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Hilly areas necessitate a field road vehicle with high automation to reduce the amount of labor required to transport agricultural
products and to increase productivity. In this paper, an adaptive integrated navigation method (combining global navigation
satellite system (GNSS) and inertial navigation system (INS)) and path tracking control strategy of field road vehicles are
studied in view of the problems of frequent GNSS outages and high automatic control precision requirement in hilly areas. An
indirect Kalman filter (KF) is designed for the GNSS/INS information fusion. A modified method for calculating the KF
adaptive factor is proposed to effectively suppress the divergence of the KF and a threshold judgement method to abandon the
abnormal GNSS measurement is proposed to deal with GNSS interruptions. To achieve automated driving, a five-layer fuzzy
neural network controller, which takes the lateral deviation, heading deviation, and path curvature as input and the steering
angle as output, is proposed to control vehicle autonomous tracking of the navigation trajectory accurately. The proposed
system was evaluated through simulation and experimental tests on a field road. The simulation results showed that the adjusted
KF fusion algorithm can effectively reduce the deviation of a single GNSS measurement and improve the overall accuracy. The
test results showed the maximum deviation of the actual travel trajectory from the expected trajectory of the vehicle in the
horizontal direction was 12.2 cm and the average deviation was 5.3 cm. During GNSS outages due to obstacles, the maximum
deviation in the horizontal direction was 12.7 cm and the average deviation was 6.1 cm. The results show that the designed
GNSS/INS integrated navigation system and trajectory tracking control strategy can control a vehicle automatically while
driving along a field road in a hilly area.

1. Introduction

Field roads in hilly areas are narrow and winding. Driving
conventional vehicles along such roads is challenging, mak-
ing the transportation of agricultural materials and products
a severe problem for agricultural production in hilly areas. In
China, most agricultural materials and products are trans-
ported by motorcycles, carts, and tricycles, among other con-
veyances [1]. These modes of transport have some problems,
such as high labor intensity, low efficiency, and low operation
safety. In addition, the labor force in hilly areas is severely
lacking. These factors strongly affect the development of agri-
culture in hilly areas. Thus, agricultural workers in hilly areas
urgently need a highly automated field road vehicle to trans-

fer agricultural materials and products aiming to reduce the
required labor intensity and increase production efficiency.

The keys to the automated driving of a vehicle on field
roads are autonomous navigation and trajectory tracking
control. Currently, the most commonly used autonomous
navigation systems are the inertial navigation system (INS),
satellite navigation system, magnetic navigation system,
machine vision navigation system, and combined navigation
systems composed of two ormore subsystems [2–4].With the
rapid deployment of real-time kinematics global navigation
satellite system (RTK-GNSS), GNSS positioning performance
is expected to be significantly improved in terms of availabil-
ity, accuracy, reliability, and continuity. Therefore, GNSS
positioning has become a ubiquitous facility in outdoor
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conditions, and GNSS navigation is widely used in land vehi-
cle navigation systems. In fact, short signal blockages of GNSS
will occur under restricted conditions, such as leaf attenuation
and temporary obstacle shadow conditions [5]. Since the
positioning performance of GNSS depends directly on the
continuous tracking of satellite signals, positioning methods
based on GNSS observation alone are incapable of providing
a continuous navigation solution in the GNSS-constrained
environment [6]. To solve this problem, GNSS is often inte-
grated with INS. The INS provides positioning information
during the GNSS outage, thus assisting the GNSS signal to
reacquire after the outage and reducing the search domain
required to detect and correct the GNSS cycle slip. The inte-
grated GNSS/INS system combines the advantages of both
technologies by reducing INS errors and continuously pro-
viding reliable navigation data. So, the GNSS/INS integrated
navigation system has favorable complementary advantages,
making it superior to other integrated navigation systems in
terms of performance [4, 7].

