¢
is denoted by r{. It is assumed that 7{ >0 for any [ and c.
Because of the presence of channel diversity, every link has
a unique rate on each channel. Denote by A;(n) the number
of arrivals at link / in time slot n, the arrival process is then
defined as {A;(n)}. We make some simple assumption that
the arrival process {A;(n)} is i.i.d. across time with the mean
value A;. In fact, our method can be extended to suit more
general arrival processes. For simplicity, this paper focuses
only on situations with the assumption mentioned above.
To store data packets, each link [ needs to maintain one chan-
nel queue for every channel ¢, denoted by (I, c). One can
obtain from the description above that the set of channel
queues interfering with (I, ¢) denoted by ¢, is as

e = {(k 0): k€ Igy, (D} U { (j, c’): jel(),c e c}.
(1)

Denote the queue length of (I,¢) by gf(n). Arriving
packets are allocated immediately to multiple channel queues
using some data-flow-allocation algorithm. Let Aj(#n) be the
number of datagrams assigned to (I, ¢), and the expectation
is denoted by A] = E[Af(n)]. Thus, the evolution of the queue
length is given as

qi(n+1) = [gi(n) + Aj(n) - Di(n)]", (2)

where Df(n) denotes the number of datagrams transmitted by
(I,¢) in time slot n based on the channel assignment and
scheduling algorithm. It is easy to find that Dj(n) = r{ if (, c)
is scheduled at n; otherwise, Df(n) = 0. For convenience, we
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TaBLE 1: Table of all notations.
Variable Notation
LCS Set of all links, channels, and users
I Set of links interfering with [ over the same channel

Icpa(D)> Iy (1) Channel/interface interference set

K, K|, K, Link/interface/channel interference degree
1y Rate of link / on channel ¢
Ay(n), A, (n) Number of packets arriving at link / and user s at
time slot n
Ap A Average packet arriving rate on link / and user s
(Le) Channel queue maintained by link / on channel ¢
) Set of all channel queues that interfere with (I, c)
q;(n) Queue length of (I, c)
A(n) Number of packets assigned by link / to channel c at
! time slot #
A Expectation of Af(n)
Dj(n) Number of packets served by (], ¢) in time slot n
aq Maximum capacity region for single-hop and
’ multihop cases
% Efficiency ratio of algorithms LDCS and M-LDCS
H ii Routing matrix
P;(n) Fraction of data packets assigned to path i by user s

will use the term “queue” to represent the “channel queue” in
what follows. We say the network system is stable if for any
v > 0, there exists a constant ¥ > 0 such that [19]

] [EXOF oo

where Pr{S} represents the probability of the event S.
System stability implies that network can bear current
input load. It can be obtained that the system is stable
and all the queue lengths remain finite if the Markov
chain {qj(n): l€L,ce C} is positively recurrent.

The capacity region achieved by a particular channel
assignment and scheduling algorithm is defined as the set of
A that stabilizes the network system, where A = [A;, A,, -++, A;]
is exactly the input load. As we know, the maximum capacity
region Q) can be obtained by the throughput optimal schedul-
ing [17] in a centralized way. Under a distributed algorithm, if
the queue lengths remain finite for any A € yQ with constant
y € (0, 1], the efficiency ratio of this algorithm is then denoted
by y. The key variables in this paper are summarized in
Table 1.

4. LDCS and Performance Analysis

At each time slot in LDCS, packets are assigned to channel
queues immediately after arriving based on our data flow
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allocation mechanism without extra relay-forwarding com-
mon queue, which leads to a reduced transmission delay
[17]. For channel assignment and scheduling, LDCS employs
the random access and backoff time techniques (the idea of
above-mentioned Q-SCHED) instead of executing maximal
matching process. The LDCS algorithm consists of two parts
given as follows.

