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This paper proposes a registration method for two sets of point clouds obtained from dual Kinect V2 sensors, which are facing each
other to capture omnidirectional 3D data of the objects located in between the two sensors. Our approach aims at achieving a handy
registration without the calibration-assisting devices such as the checker board. Therefore, it is suitable in portable camera setting
environments with frequent relocations. The basic idea of the proposed registration method is to exploit the skeleton information of
the human body provided by the two Kinect V2 sensors. That is, a set of correspondence pairs in skeleton joints of human body
detected by Kinect V2 sensors is used to determine the calibration matrices, then Iterative Closest Point (ICP) algorithm is
adopted for finely tuning the calibration parameters. The performance of the proposed method is evaluated by constructing 3D
point clouds for human bodies and by making geometric measurements for cylindrical testing objects.

1. Introduction

LIDAR is a 360° omnidirectional scanning device that can
estimate the distance by measuring the reflected laser pulses
from the target object and is widely used in autonomous
vehicles [1, 2]. The high price of the LIDAR equipment, how-
ever, is a major obstacle in adopting the laser sensor for
small-scale 3D object scanning applications. Alternatively,
3D point cloud can be obtained by measuring the depth from
the sensor to the target object by using a stereo camera or an
IR sensor. Unlike the stereo camera, the IR sensor can be also
used for the distance measurements even with no visible
light. Although the depth measurements through the IR
sensor do not have the same accuracy and distance coverage
compared to the laser scanners, its low price and easy avail-
ability are definitely the merits.

Kinect sensor developed for the gesture recognition for
indoor video games has the IR sensor, which can be used to
measure the depth and to construct 3D point clouds. The first
version of Kinect generates a color image of 640× 480 resolu-
tion and a depth map of 320× 240 with 30 frames per second
[3]. The second version of it, Kinect V2, adopts the Time of

Flights (ToF) method instead of the Light Coding™ and pro-
duces a 512× 424 depth map as well as a 1920× 1080 full HD
size color image [3]. The ToF scanning method used in
Kinect V2 measures the depth by calculating the time that
the infrared light is emitted and then reentered the camera
sensor. Since the FOV (Field Of View) of Kinect V2 is
horizontal 70 degrees, only the frontal sides of the objects
can be scanned by a single Kinect sensor. Therefore, it is
necessary to use multiple Kinect sensors to expand the
FOV [4, 5]. On the other hand, to construct an omnidirec-
tional 3D point clouds, multiple Kinect sensors should be
installed around the target object. Then, the calibration
among Kinect sensors to represent the scanned data onto a
common coordinate system is necessary.

In this paper, we are interested in constructing 3D
point clouds with Kinect V2 sensors. In particular, our goal
is to propose a simple registration method for 3D point
clouds in a dynamic relocation environment with only
two Kinect sensors. Obviously, to use the smallest number
of RGBD sensors to scan an object in 360°, it is necessary
to locate them such that they are facing each other. In this
case, however, the overlapped scanned data required for the

Hindawi
Journal of Sensors
Volume 2019, Article ID 6295956, 17 pages
https://doi.org/10.1155/2019/6295956

http://orcid.org/0000-0002-3400-0792
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6295956


correspondence-based registration methods may not be suf-
ficient, which makes it difficult to employ the conventional
calibration approaches. To solve this problem, a specially
designed calibration device such as a spherical object with
a rod [6] or a double-sided checker board [7] can be used.
In this paper, a novel calibration method without using any
calibration-assisting device is proposed. Specifically, the
skeleton information of a human body provided by Kinect
V2 sensors is exploited. Since Kinect V2 acquires 3D points
at the joints of the human skeleton, we take advantage of
their 3D joint coordinates as references for the registration.
No user intervention during the registration process is
required and all the processes are automatically performed.

This paper consists of five sections. In Section 2, we
review the previous works about calibration methods related
to Kinect sensors. Section 3 describes the proposed calibra-
tion method between two Kinect V2. Experimental results
are presented in Section 3.4, followed with conclusions in
Section 4.