The key technology of GNSS/INS integrated navigation is
the fusion of GNSS observations with INS measurements to
obtain more accurate navigation information [7]. Different
fusion methods such as Kalman filter (KF), extended Kalman
filter (EKF), particle filter (PF), and artificial intelligence (AI)
approaches have been proposed and implemented to inte-
grate the INS and GNSS data. Among the existing informa-
tion fusion technologies, the most mature and widely used
method is KF and its improved algorithms [8–10]. In [11],
an improved KF method was used to assemble the navigation
information. The computational performance, convergence
speed, and convergence accuracy were better than those of
the traditional extended KF. In [12], an adaptive KF was used
to combine GNSS navigation information with INS naviga-
tion information to enhance the antijamming capability of
agricultural machinery in order to cope with the situation
where satellite signals are blocked by windbreaks during the
operation of automatic agricultural machinery in the field.
In [13], an innovative fuzzy adaptive KF algorithm and an
adaptive interacting multimodel algorithm based on multi-
model angle were introduced to measure the varying noise
characteristics of a vehicle-mounted GPS/INS integrated
navigation system. Recently, several AI-based techniques,
such as fuzzy neural networks [14], wavelet neural network
[15, 16], and adaptive neuro-fuzzy inference system [17],
have been proposed to replace or mix various filtering
methods to enhance the positioning accuracy of vehicular
navigation systems [18]. The basic principle behind these
architectures utilizing artificial neural network (ANN) is to
simulate the latest vehicle dynamics as long as the GNSS
signals are available. During training, the ANN is trained to
simulate the input–output functional relationships associ-
ated with INS and GNSS data. In the case of GNSS outages,
these AI-based models operate in predictive mode to correct
for inaccuracies in INS outputs [19]. However, due to the
high inherent INS sensor errors, the nonlinear complexity
of the input–output functional relationship increases and
the accuracy of ANN-based architecture degrades in the case
of low-cost INS. In addition, some adaptive ANN-based
architectures have some limitations in parameter optimi-

zation, resulting in huge computational load, and then their
real-time implementation is affected [19]. In particular,
when the GNSS signal is lost, both KF- and AI-based
methods will cease to be valid. However, in the first few
seconds of a GNSS outage, KF might outperform some
AI-based technologies [20].

The goal of agricultural autonomous navigation is to con-
trol the path of the vehicle to keep it along a predetermined
trajectory. The development of automatic path tracking con-
trol algorithms is critical for the realization of automated
vehicle operation [21]. The path tracking methods were clas-
sified into three groups: geometric approach, kinematic con-
trol law, and optimal control [22]. In [23], a PID control
algorithm was designed to control the front wheels of a nav-
igation vehicle for automatic steering. The test results showed
that this control method worked well. In [24], to make better
use of machine vision navigation to control vehicles, a navi-
gation control method based on improved particle swarm
optimization adaptive fuzzy control was proposed, which
has characteristics such as high response speed, small over-
shoot, and rapid elimination of lateral errors. In [25], an
adaptive robust controller with hierarchical sliding mode
was proposed, and a neural network was used for trajectory
tracking and stabilization of underactuated surface vessels.
In [26], a novel Nussbaum-based adaptive fuzzy control
scheme was proposed for trajectory tracking of a USV in
the presence of complex unknown nonlinearities and
completely unknown dynamics, and the tracking errors con-
verged to an arbitrarily small neighborhood of zero. Gener-
ally, commonly used path tracking control methods include
PID control, fuzzy control, neural network control, optimal
control, and combined control methods (e.g., the fuzzy neu-
ral network control method).

This paper aims to solve the problem of autonomous
driving of agricultural machinery on field roads in hilly areas.
However, because of the strong twists and turns of field roads
and occasional GNSS signal outages due to obstacles such as
trees, the relative study on the autonomous navigation of
field road vehicles in a hilly area is very limited. In this paper,
a low-cost GNSS/INS integrated navigation method and a
fuzzy neural network path tracking algorithm are proposed
considering the characteristics of the complex environment,
narrow road, frequent short-time GNSS outages, and high-
precision requirement of automatic driving control on field
roads in hilly areas. The contribution of this paper includes
the following: (1) amodified KF is designed for the GNSS/INS
information fusion and an adjusted method for calculating
the KF adaptive factor is proposed to effectively suppress the
KF divergence in GNSS short-time interruption, (2) a fuzzy
neural network is used to control the automatic steering of
the field road vehicle to solve the nonlinear path tracking con-
trol problem, and (3) the proposed GNSS/INS integrated nav-
igation method and the fuzzy neural network path tracking
algorithm are simulated and verified by experiments.