4.1. Data Flow Allocation. For data flow allocation, a rate-
proportional-based policy is designed as

.C
"

Aj(n) :Al(”)m’
ec]

(4)

which can be realized by using a probability approach. It is
easy to see that the process {Af(n)} is also i.id. across time
slot. The allocation process is implemented locally and is
shown in Figure 3.

In LDCS, each link does not require information of other
links in the data flow allocation phase, which can decrease the
overhead effectively compared with the existing SP policy [9].

4.2. Channel Assignment and Scheduling. After data alloca-
tion, LDCS then utilizes its channel assignment and
scheduling mechanism to make the decision whether a
queue should be scheduled or not. Following the idea of
Q-SCHED [6], the random access and backoff time tech-
niques are employed. To be specific, each time slot is
divided into two subslots: scheduling slot and transmis-
sion slot, either of which has a fixed length. The schedul-
ing slot is further divided into M minislots. Such time
slot division is shown in Figure 4. According to the back-
off time technique, each queue (I, ¢) selects a minislot
with probability as

{ Pr{l{=M+1}=eF,

Pr{lj=m} = e PIm=UM) _ o=pi(miM) = 1,2, oo, M,

(5)

where I represents the backoff time picked by (I, ¢) and
the parameter pj is computed as

: ai(n)/r; (6)

pl =a i / o >
Gidesq, [z(’“,)“(m) gi ()/ri

where a =log M. In formula (5), if a queue chooses M + 1
as its backoff time, it will remain static in the current
time slot. Instead of waiting for the entire scheduling slot,
a queue enters the transmission slot to send messages
immediately after the selected backoft time expires as long
as no one in its interference set has already picked
smaller backoff time. If two or more queues select the
same minislot, all of them fail to accomplish the trans-
mission successfully because of collision.
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FIGURE 3: Data flow allocation based on channel queues.
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FIGURE 4: The time slot division under the proposed LDCS.

4.3. Stability Region. For the purpose of analyzing stability,
we introduce two lemmas and construct the Lyapunov func-
tion as

d
*(n
V(n) = max il (d ) (7)
feLceC (od)eg Tj

Lemma 1. At each time slot n, there exists a constant G > 0
such that if V(n) > G, then for any queue (j, d) satisfying

prs = Cou)s (8)
(l,c)es(j)d) )
the LDCS policy guarantees
log M + 1
D Pr{Sf}ZS(l— % —u>, (9)

(l,c)es(j‘d)

for any u>0, 9€(0,1] and constants C,, C, >0, where S
denotes the event that (I, ¢) is scheduled. The proof of Lemma
1 is omitted here. One can refer to [6] (proof of Lemma 1
therein) to derive Lemma 1 easily based on (5) and (6).

Lemma 2. Under LDCS, if the input load meets

A log M + 1
o220y, 1
> : < A u (10)

r
(Le) €€ (ja)

for every queue (j, d), then there will exist some integer H > 0
and a constant O > 0 such that with V(n) > O

Pr Z LZLH) <V(n)

-Hpup>1-g
r
(bo)eeia) !

(11)

holds for any queue (j, d) and any ¢ > 0. We present the proof
in the appendix. Based on the two lemmas above, one can
derive the following theorem which indicates the condition
for system stability.

Theorem 1. Under LDCS, if for some p > 0, the input rates
satisfy

)L_C _logM+1 1, (12)
i

(he)ee;

for any queue (j,d), the irreducible aperiodic discrete state
Markov chain {qj(n): 1 € L, c € C} is then positively recurrent.
One can refer to [6] for the detail of the proof of Theorem 1.
Hence, we obtain the capacity region guaranteed by LDCS
using the following proposition.