2. Related Works

The calibration method for multiple cameras basically starts
by finding pairs of corresponding points in the images
taken by different cameras. The well-known Zhang method
[8] for 2D color camera calculates the camera parameters
from the corresponding key-points in a checker board.
Here, key-point detection method such as SIFT [9–12]
can be used for the matching of the corresponding key-
point pairs. In the case of a 3D camera with both depth
and color sensors such as Kinect, the checker board or
the key-point matching algorithm can be also used [13].
However, to consider the 3D structure into the calibration,
corresponding pairs must be selected from various locations
and depths of the 3D object [14], where manually generated
correspondence pairs using the checker board may be
adopted [15, 16]. In the case of a laser scanner, however,
since key-points cannot be readily detected as in RGB cam-
eras, geometrically shaped devices [17, 18] may be required
to identify correspondence points.

Soleimani et al. [7] used two identical checker patterns on
a double-sided board for the calibration of two Kinect V2.
Here, the same checker pattern should be placed at the same
position on both sides of the flat board. The correspondence
points of the same position can be identified by the Kinect IR
camera on the opposite side of the board. Then, the rotation
and translation transformation can be made for the two sen-
sors by calculating the cross-covariance matrix obtained by
20 correspondence points on the checker patterns. Yang
et al. [19] used Zhang’s method [8] to calibrate four Kinect
sensors. From each IR camera, a checker pattern from a
board fixed to a tripod capable of rotating in three directions
was taken and the relative pose was detected based on the
checker board. For 3D data registration, there are also spe-
cially designed calibration-assisting devices other than the
checker board. For example, in [20], a wand was used to
register depth data from multiple RGBD cameras as a
calibration-assisting device. Salau et al. [21] used the calibra-
tion device with three sticks perpendicular to each other,

which were fixed at the center and six pieces of wood ball
were placed at the end. Fornaser et al. [6] proposed a method
of registering data of three Kinect V2 in one spot by putting a
colored patch on a common soccer ball and attaching a stick.
When a user selects an initial position of the ball, three or
more cameras track the ball and generate a corresponding
point. Su et al. [22] also used a spherical object (like the ball
in [6]) with a rod as a calibration tool. In order to detect
and track the spherical object, a specific color was painted
on. Five cameras track the center of the ball and generate cor-
respondence point pairs. There is another method that uses
balls as calibration tools. In Kumara et al. [23], four balls with
red, yellow, blue, and green colors were used to calibrate 3
Kinect sensors.

Note that all the abovementioned calibration methods for
multiple Kinect sensors require specially made calibration-
assisting devices. This can be not only cumbersome but also
fragile for portable 3D scanning applications with frequent
relocations. For the applications with such dynamic environ-
ments, in this paper, we propose to use the human skeleton
data provided by the Kinect for the calibration. The skeleton
data had been used for the calibration of multiple Kinect
version 1 (V1) [24]. Note that, because of the sparse and
noisy skeleton data from Kinect V1, a sequence of synchro-
nized frames captured from the multiple Kinect V1 should
be used. However, for Kinect V2, since a PC supports only
one Kinect V2, the method based on a synchronized
sequence of frames for the calibration is not appropriate. In
fact, since Kinect V2 uses an updated sensing method of
ToF depth, it provides improved depth quality with reduced
interference artifacts. This enables us to use only one set of
the captured RGBD data from each Kinect V2 for the regis-
tration of the 3D point clouds.

3. Calibration of Dual Kinect V2 Sensors by
Using Skeleton Information

In this section, the calibration of two Kinect V2 sensors, fac-
ing each other, for the construction of the omnidirectional
3D point cloud is presented. The skeleton data provided by
the Kinect are utilized to have the initial extrinsic camera
parameters by matching the corresponding skeleton points
between the two Kinect sensors.

3.1. Data Acquisition from Dual Kinect Sensors. According to
the software development kit (SDK) provided by the Kinect
V2 maker [25], since only one Kinect V2 can run on one
PC, two PCs are required for our dual Kinect V2 system.
Then, for the construction of 3D point cloud, the scanned
data from the two Kinect V2 sensors should be combined
and a synchronized data transfer from the client PC to the
server is required. Note that this is not a problem for Kinect
V1, where multiple Kinect sensors can be operated on one
PC. Considering that Kinect V2 produces color and depth
data at a rate of 30 frames per second, the amount of data that
needs to be transmitted to the server PC is quite large. How-
ever, since the calibration is usually done as an off-line pro-
cess, a real-time transmission of the scanned data from the
client PC to the server is not necessary. So, the scanned data
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can be stored in each PC for a synchronized time frame with
a trigger signal initiated by the detection of the skeleton data
and the stored data of the client PC are transferred to the
server PC for the calibration.