The remainder of this paper is organized as follows.
Section 2 presents the architecture of integrated navigation
system. Section 3 describes the establishment of adaptive
KF and proposes a modified method for calculating the adap-
tive factor. Section 4 presents the fuzzy neural network
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tracking control strategy. Section 5 contains the simulation
results, experimental details, and the test results.

2. Architecture of Autonomous
Navigation System

The combined use of the GNSS and INS allows the advan-
tages of the two systems to complement one another, syner-
gizing these two technologies and providing more accurate
and reliable navigation information. The complementary
advantages of GNSS systems and INS systems are reflected
in the following points: (1) the INS system is a closed,
completely independent navigation system [27] that can
compensate for the GNSS system’s vulnerability to inter-
ference and its large navigation errors; (2) the update fre-
quency of INS measurements is high [28], which can
compensate for the GNSS system’s low update frequency;
(3) the error of the GNSS system is independent of time,
which can compensate for the errors of the INS system
that accumulate over time [29, 30].

The field roads of hilly areas have narrow and rugged
characteristics and require high precision and stability of
the automated navigation system of a field road vehicle.
Therefore, this paper adopts the INS as the main navigation
system, uses the GNSS to correct the INS, and then formu-
lates the loosely coupled GNSS/INS integrated navigation
method to realize the autonomous navigation on field roads
in hilly areas. So the GNSS/INS integrated navigation system
consists of a GNSS, an INS, a main controller, and a steering
system. The architecture of the system is shown in Figure 1.

The low-cost INS used in this paper consists of a high-
precision single-axis gyroscope and a 3-axis accelerometer,
which can directly achieve single-axis heading angle and
3-axis acceleration. It is therefore necessary to calculate
the heading angle and the angular increments of the other
two axes indirectly.

The GNSS is a RTK-GPS system, including a GPS base
station and a vehicle-mounted GPS receiver. The GPS base
station transmits its own measured GPS data and its own
position coordinate information to the vehicle GPS receiver
by a wireless signal transmission station. The vehicle GPS
receives these data through the radio signal receiver, collects
its own GPS observations, and implements a real-time kine-
matic (RTK) differential positioning system, which ulti-
mately provides centimeter-level positioning results for the
vehicle. The INS monitors the vehicle’s acceleration and
angular velocity in real time.

The positioning data obtained by the RTK-GPS and the
acceleration and angular velocity data obtained by the INS

are sent to the main controller. The main controller uses
the designed KF to fuse the GNSS and INS data to obtain
accurate and reliable navigation information. The fuzzy neu-
ral network determines the desired trajectory of the vehicle
based on the navigation information.

The steering system controls the swerving of the vehicle
based on the calculated desired trajectory of the vehicle so
that the vehicle can travel automatically.

3. Establishment of Adaptive KF

In the process of automated vehicle operation, the GNSS and
INS measure the position and attitude information of the
vehicle. Information fusion is essential for the GNSS and
INS to work in conjunction. This paper uses the adaptive
indirect KF to fuse the GNSS/INS data, utilizing the error
equations of the GNSS/INS system to establish the KF and
then the estimated error to correct the navigation parameters
to formulate more accurate navigation information. In the
information fusion process, if the GNSS signal is judged by
the threshold to be a short-time abnormality, the GNSS mea-
surement data are discarded.

3.1. Measurement Parameters. The GNSS and INS loosely
integrated navigation system selects the position and velocity
of the vehicle as measurement parameters. So, the measure-
ment errors include the position difference and the velocity
difference between the GNSS measurement value and the
INS measurement value.