Proposition 1. The efficiency ratio y of LDCS is given as

_4y>,

B T log M + 1
VoK +K,[C M

(13)



where y is a positive number with an arbitrary value and

! C,
T=miny, lz”crll . (14)

b
maxy.cr;

Proof. Based on the relevant definitions described in Section

3, the achieved capacity region of LDCS is said to be yQ if

for any input load A such that the centralized optimal algo-

rithm can stabilize the system at Ay, the LDCS can keep

the system stable with A. Under our scenarios, the necessary

condition for system stability at Ay is that there exists some
i €10, r{] for each (I, c) such that

A 3
(1+9)° T < ) &, (15)
4 ceC
J'Z.C
2 =K (16)
kel (l)cC Tk
X
> r <K (17)
kel (I)ceC Tk

hold for any link / with parameter 0 >0 [10]. Note that
inequality (15) comes from the rate constraint, while (16)
and (17) represent the channel and interface restriction,
respectively. Set a parameter 8= (1+0)*/y and replace y
with the right side of (13), we have according to (4) and the
inequalities (15)-(17) that for all (J, ¢) and some p > 0,

! U
AS AS AS
k _ k k
_* = + -

r~ r_i ec Tt
(ke')eeqq Tk kelena() kel (l)c'ec Tk

xk

> Z——HQEZZ
kel (D) c'ec Tk kel () 'eC rk

1 log M +1
73[1<2+|C|1<]<1—7°g o

(18)
Hence, Proposition 1 has been proved using Theorem 1.

4.4. Performance Analysis. From (13), one can infer that with
M — o0 and y — 0, the efficiency ratio of LDCS policy arbi-
trarily approaches /(K2 + K1| C|). Here, the parameter y
can be selected close to 0. Due to the fixed length of schedul-
ing slot, M tend to infinity if we let the length of each minislot
be small enough by improving hardware. Therefore, it can be
argued that the developed LDCS can achieve a throughput
capacity region of 7(¥(K2 + K1| C| ) approximately.

Then, we compare the throughput performance of LDCS
with other existing distributed algorithms. According to [11],
tuple-based MS attains an efficiency ratio of V% > I/(K + 2),
where % denotes the interference degree over the tuple-based
equivalent model and /(K +2) is the efficiency ratio of SP
algorithm [9]. Hence, one can conclude that as M — oo, the
capacity region of LDCS is larger than that of the tuple-
based MS or SP algorithm on condition that the network sce-
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FIGURE 5: Network topology for illustration with single-hop flows.

nario satisfies 7/(K2+ K1 | C|) > V¥ > V(K +2). A simple
topology in Figure 5 with single-hop flows and 2-hop inter-
ference model is illustrated. Suppose there are 14 nodes and
4 available channels with rates equalling 1, 1, 2, and 2 packet-
stime slot, respectively, for all links. Thus, it is not hard to fig-
ure out that the efficiency ratio of LDCS equals to 14,
whereas that of tuple-based MS and SP are, respectively, 1/5
and 1/6, we have 1/4 > 1/5 > 1/6. Therefore, in practice, com-
pared with SP and tuple-based MS, better throughput perfor-
mance can be obtained by LDCS as long as the network
scenario satisfies 7/(K2+K1|C|) > V¥ > V(K +2).

On the other hand, the complexity of LDCS is low and
independent of the number of links and channels. In LDCS,
each node calculates the backoft time according to equations
(5) and (6), which incurs O(K, + K,) number of iterations
[12]. In most WSN scenarios in practice, the complexity of
LDCS is bounded since parameters K, and K, of the network
are bounded [8]. In contrast, recall that the complexity of the
existing maximal-matching-based algorithms (SP or tuple-
based MS) [9, 11] is O(log | L||C | ) which increases logarith-
mically with the numbers of links and channels. From the
perspective of computation time, based on the analysis above,
LDCS merely requires a scheduling slot (or M minislots) to
compute a schedule, which has no concern with both the size
of network and the number of channels. With the improve-
ment of hardware performance in the future, the length of a
minislot can be set arbitrarily small so that the length of
scheduling slot converges to a small positive number even
M approaches infinity. Contrastively, for the maximal-
matching-based algorithms with O(log | L||C|) complexity,
the computation time of each schedule bounds to increase
with the number of links and channels. Therefore, in large-
scale intensive multichannel networks, the maximal-
matching-based algorithms inevitably need longer time than
LDCS to complete a schedule because of their inherent
maximal matching mechanism [6, 7]. Currently, due to the
limited hardware performance, we cannot set a minislot at
an arbitrarily small value, and hence, this paper does not
quantitatively compare the computation time of LDCS with
that of maximal-matching-based methods.