In this paper, the 3D skeleton joints in the human body
provided by Kinect V2 for each depth frame are used as the
correspondence point pairs. Therefore, our calibration needs
only a standing person as a calibration reference. Since the
skeleton data obtained from a human body are used as the
calibration reference, discrepancies in body point locations
can occur if there exists a quick body movement during the
data acquisition. Therefore, the standing person needs to be
at standstill for a while.

Note that the Kinect was originally developed as a device
for detecting human gesture for more realistic video games.
Since there is no need to distinguish the back of a person
from the front in the game applications, Kinect assumes that
the skeleton is obtained in the frontal view even if it is cap-
tured from the back side. Therefore, deploying two facing
Kinects as in our method, it is required to flip the 3D data
scanned by the back view horizontally (i.e., left-to-right flip-
ping) before the registration starts (see Figure 1).

3.2. Registration by Geometric Transformations.We focus on
the calibration of the extrinsic parameters of the dual sen-
sors. But, for the intrinsic parameters of Kinect V2, the
maker-provided parameters are used. So, the extrinsic cali-
bration process regarding the relative positions of the two
cameras is executed. The process of registering data obtained
from two coordinate systems into a common one is per-
formed by confirming information about the position and
direction of the cameras and executing the transformation
accordingly. Note that RGBD cameras, like the Kinect sen-
sor, are equipped with IR depth as well as RGB color sensors
and, to construct a colored 3D point cloud, both sensors are
to be calibrated.

As shown in Figure 1, the calibration is executed with two
major steps, namely, the initial calibration by estimating the
geometric transformation matrices and the fine-tuning. In
the initial calibration step, the point clouds in two coordinate
systems are brought close to a common coordinate by trans-
lation and rotation transformations, where the skeleton
joints are used as the reference points for determining the
transformation matrices. Then, in the fine-tuning step, the
final calibration is obtained by Iterative Closest Point (ICP)
[26] algorithm.

As mentioned already, Kinect cannot distinguish the
front from the back sides of a person and it assumes that

the skeleton is obtained in the frontal view even if it is cap-
tured from the back side. Therefore, even after the left-right
flipping in Figure 1, there may exist some discrepancies in
the skeleton joints between the front and the flipped back
3D data for the head, foot, fingertip, and thumb. Figure 2
shows the skeleton data captured from the front-side and
the back-side cameras. Since the head of the skeleton data
creates skeleton points based on the face, they are slightly
shifted forward from the actual positions in the back-side

Kinect 1
skeleton

Kinect 2
skeleton

PC 1

PC 2
Left-right
flipping

Translation
matrix

Rotation
matrix

Fine-tuning
by

ICP
Transformation

matrix

Figure 1: Flowchart of the proposed algorithm.

(a) (b)

Figure 2: The side views of point clouds and skeleton joints
captured by (a) the front-side camera and (b) the back-side
camera. In the data from the back-side camera, skeleton joints of
the head and the foot are incorrectly located.
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scan. Therefore, it is not recommended to use the joints in
the head skeleton as correspondence pairs for the calibration.
Also, although the skeleton points at the fingertip and thumb
are more stable than the ones in the head, there are cases that
make a consistent detection of the joints in the finger diffi-
cult. For example, if the finger is hidden, the estimated finger
joints can be located arbitrarily. Finally, since the skeleton
points at the foot are also designed to be positioned at the
frontal view, there may exist a mismatch between the 3D data
from the two cameras. Therefore, the skeleton data from the
abovementioned skeleton joints are discarded and the
remaining 18 points are selected for the calibration among
a total of 25 skeleton joints generated by Kinect V2.
Figure 3(c) shows the result of using all 25 skeleton joints
of Figure 3(a); Figure 3(d) is the result of using only 18 joints
of Figure 3(b). As you can see inside the circles in Figure 3(c),
distortions occur at the foot and head sides when all 25 skel-
eton joints are used.