The position error equation at time k is

Zp kð Þ =HpXp kð Þ +Vp kð Þ, ð1Þ

where

Hp =
R cos L 0 0

0 R 0
0 0 1

2664
3775,

Xp kð Þ =
δλ

δL

δh

2664
3775,

Vp kð Þ =
nx

ny

nh

2664
3775:

ð2Þ

GNSS base
station

Vehicle-mounted
GNSS mobile station

Inertial navigation
system

Kalman
filter

Fuzzy neural
network

Steering
system

RTK differential GNSS
positioning system

Main
controller

Figure 1: Architecture of the GNSS/INS integrated navigation system.
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R is the radius of the earth; δλ, δL, and δh are the position
error noises of latitude, longitude, and altitude measured by
INS, respectively; nx , ny , and nh are the position error noises
of longitude, latitude, and altitude measured by GNSS,
respectively.

The velocity error equation at time k is:

Zv kð Þ =HvXv kð Þ +Vv kð Þ ð3Þ

where

Hv =
1 0 0
0 1 0
0 0 1

2664
3775,

Xv kð Þ =
δVxI

δVyI

δVzI

2664
3775,

Vv kð Þ =
nxv

nyv

nzv

2664
3775:

ð4Þ

δVxI , δVyI , and δVzI are the error noises of eastward,
northward, and upward velocity measured by INS, respec-
tively; nxv , nyv , and nzv are the error noises of eastward, north-
ward, and upward velocity measured by GNSS, respectively.

Then, the totally measurement error equation is obtained
by combining the position error equation and the velocity
error equation:

Zk =
Zv kð Þ
Zp kð Þ

" #
=

Hp 03×3
03×3 Hv

" #
Xp kð Þ
Xv kð Þ

" #
+

Vv kð Þ
Vp kð Þ

" #
ð5Þ

3.2. KF Equation. The KF equation for the field road vehicle’s
GNSS/INS integrated navigation system is as follows.

(1) One-step prediction equation of the state:

_Xkjk−1 = FX, ð6Þ

where F is the state transition matrix and X is the state
variety

(2) Equation for estimating the state:

b_X = _Xkjk−1 +Kk Zk −Hk
_Xkjk−1

h i
, ð7Þ

where Kk is the filter gain matrix and Hk is the measurement
matrix

(3) Filter gain equation:

Kk = Pkjk−1HT
k HkPkjk−1HT

k + Rk

h i−1
, ð8Þ

where Pkjk−1 is the covariance error prediction equation and
Rk is the variance matrix for measuring noise, which is
determined by the parameters of the selected GNSS and
INS sensors:

Rk = diag δ2Δx, δ2Δy , δ2Δz , δ2Δvx , δ2Δvy, δ2Δvz
� �

ð9Þ

where δΔx, δΔy, δΔz , δΔvx, δΔvy, and δΔvz represent the propor-
tionality constants of the displacement error and velocity
error in the x, y, and z directions, respectively, in the vehicle
coordinate system.

(4) Equation for predicting covariance error:

Pk∣k−1 = FPk−1FT + Γk−1Qk−1ΓTk−1, ð10Þ

In the equation, Qk−1 is the variance matrix of the system
noise matrix Γ k−1:

Qk−1 = diag δ2ax , δ2ay , δ2az , δ2ωx, δ2ωy , δ2ωz
� �

ð11Þ

where δax, δay , δaz , δωx, δωy , and δωz represent the propor-
tionality constants of the acceleration error and angular
velocity error in the x, y, and z directions, respectively, in
the vehicle coordinate system.

In Equation (10), the system noise matrix Γk−1 can be
obtained from the equation of state:

Γk−1 =G =
03×3 03×3

diag 1, 1, 1ð Þ 03×3
03×3 diag 1, 1, 1ð Þ

2664
3775
9×6

ð12Þ

(5) Equation for estimating the covariance error:

Pk = I −KkHkð ÞPkjk−1 ð13Þ

The five equations above are the basic equations of the KF
of the GNSS/INS integrated navigation system. The cyclical
calculation uses the estimation value of the previous state
to calculate that of the current state and then corrects
the state estimation using the current measurement value.
Through continuous iterative updates, the best estimate of
the GNSS/INS integrated navigation system is ultimately
obtained.