It is worth mentioning that LDCS only ensures the weakly
stability [19] of the system with a possibly unbounded delay
experienced by customers and it is designed for multichannel
wireless networks with single-interface wireless nodes.
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5. Multipath Extension

The discussion above focused on the single-hop flows. For
multihop flows with multiple paths, a routing selection
problem needs to be resolved to ensure effectiveness and
fairness. For multihop multipath cases, the arrival process
and the maximum capacity region are redefined as follows.
Suppose a system composed of S users with I(s) alternate
paths for each user s. Let A (n) denote the number of
packets offered by user s at time slot n. It is further
assumed that A (n) is iid. across time slot with average
A,. Define H!; as the routing indicator variable. If path i
of user s passes through link [, Hil. =1; otherwise, Hii =0.
Thus, the arrivals at link / in time slot # can be given by

~

(s)
HLA( ), (19)

Sls
1

Mcn

Il
—

1=
where P;(n) denotes the fraction of data packets assigned
to path i by user s during time slot n. The extended max-
imum throughput capacity region Q' for multihop scenes
with multiple paths is redefined as the set of [A;,A,, -,
Aq] such that there exists for all user s and path i satisfying

S 1(s)
[Z Hét/\spsz €Q
s=1 i=1
(20)
I(s)
s.t P, =1,

where P, can be interpreted as the average fraction of
traffic assigned to path i on a long-term basis and Q has
been defined by link-based rate vectors A in Section 3.
We now combine the MAC layer LDCS policy with a
routing selection mechanism so that the joint routing,
channel assignment, and scheduling algorithm, which is
called M-LDCS, can guarantee a certain fraction of the
extended maximum capacity region Q'. The same data
flow allocation strategy as LDCS is utilized and the joint
algorithm is performed in two steps as

Step 1. Each source first computes the fraction vector P,
(n) = [Py (n), Py(n), -+, Py (n)] at each time slot n
through solving the following problem

I(s) I(s

H.
max- ZY PP - LR T o

8 lelec 2becT] (jud)<e
6

5 a () (1)

N

—
F
o
~—
m
o
<
&
0

for some 6>0, where ¢, is a positive constant. In fact,

O----0----- 0 ==10-----0----)
|
|
|

R

¢
0
1

—
2
J—— 1

FIGURE 6: Network topology for experiments.

the transmission path is selected by (21). When a data
packet is generated by user s, it will be assigned to path
i with probability P(n).

Step 2. The same channel assignment and scheduling mech-
anism as in Section 4 is employed to determine the set of
operating queues and the queue is updated by

1211 Sl s( )P (I’l)

Zbecrl

q;(n) + = Di(n)

qgi(n+1)=
(22)

Note that the first term of (21) is to avoid an oscillation
problem in routing selection process [20]. In the following
proposition, the efficiency ratio of M-LDCS is given.

Proposition 2. For any u > 0, there exists some 6, > 0 such
that for any 0 >0,, the joint routing and LDCS algorithm

I~/ . .
can ensure y' Q' capacity region where

’ (I-p) _logM+1
V‘<1+y><K2+K1|C|>< M )

(23)

The proof is presented in the appendix.