Scanned data can be translated and rotated by a rigid
transformation matrix. Since the “SpineBase” joint is located
at the center of the human skeleton (see Figure 4), firstly,
the 3D points obtained by the two Kinect V2 are trans-
lated such that the two “SpineBase” points from the two
Kinect sensors coincide at the same position, which is con-
sidered as the origin 0, 0, 0 of the new coordinate

system. That is, we select the “SpineBase” point located
at the center of the skeleton as the origin of the new coor-
dinate and apply the translation matrix such that the two
“SpineBase” points match at the origin of the new coordi-
nate. To this end, we apply the following translation matrices
T1 and T2 for the two sets of 3D point clouds obtained by
Kinect1 and Kinect2, respectively.

Tk =

1 0 0 −txk
0 1 0 −tyk
0 0 1 −tzk
0 0 0 1

, k = 1, 2,

O1 = tx1, ty1, tz1 ,

O2 = tx2, ty2, tz2 ,

1

whereO1 andO2 represent the “SpineBase” points inKinect1
and Kinect2 coordinates, respectively. By applying the trans-
lation matrices, the original 3D points pk = xk i , yk i ,
zk i , i = 1,… ,Nk, k = 1, 2 , are translated and relocated
to pTk = xTk i , yTk i , zTk i , i = 1,… ,Nk, k = 1, 2 , where
N1 and N2 are the total number of scanned 3D points

(a) (b)

(c) (d)

Figure 3: Locations of the skeleton joints for (a) all 25 positions and (b) selected 18 positions. Construction of 3D point cloud after the
calibration by (c) all 25 skeleton joints and (d) selected 18 skeleton joints.
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obtained by each Kinect V2, k = 1, 2, and pTk is obtained
as follows

xTk i

yTk i

zTk i

1

=

1 0 0 −txk

0 1 0 −tyk

0 0 1 −tzk

0 0 0 1

xk i

yk i

zk i

1

,

 i = 1,… ,Nk, k = 1, 2

2

Figure 5 shows an example of the 3D point cloud
before (Figures 5(a) and Figure 5(b)) and after (Figure 5(c))
the translation.

Next, the translated 3D points are aligned by rotations.
Assuming that the floor is flat and the two Kinects are
installed in almost parallel with the floor, no rotation align-
ment of the 3D data with respect to the z-axis will be executed
(see Figure 6 for the orientation of z-axis rotation). Instead,
small misalignments with respect to the z-axis rotation are
expected to be corrected at the fine-tuning step. For the other
two coordinates, the rotation alignments with respect to X
and Y axes in the 3D space are executed, where the angles

to be rotated can be obtained by using the straight line
formed by the joints of the skeleton.

Note that the Kinect cameras are tilted down slightly
(i.e., rotated with respect to the x-axis, see Figure 6) to cover
the whole body and the floor. As a result, the 3D point clouds
are inclined (see Figure 7) and should be aligned by rotating
with respect to the x-axis. Here, the angle, αk, to be rotated
can be estimated by calculating the inner product between
the vector formed by “SpineShoulder” and “SpineMid” joints
in the skeleton and the y-axis as follows

vk1 · vk2 = vk1 vk2 cos αk , k = 1, 2, 3

where vk1 is a straight-line vector formed by “SpineShoulder”
and “SpineMid” joints, and vk2 corresponds to the vector
of the y-axis. Then, the angle between the two vectors can
be obtained as

αk = cos−1
vk1 · vk2
vk1 vk2

= cos−1
xTk1x

T
k2 + yTk1y

T
k2 + zTk1z

T
k2

xTk1
2 + yTk1

2 + zTk1
2 xTk2

2 + yTk2
2 + zTk2

2

4

Head

SpineShoulder

ShoulderRight
WristRight

ThumbRight

HandTipRight

HandRightSpineMid

HipRight

KneeRight

AnkleLeft

FootLeft

AnkleLeft

KneeLeft

SpineBase

HipLeft
HandLeft

HandTipLeft
ElbowLeft

ThumbLeft

WristLeft ShoulderLeft

Neck

FootLeft

ElbowRight

Figure 4: Positions of 25 skeleton joints provided by Kinect V2. In our method, “SpineBase” is set as the origin of the common coordinate.
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Figure 5: 3D point clouds (a) in the coordinate of the server Kinect V2, (b) in the coordinate of the client Kinect V2, and (c) in the common
coordinate after the translation.
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Calculating the angle αk for each Kinect, we have the rotation
matrix Rkx as