3.3. Adaptive Design of the KF. The memory of the KF
increases to infinity [31, 32]; all the observed data before
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the current moment are used to estimate the current state.
With the recursion of the KF, the amount of previous data
in the filter gradually increases and occupies a large propor-
tion in all the data, while the proportion of the new data is
too small, resulting in the accumulation of errors and causing
the filter to seemingly diverge [33]. An effective method for
overcoming the filter divergence problem is to add an adap-
tive factor to the filter to reduce the proportion of previous
data in the filtering calculation and increase the proportion
of new data.

The adaptive factor λk reduces the filtering divergence by
adjusting the covariance matrix in real time and increasing
the emphasis on innovation, as shown in Equation (14):

Pk,k−1 = λk Fk,k−1Pk−1,k−1FTk,k−1 + Γk,k−1Qk−1ΓTk,k−1
� �

, ð14Þ

where λk is the adaptive factor, Pk,k−1 is the covariance error
prediction matrix, Fk,k−1 is the state transition matrix, Pk−1,k−1
is the covariance error estimation matrix obtained in the pre-
vious cycle, Γk,k−1 is the system noise matrix, and Qk−1 is the
system noise variance matrix.

Define Yk as the innovation sequence of measurement
matrix Zk at time tk:

Yk = Zk −HkXk,k−1: ð15Þ

Then, the covariance matrix Ck for the innovation can be
derived as

Ck = E YkYT
k

� �
=HkPk,k−1HT

k + Rk: ð16Þ

In the linear KF, Yk is the white noise sequence. We can
derive the linear KF’s innovation autocorrelation function
[33], as shown in Equation (17).

E Yk+jYT
k

� �
=Hk+jFk+j−1,k+j−2 ⋅ I −Kk+j−1Hk+j−1

� �
Fk+1,k

⋅ I − Bk+1Hk+1½ � ⋅ Fk,k−1 ⋅ Pk,k−1HT
K −KkCk

� �
:

ð17Þ

Denote

Sk = Pk,k−1HT
K −KkCk: ð18Þ

In actual calculations, due to the errors in the system
model, the theoretical and actual values of the innovation
covariance matrix are not exactly the same; thus, the value
of the autocorrelation function is not necessarily zero. There-
fore, we let Sk = 0 by adjusting the gain matrix Kk. Then, it is
possible to make the new autocorrelation function (Equation
(17)) equal zero, forcing the sequence of innovations to
be orthogonal.

In the innovation sequence (Equation (15)), an estima-
tion error is generated by the actual calculation. The reason
for filtering divergence is that the estimation error is incon-
sistent with the theoretical error. Therefore, we can evaluate
whether the KF exhibits divergence by comparing the square
sum of the innovation and the covariance.

Equation (16) is the theoretical covariance of the inno-
vation. For an innovation with an interval length of N , the
estimated value Ĉk of the covariance matrix Ck can be
described as

Ĉk =
1
N

〠
N−1

i=0
Yk−iYT

k−i = Ĉk‐1 +
1
N

YkYT
k − Yk−NYT

k−N
� �

: ð19Þ

The solving formula of Kk, and the estimated value Ĉk,
which can substituted for the theoretical value Ck, can be
taken into Equation (18) and set Sk = 0, then

Pk,k−1HT
K I − HkPk,k−1HT

k + Rk

� �−1Ĉk

� �
= 0: ð20Þ

Since Pk,k−1, Ĉk, and Hk are all full-rank symmetric
matrices, the following relationship can be obtained from
the above formula:

HkPk,k−1HT
k + Rk = Ĉk: ð21Þ

Substituting Equation (14) into Equation (21), we obtain:

λkHk Fk,k−1Pk−1,k−1FTk,k−1 + Γk,k−1Qk−1ΓTk,k−1
� �

HT
k = Ĉk − Rk:

ð22Þ

In Equation (22), λk is a weight value for the whole
covariance error. It is difficult to optimize each measurement
parameter for a single weight value. So the elements of the
main diagonal in the matrix HkðFk,k−1Pk−1,k−1FTk,k−1 + Γk,k−1
Qk−1ΓTk,k−1ÞHT

k are each divided by the corresponding ele-
ments on the main diagonal in the matrix (Ĉk − Rk), and
the obtained results are used as the weight values, as shown
in Equation (23).