6. Simulation Results

In this section, we evaluate the performances of the proposed
algorithms through simulation experiment using NS2-2.31.
The topology we adopt is shown in Figure 6 which contains
36 nodes (denoted by circles), 60 links (denoted by dashed
lines), and 4 available channels with rates equalling 1, 1, 2,
and 2 packets/time slot, respectively. Each node is configured
with a single interface that can switch among channels with-
out hindrance. 2-hop interference model is used for simula-
tions. In order to attain the throughput capacity region, we
gradually increase the input rates (or offered loads) and
observe the experimental data of average backlog. The unit
of input rate is packets/time slot. We first consider the
single-hop scenario and compare the developed LDCS
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FIGURE 7: Average backlog versus input rates in single-hop scenario.

(M =10%) with existing SP and tuple-based MS policies.
As illustrated in Figure 6, there exist 16 traffic flows
(represented by arrows) in our environment. Assume that
the input rates of all flows are the same, denoted by A. The
average backlog is defined as the mean total backlog in the
system divided by the number of traffic flows, which is used
to reflect the throughput performances of the evaluated algo-
rithms. In the simulation, the extra control overhead is omit-
ted so that the throughput performance difference of the
algorithms can be clearly shown.

Figure 7 shows the performance comparison of the
three protocols. As we can see from the figure, along with
the increasing of offered load, queues and the network
become accordingly congested. At the same time, average
backlog grows sharply to infinity when A approaches a
certain value. Such inflection point can be regarded as
the edge of the throughput capacity region achieved by
the corresponding algorithms. In addition, Figure 7 shows
the superiority of the proposed LDCS in terms of throughput
performance under our scenario, as expected. In fact as ana-
lyzed in Section 4.4, it can be said that LDCS guarantees
larger capacity region than SP and tuple-based MS provided
that /(K2 + K1 | C|) > I/%. The model we use for experi-
ment is one of the scenarios who satisfy such condition.

We next investigate the performance of the multihop
multipath extension (ME) of LDCS using the same topology
in Figure 8. Differently, let four source-destination pairs
randomly picked across multiple hops replace the 16
single-hop flows. Assume that there exist three alternative
paths for each user. Source node selects forwarding path
for every data packet according to (21). We let 6 be 10’
to make sure p is small enough based on Proposition 2
and set ¢_ = 10° so that the route fraction vectors calculated

by (21) are not too sensitive to the queue length updates. In
this simulation, the comparison objects are MP and the ME
of tuple-based MS. In practice, multipath extension implies
a cross-layer control method. That is, for the purpose of
ensuring throughput, link layer and network layer exchange
information to solve a joint routing, channel assignment,
and scheduling problem. Figure 8 displays the comparison
of three solutions. As expected, ME of LDCS performs
much better than MP since it achieves larger capacity
region, which confirms theoretical analysis. As we can
observe, the capacities attained by ME of LDCS and tuple-
based MS are fairly close. Furthermore, for the same input
rates, ME of tuple-based MS achieves the lowest average
backlog. The reason for this phenomenon is that ME of
tuple-based MS additionally considers transmission delay
and solve the cross-layer problem with path selection con-
vex optimization technique. For MP, it utilizes a two-stage
queuing structure that stores datagrams in a common
queue firstly and relays them to channel queues, which
aggravates congestion and leads to imperfect performance.

It is worth noting that the number of interfaces and chan-
nels would impact the system capacity region inevitably. This
paper purely focuses on single-interface scenarios. In reality,
most existing communication or sensor systems employed
single-interface nodes at present.

7. Conclusions

This paper presents distributed algorithms for multichannel
single-interface wireless sensor networks with both single-
hop and multihop multipath scenes, named, respectively,
LDCS and ME of LDCS. It is theoretically demonstrated
that the proposed algorithms can achieve guaranteed
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throughput capacity regions that are comparable with other
distributed maximal-matching-based algorithms (such as
SP, MP, and tuple-based MS) with low implementation
complexity.