Rkx =

1 0 0 0

0 cos αk −sin αk 0

0 sin αk cos αk 0

0 0 0 1

5

Finally, we need to take a rotation alignment with
respect to the y-axis. Although the two Kinect V2 sensors
are installed so that they are facing each other, the arc
angle from the top view between them may not be exactly
180°, which needs to make a rotation with respect to the y-
axis. As an example, the two Kinects in Figure 8(a) are not
on the straight line and are separated by 135° arc angle. As
in the case of the x-axis rotation, the angle, βk, to be

rotated with respect to the y-axis can be obtained by calcu-
lating the inner product between the vector formed by the
straight line connecting “ShoulderRight” and “ShoulderLeft”
and the x-axis (see Figures 8(b) and Figure 8(c)). Then,
the 3D points are rotated with respect to the y-axis by the
following matrix

Rky =

cos βk 0 sin βk 0

0 1 0 0

−sin βk 0 cos βk 0

0 0 0 1

6

Figure 8(c) shows the aligned result of the rotation by Rky.
The overall rotation matrix Rk with respect to X and Y axes
can be obtained by multiplying the two rotation matrices
Rkx and Rky as follows

Rk = Rkx × Rky =

1 0 0 0

0 cos αk −sin αk 0

0 sin αk cos αk 0

0 0 0 1

×

cos βk 0 sin βk 0

0 1 0 0

−sin βk 0 cos βk 0

0 0 0 1

=

cos βk 0 sin βk 0

sin αk sin βk cos αk −sin αk cos βk 0

−cos αk sin βk sin αk cos αk cos βk 0

0 0 0 1

7

y-axis

x-axis
z-axis

z-axis y-axis

x-axis

Figure 6: Layout of our dual Kinect V2 and the orientations of coordinate rotations.

y
𝛼

Figure 7: The inclined point clouds in Y-Z plane due to the tilt down
installation of the Kinect. The angle, α, between the y-axis and the
straight line connecting the “SpineShoulder” and “SpineMid” joints
in the skeleton can be estimated.
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Applying the rotation matrix in equation 7 to the trans-
lated point cloud PT

k , we have the translated-rotated point
cloud, pTRk = xTRk i , yTRk i , zTRk i , i = 1,… ,Nk, k = 1, 2 ,
as follows

xTRk i

yTRk i

zTRk i

1

=

cos βk 0 sin βk 0

sin αk sin βk cos αk −sin αk cos βk 0

−cos αk sin βk sin αk cos αk cos βk 0

0 0 0 1
xTk i

yTk i

zTk i

1

, i = 1,… ,Nk, k = 1, 2

8

3.3. Fine Tuning by Iterative Closest Point. The accuracy of
the initial calibration obtained by the translation and the
rotations in the previous subsection can be further improved
by fine-tuning the calibration parameters. As a fine-tuning
method, Iterative Closest Point (ICP) [26] algorithm is
adopted. The ICP algorithm is iteratively performing a trans-
formation that minimizes the distances between the initially
registered 3D points of the two Kinect V2. If the ICP is

attempted for the entire point clouds, then the computational
complexity will be enormous. We also note that the ICP algo-
rithm is designed for the matching with common areas or
similar shapes. However, in our case, the two sets of the 3D
points to register are obtained at the opposite directions, giv-
ing a limited common area. To solve these problems, we
apply the ICP algorithm to the skeleton data rather than
the entire point clouds. Since the distances between corre-
spondence pairs of the skeleton by the initial calibration are
sufficiently close and the number of skeleton pairs for the
ICP is very small, the algorithm runs very fast. The ICP algo-
rithm yields our final calibrated 3D point clouds.