λi =
Ĉk − Rk

� �
ii

Hk Fk,k−1Pk−1,k−1FTk,k−1 + Γk,k−1Qk−1ΓTk,k−1
� �

HT
k

� �
ii

 

i = 1, 2, 3,⋯, 6:
ð23Þ

This method for finding weight values is equivalent to
dividing the innovation covariances of the longitude error,
latitude error, height error, eastward velocity error, north-
ward velocity error, and upward velocity error by the error
covariance to obtain an adaptive factor.

3.4. Measurement Equation Adjust. In Equation (7), Zk is the
measurement error. When the vehicle is driving along a reg-
ular field road, Zk is obtained from both the GNSS and INS
measurements. However, the field road conditions in hilly
areas are complex and varying, and the GNSS usually suffers
from large errors due to multipath, poor geometry, and high
noise. Occasionally, obstacles such as trees will overshadow
both sides of the field road and interrupt the GNSS signal,
causing large GNSS positioning errors. Because INS requires
no external reference (after initialization) and has no
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information exchange with outer devices, it is immune to
jamming and deception. Furthermore, INS can be used as a
short-term fallback while GNSS signals are unavailable.
Therefore, if the GNSS positioning value changes abruptly
and the deviation exceeds a certain range, only the INS mea-
surement value is used to calculate Zk. But for long-term
GNSS outages, the autonomous navigation will turn to
machine vision navigation (this issue will be discussed in a
follow-up paper).

Define �Ck is the average value of n innovation sequence
covariance matrices:

�Ck =
1
N

〠
N−1

i=0
Yk−iYT

k−i: ð24Þ

Equation (24) reflects the average error of measurement
and estimation over a period of time. Define deterioration
factor of measurement value is

Ok = tr YkYT
k − �Ck−1

� �
: ð25Þ

The error of estimation is gradually increasing with time.
Under normal circumstances, the error of a single measure-
ment value should be consistent with the average value �Ck.
If the measurement of GNSS is disturbed, Yk and Ok will
abnormal increase. So, we can define an error threshold
Olimit of the estimation, if

Ok >Olimit, ð26Þ

the error of the measurement is abnormal. Under this condi-
tion, the measurement value of GNSS in measurement error
equation Zk will be abandoned and only the measurement
value of INS is available, so the measurement error Equation
(5) changed to Equation (27):

ZIk =
ZvI kð Þ
ZpI kð Þ

" #
=

Hp 03×3
03×3 Hv

" #
Xp kð Þ
Xv kð Þ

" #
: ð27Þ

Figure 2 shows the iterative calculation process of the
modified KF.

4. Fuzzy Neural Network Tracking Control

After the real-time position and velocity of the vehicle are
obtained via the modified KF, corresponding control strate-
gies are still required to control vehicle autonomous tracking
of the navigation trajectory accurately. Fuzzy control and
neural network control can be combined to utilize the com-
plementary advantages of both. Based on this, a fuzzy neural
network path tracking control strategy is designed for the
vehicle. The function of the fuzzy neural network is to decide
the automatic steering angle according to the deviation
between the real-time position and velocity of the vehicle
and the navigation line.

4.1. Structure of the Fuzzy Neural Network Controller. Con-
trolling the automated operation of a vehicle involves a
highly nonlinear complex control system composed of multi-
ple variables [34], with lateral control (also known as steering
control) being crucial [35, 36]. Lateral control is directly
related to the lateral deviation, heading deviation, and path
curvature. Thus, a five-layer fuzzy neural network structure
with three input parameters and a single output is imple-
mented, as shown in Figure 3. The input parameters include
the lateral deviation, heading deviation, and path curvature.
The output parameter is the steering angle of the field road
vehicle. The lateral and heading deviation are calculated by
the real-time position and velocity which are obtained via
the modified KF, while the path curvature is calculated by
the navigation line.