LDCS utilize a rate-proportional-based mechanism to
allocate datagrams locally and applies random access tech-
nique based on probability to complete the channel assign-
ment and scheduling. Such designing avoids executing
maximal-matching-finding process and attains lower com-
plexity that is independent of the numbers of links and chan-
nels. It is further theoretically proved that LDCS can achieve
better throughput performance in some specific situations
compared with other existing policies. LDCS is then extended
to be appropriate for multihop multipath scenarios and a
cross-layer solution is given. Simulation experiments confirm
our analysis. In the future research, we will be interested in
improving LDCS to be able to maintain the network under
a strongly stable status with bounded average delay for both
single-interface and multi-interface cases.

Appendix
A.1. Proof of Lemma 2

Because the arrivals and departures are both upper bounded
during one time slot, then there must exist a positive number
B such that

y M- 3 A0l

(Le)ee I (ho)eeay 1

(A1)

holds for any (j, d). Here, we discuss in two cases. If (j, d)
satisfies

Z (1) <V(n)-H(B+pu), (A2)

e
(l,c)es(j‘d) I

it is then easy to get that Lemma 2 holds. For the other
case when

q;(n)
c
(lsf)GS(j,d) rl

>V(n)-H(B+u), (A.3)

for any te {n+1,---,n+ H}, we have

Z q;(t) >V(n)-H(B+u)—-B(t—n)>V(t)-H(3B+p).

c
(be)ee(a l

(A4)

Employ Lemma 1 and let 9=1, one can draw a con-
clusion that there exists a constant @ >0 such that if
V(n) > @, then

log M +1
Pr{Si>1- =2 —
Z r{Si} > M

(l,c)es(j)d)

(A.5)

holds for all t€ {n+1,---,n+H}. Clearly, @ is chosen as
a function of H. Define an indicator variable M ()

such that M, (t)=1 in case of queue (I c) is scheduled
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in time slot ¢, and otherwise, M (t)=0. Then, from
(A.5), a probability model can be described by

E M, () {M S (h)} N
(l,c)é(j)d) 9 () (i"d")eeqeph=n+1,-t-1
logM +1
= Y prsymi- B
(l,c)es(j,d)
(A.6)
Suppose a random variable defined as
M (1) 12
p= Y o e{o,;,g,...,l}, (A7)

(he)eeiay

where x is the maximum number of queues that can be
scheduled simultaneously in the interference set of any
queue in the network. For any ¢ >0, based on (A.6) and
the convexity of the exponential function f(x)=e%* [21],
it is not hard to obtain that

_ 1 log M +1 _
E[e ], piy] S 1 ;(1- — -#) (l-ef)-

(A.8)

Define Y = Z:’:ﬁl p,- Now, we aim to obtain an upper
bound of E[e']. It is well-known that the Chernoff
bound for E[e*"] can be obtained if the variables p,’s

were independent across time. Obviously, according to
the above-mentioned definition of p, as well as the Mar-

kov characteristics of the random process {M(t)}, p, s
are not independent across time. In order to upper bound
E[e™? Y}, we introduce a new random variable ¥’ = Y71
X;» Where x, ’s are independent and take values of 0 or
1 and with probability

1 log M +1
Pr{y,=1}= - (1 - 7gM —y). (A9)

Obviously, E[e’“’YI] can be upper bounded through
Chernoff bound [22] as follows

E{e‘ﬂ’] <exp [g (log# +u- 1) (1 —e¢)].

(A.10)

Furthermore, based on (A.8), one can obtain E[e‘¢r]

SE[e“/’Y ] by induction [23]. Hence,

E[e*‘ﬁr} <exp [% (log# +/4—1> (1 —e‘/’)}. (A.11)

Journal of Sensors
Thus, from Markov inequality and (A.11), we get

Pr{KTSH(l— logﬂ —2y>}
M

< exp {g [¢+ (bg# - 1) (1-¢?) (A12)

o5 ) [

For some ¢ >0, it is not hard to find a constant w, >0
such that

log M +1
Pr{KYSH(l _osvr] —214) } <efo (A13)
M
For the arriving process, define

z- 3§40

(Z’C)Es(j,d) t=n+1 1

(A.14)