3.4. Denoising. The scanning sensor of the point cloud suffers
from some noises. In particular, flying errors occur fre-
quently for ToF sensor due to wrong distance measurements
at the edge of the object [27]. Figure 9 shows an example of
the flying errors. These errors are characterized by the fact
that the distance between points is longer than the data
generated by the actual object. Therefore, a simple denois-
ing method can be applied by calculating the distances
between the points. Specifically, computing the average μ
and standard deviation σ of the nearest neighbors of each
point, we use only the points with d < μ ± kσ for distance
d [28]. Figure 10(a) and Figure 10(b) show the results of
the denoising.

3.5. Registration by Multiple Skeletons. The results of the cal-
ibration should be consistent regardless of time, place, and

Ki
ne

ct
 1

Kinect 2135°

Target

(a)

x-axis

𝛽1

𝛽2

(b)

x-axis

(c)

Figure 8: Rotation with respect to the y-axis. (a) Example of two Kinects with 135° arc angle. (b) 3D point cloud of PT
k (i.e., before the

rotation). (c) 3D point cloud of PTR
k (i.e., after the rotation).

(a) (b)

Figure 9: Flying errors. (a) Color image from the Kinect. (b) Point cloud from the Kinect with the flying errors (see inside the red circle).
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sensor. However, the Kinect V2 sensor is not a perfect
machine and it sometimes produces inaccurate measure-
ments. To alleviate this problem, we can scan the human
body multiple times, acquiring multiple skeleton data from
various locations between the two fixed Kinect V2 sensors.
Having multiple 3D point clouds for the calibration, in the
initial calibration step, the origin is set to the “SpineBase”
point of the first skeleton data. Then, all subsequently
obtained skeletons are registered to the same coordinate
system to create a new point cloud. Figure 11(a) and
Figure 11(b) show multiple skeleton data from the front
and side views, respectively. The rotation angles α′ and
β′ of the entire point clouds are calculated by averaging the
vectors of M multiple skeletons as follows

α′k = cos−1
vavek1 · vavek2
vavek1 vavek2

,

 vavek1 =
∑M

m=1v
m
k1

M
, vavek2 =

∑M
m=1v

m
k2

M
, k = 1, 2

9

In the fine-tuning step, since the points applied to the
ICP algorithm are increased, a more stable result can be
obtained.

4. Experimental Results

The SDK for Kinect uses MATLAB tool box [29]. However,
due to the nature of MATLAB, multithreaded programming
to continuously transfer large point cloud data over the net-
work is difficult. So, the 3D scanned data captured from
one PC (client) are transferred to another PC (server) via a
SMB (Server Message Block) Protocol. The flipped and trans-
ferred 3D data from the client PC are processed in the server
PC for the registration. In the following subsections, the
accuracy of the proposed registration method is evaluated
in various aspects.

4.1. Registration Accuracy for a Cylindrical Object. After the
calibration by a human body, a cylindrical test object is
scanned with the two Kinects in various locations and their
radii are measured from the registered 3D point clouds
and compared with the actual radius. The accuracy of the
proposed calibration method also is evaluated by observing
registered 3D point clouds in various situations by changing
the distances between the two Kinect V2 sensors, the angles
between the two Kinect V2, and the number of skeletons
used. Specifically, 3D measurements of 13 cylindrical test-
ing objects as shown in Figure 12 are evaluated. The cylin-
drical testing object is detected and its radius is measured

(a) (b)

Figure 10: Final point clouds after the denoising. (a) Side view. (b) Bird’s-eye view.
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Figure 11: Multiple skeleton data. (a) Front view. (b) Side view.
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by the MATLAB function of “pcfitcylinder,” which is based
on MSAC (M-estimator SAmple Consensus) [30], a varia-
tion of RANSAC (RANdom SAmple Consensus) [31] algo-
rithm. From the calibrated 3D point cloud, the measured
radius of the cylinder is compared with its actual size for a
quantitative evaluation, where the actual radius and the
height of the cylinder used in the experiment are 0.1m and
0.25m, respectively.