Considering the condition that the offered load meets
in Lemma 2, one can easily infer for some w, >0 that

log M +1
Pr{ZzH<1 _osMr 3;4) } <efe (A15)
M
Hence, based on (A.13) and (A.15), we have
C
H
Pr ql(n—j) <V(n)-Hu
(e 1
Pr M+Z kY <V(n)-Hu
(heega 1 (A.16)

Z —ql(cn) +xY - Hy
(L)eegy 1

>Pr{Z<kY - Hu}>1-e M — g He,

Thus, by setting the value of H appropriately such that
e~Hor 4 o7H, < ¢ then we can obtain

C
H
Pr Z ql(nij)sV(n)—H,u >1-¢. (A.17)
(l,c)es(j)d) 7'1

This ends the proof of Lemma 2.

A.2. Proof of Proposition 2

Referring to the proof process of Proposition 1 as well as
the corresponding definition of extended maximum capac-
ity region for multihop flows with multiple paths in (20),
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the efficiency ratio in (23) implies there is P; >0 for all
user s and path i satisfying

Z Zs—lzz lHilA'SPSl < - (1_ lOgM+l)
(ho)eeja) Zoect! bru M
I(s)
z psi =
i=1
(A.18)

For multihop multipath case, the following Lyapunov
function is used,

1+0

QD ‘

(A.19)

()
> L

(d)ee i) Tj

Y

leL ceC

From (4) and (19) and the fact that E[A
P (n), we thus have

s(n)Psi(n)] = )Ls

0
d
q;(n)
EUm+1)-Umgm)< Y | > L
leLceC \ (id)eeq,, Tj
A‘?(n)
j d
y s y Pr{Sj}
(od)eeqey (d) €
i)\’
q;\n
+ Z 0 Z A |
leL,ceC (od)eeqy
(A.20)

where o(-) means higher order. Further on the basis of
Lemma 1, it can be easy to obtain that

Z Pr{S}i} >

(j.d)eg (Lo)

Z(j,d)ee(m ‘J}?(”)/rf 1-
M

log M +1
V(n) )
(A.21)

for all queues (I, ¢), where V(n) has already been defined
before in Section 4. In addition, by the binomial expansion
[6], it is not difficult to obtain that for any y > 0, there will
exist some 6, > 0 such that

(1+6)
YleLceC <Z(j,d)ee(m ‘J}i(”)/ rf)
V(ﬂ) 2 (1 - [4) z

11
holds for all 8 > 6. Hence, one can obtain
)’
q;\n
Y e
leLeeC \ (jd)eey ] (od)ee
i 0+1
(1= (logM+1yM)) 5 [ ()
V(n) leL,ceC (j,d)ES(l,f) }’}.j
0
log M +1 q}(n)
amni-m) x (o
leL,ceC (j,d) €€(1¢) rj
(A.23)

Utilizing (A.18) and the routing selection mechanism in
(21), it is not hard to find that

, 0
DN ( y dp)
leLeeC LbeCT] (j.d)eeg,, (k,c’)gs(m) L4

, 0
_(1+AM)ZPSJZZZ Z ( Z L C(’n))
o Yect! Gd)eeuo \ (k' )eeya Tk

I(s) 1(s)
<= S Y P+ 5 Y (P) <0.1(5).

i=1 i=1

I(s)
ZPSI
i=1

(A.24)

Therefore, the Lyapunov drift is negative and is given by

d(n
y qj(d)

E[U(n+1)- <-py Y
leLceC \ (i), T
Z Zl HélAS si g
Ly EelLEed 5 : + ) A I(s)
(jud) €€ (1) beCrl s=1
)]’
q;\n
Yyl ¥ 40
leLeeC | (jd)eg( j

(A.25)

The stability of the system then follows [24].
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