To test the stability and consistency of the calibration and
the ICP algorithm, we used multiple skeleton data. A total of
12 skeleton data, which were acquired at 12 different posi-
tions within the common FOV coverage of the two Kinect
V2 sensors (see Figure 13), were used in the experiments.
Transformation matrices were obtained by adding the skele-
ton data from 1 to 12. With the 12 transformation matrices
(i.e., from 1 to 12 skeletons), we constructed the 3D point
clouds of the cylindrical objects in 13 different positions
shown in Figure 12(b) and measured the cylinders’ radii.
For each position of the cylinder, its radius is measured 5

times and the average values for each transformation matrix
obtained from 1 to 12 skeletons are plotted in Figure 14. As
shown in the figure, just a couple of human skeleton dataset
may be sufficient for the calibration and its calibration matrix
is useful for all different positions within the common FOV
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1500
1400

1200

1000

800

600

400

200

y
 (m

m
)

−200

−400

−600

−800

−1000
−1500 −1300 −1100 −900 −700 −500 −300 −100 100

x (mm)
300 500 700 900 1100 1300 1500

0

(b)

Figure 12: Experimental setup. (a) Cylindrical testing object (actual
dimension: 0.1m radius and 0.25m height). (b) Placement of 13
cylindrical objects for the evaluation of the calibration accuracy.

Figure 13: 12 positions of the standing person as a calibration target
for acquiring multiple skeleton data.
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Figure 14: Comparison of the measured averages for 5
measurements (blue lines) and the actual radius of the cylinder
(red dotted line). The x-axis represents the number of skeletons
used for the calibration.
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Figure 15: The aligned 3D point cloud with red dots and the actual
cylinder radii with green circles of 13 cylinders positioned as in
Figure 12(b) from the top view.
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of the two Kinect V2 sensors. The actual radius of the model
(green dotted line in Figure 14) is 0.1m, and the average
value of the measured radius (red dotted line) is 0.0999m.
Thus, the average error is 0.0001m (0.1mm).

Figure 15 shows the point clouds of 13 cylinders from
the top view. The red points represent the scanned 3D point

clouds of the cylinders, and the green ones are the traces of
the actual cylinders’ radii, which are the ground truth for
the measurement evaluation. As you can see, the red 3D
points almost coincide with the green circles, showing the
accuracy of the calibration. Because of the front-back deploy-
ment of the two facing Kinect V2, there are some blind spots
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Figure 16: Histograms of the radius errors at each cylinder position.
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Figure 19: Registered 3D point clouds for three persons (one person per each row) in various views.
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Table 1: Results for 16 participants as references for the proposed calibration. The average error and the standard deviation (STD) are
calculated from the 5 cylinders (i.e., cylinders numbered 1, 2, 4, 7, and 10 in Figure 16), where the calibrated parameters are obtained for
each participant.

Reference
number

Gender/body
shape

Average error/STD
(unit: m)

Point cloud in front view Point cloud in back view

Participant 1 Male/medium 0.00960/0.0042

0.5

8

6

4

2

0

2

4

6

8 0.

8

6

4

2

0

2

4

6

8

Participant 2 Male/big 0.09740/0.0048

8 0.5

6

4

2

0

2

4

6

8

0.

Participant 3 Male/big 0.09615/0.0051

0.58

6

4

2

0

2

4

6

8

0.

Participant 4 Male/medium 0.09790/0.0049

0.58

6

4

2

0

2

4

6

8

0.

Participant 5 Male/medium 0.09898/0.0049

0.58

6

4

2

0

2

4

6

8

12 Journal of Sensors



Table 1: Continued.

Reference
number

Gender/body
shape

Average error/STD
(unit: m)

Point cloud in front view Point cloud in back view

Participant 6 Male/big 0.09611/0.0050

8

6

4

2

0

2

4

6

8

Participant 7 Male/medium 0.09522/0.0050

0.58

6

4

2

0

2

4

6

8

0.

Participant 8 Male/medium 0.09724/0.0051

0.58

6

4

2

0

2

4

6

8

0.

Participant 9 Male/big 0.09875/0.0051

0.58

6

4

2

0

2

4

6

8

0.

Participant 10 Male/medium 0.09777/0.0050

0.58

6

4

2

0

2

4

6

8

0.
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Table 1: Continued.

Reference
number

Gender/body
shape

Average error/STD
(unit: m)

Point cloud in front view Point cloud in back view

Participant 11 Female/medium 0.09720/0.0051

−0.5

0.8 0.6 0.4 0.3 0

0
0.58
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Participant 12 Male/big 0.09916/0.0051
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4

6

8

Participant 13 Male/medium 0.09687/0.0051
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4

2
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2

4

6

8

0

Participant 14 Female/small 0.09866/0.0051
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Participant 15 Male/big 0.09612/0.0051
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of the scanning and some of 3D point clouds are missing in
Figure 15.

Figure 16 shows the histograms of the distance errors for
the measured radii in 13 different positions used in the exper-
iments. As can be seen from the histograms, for all cases, the
average errors are less than 0.0013m (1.3mm), which is the
result for the cylinder 4. Also, the standard deviations
(STD) are less than 0.00521 (5.21mm), which is the result
of the cylinder 12.

4.2. Registrations with Various Distances and Angles between
the Two Kinects. In this section, we compare the registra-
tion results by varying the distance between the two Kinect
sensors from 4m to 8m with 1m increment. Three skele-
ton data and three cylinder data were used. As shown in
Figure 17, within the distance range from 4m to 8m, the reg-
istration accuracy of 3D point clouds is consistently main-
tained. At the distances less than 4m or larger than 8m,
however, the skeleton of the whole human body was not
completely captured by the Kinect sensor. The average radius
of 10 measurements is 0.0998m and the error is less than
0.0002m (0.2mm).

Although our experiments are based on the deployment
of the two facing Kinect V2 sensors with about 180° arc angle,
we also evaluate the registration accuracy of the 3D point
clouds by varying the arc angles between them. As shown
in Figure 18(a), our experiments were carried out at a dis-
tance of 2m from the central position of the skeleton. We
tested 90°, 135°, 157°, and 180° arc angles. The results of cal-
ibration and cylinder fitting are shown graphically in
Figure 18(b). The average measured radius of the four angles
is 0.0996m and the error is about 0.0004m (0.4mm). This
implies that our calibration method is robust against the arc
angle between the two Kinects, which makes the deployment
of the two Kinects easy.

4.3. Registration Accuracy for Human Bodies. In Figure 19,
the registered 3D point clouds for human bodies are demon-
strated with various views for the subjective evaluation.
Figure 19 shows the 3D point clouds for the human body
for three different persons. Each row of the figure shows a dif-
ferent person and each column represents the different view.
We also conducted experiments with 16 additional human

bodies with different genders and body shapes. The regis-
tered 3D point clouds are shown in Table 1 for the subjective
evaluation. As shown in the table, no noticeable bias is
observed in the calibration accuracy in terms of the gender
and the body shape. However, there was a difficulty in cap-
turing 3D points for those participants who wear dark pants
with specific fabric materials (see Participants # 5, 7, and 13
in Table 1). This is due to the limitation of the infrared sensor
in Kinect V2 rather than the calibration method.

5. Conclusions

In this paper, we have proposed a registration method for 3D
point clouds scanned by two Kinect V2 sensors, which are
facing each other. Our method is especially suitable for appli-
cations with frequent reinstallation and relocation of the
Kinect sensors. To this end, no calibration-assisting devices
but a standing person in between the two Kinect V2 sensors
are needed. Scanning a person as a calibration reference, the
skeleton joints provided by the two Kinect sensors are used
for the correspondences required for the calibration. Since
we used skeleton joints without any specific tools for the cor-
respondence, the detection process of the corresponding key-
points between the two 3D point clouds is not necessary,
enabling a fast calibration. Once the calibration is done by
human body as a calibration reference, its accuracy has been
demonstrated by measuring 13 cylindrical testing objects in
various possible locations. The average error of the measured
radii to the actual ones for the cylinder experiments is negli-
gible, which are less than 1.3mm and the standard deviations
(STD) are no more than 5.21mm. It is also shown that aver-
age errors of the cylinder radii for varying the distances from
4 to 8 meters and the arc angles from 90 to 180 degrees
between the two Kinects are quite small. The experimental
results demonstrate that our calibration method is robust
within certain ranges of distance and arc angle.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Table 1: Continued.

Reference
number

Gender/body
shape

Average error/STD
(unit: m)

Point cloud in front view Point cloud in back view

Participant 16 Female/small 0.10096/0.0052
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