4.2. Learning Algorithm. The input and output functions of
each node of the field road vehicle fuzzy neural network
are different from those of ordinary neural network nodes
and have special forms. Define f ðlÞ and oðlÞ are the node
function and output value of l layer, respectively. The output
function of each layer is the identity function. The following
illustrates the derivation of the node function and output
value for each layer.

𝑷
k

1k +

O
k

O
k
 > O

limit

N

Y
k +1

𝑸
k−1

R
k

𝒁
k

𝒁
k

𝒁
Ik

𝑿0, k = 1ˆ

𝑿
k|k−1 = 𝑭

k|k−1𝑿k−1
ˆ ˆ

𝑷
k
 = (𝑰 − 𝑲

k
𝑯

k
)𝑷

k|k−1𝑿
k
 = 𝑿

k|k−1 + 𝑲
k

ˆ ˆ ˆ𝒁
k
 − 𝑯

k
𝑿

k|k−1

𝑷0, k = 1

X
k

ˆ

𝑷
k|k−1 = 𝑭𝑷

k−1
𝑭 T +𝜞

k−1
𝑸

k−1
𝜞

k−1
T

𝑲
k
 = 𝑷

k|k−1𝑯k
T 𝑯

k
𝑷

k|k−1𝑯
T + 𝑹

kk

−1

Figure 2: Calculation process of the modified KF.
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The first layer is the input layer, and the node function is

f 1ð Þ
i = x 0ð Þ

i = xi

o 1ð Þ
i = f 1ð Þ

i = xi

ð28Þ

where i = 1, 2, 3.
In the second layer, each node represents a fuzzy linguis-

tic variable value. This layer calculates the membership func-
tion of each input component xi belonging to each linguistic
variable μj

i . In this paper, the fuzzy set of each input com-
ponent includes 7 fuzzy variables and Gaussian function is
used as the membership function. The node function of
this layer is

f 2ð Þ
ij = −

x 1ð Þ
i − cij

� �2

σ2
ij

o 2ð Þ
ij = μj

i = ef
2ð Þ
i j = e− xi−ci jð Þ2/σ2i j

� � ð29Þ

where i = 1, 2, 3; j = 1, 2, 3,⋯, 7; cij and σij are the central
value and width of membership function, respectively.

In the third layer, each node represents a fuzzy rule. The
role of the third layer is to match the premises of the fuzzy
rules and calculate the usage degree of each fuzzy rule. Mul-
tiplication algorithm is adopted as the node function, that is

f 3ð Þ
k = x 2ð Þ

1i1 x
2ð Þ
2i2 x

2ð Þ
3in = μi11 μ

i2
2 μ

i3
3 ,

o 3ð Þ
k = f 3ð Þ

k = μi11 μ
i2
2 μ

i3
3 ,

ð30Þ

where i1 ∈ f1, 2, 3,⋯, 7g, i2 ∈ f1, 2, 3,⋯, 7g, and i3 ∈ f1,
2, 3,⋯, 7g.

In the fourth layer, the single neuron and the correspond-
ing rules are normalized. The node function is

f 4ð Þ
k = o 3ð Þ

k

∑m
k=1o

3ð Þ
k

,

o 4ð Þ
k = f 4ð Þ

k :

ð31Þ

In the fifth layer, the defuzzification calculation is carried
out, and the desired steering angle of the vehicle is output.
The node function is

f 5ð Þ = 〠
m

k=1
ωko

4ð Þ
k ,

o 5ð Þ = y = f 5ð Þ:

ð32Þ

In Equations (23), (24), and (25), m = 343, and k = 1, 2, 3,
⋯, 343.

4.3. Training and Testing. The parameters of the fuzzy neural
network tracking controller that need to be determined via
self-learning include the weight of the last layer input variable
ωkðk = 1, 2, 3,⋯,343Þ and the central value cij and width σij
ði = 1, 2, 3 ; j = 1, 2, 3,⋯,7Þ of the membership function in
the second layer. The vehicle’s fuzzy neural network control-
ler structurally belongs to the multilayer feedforward net-
work. According to the back-propagation (BP) network
structure [37], the error back-propagation learning algorithm
is selected to learn the related parameters.

When training the fuzzy neural network, test data are
used to verify the result for each training step, and the trend
of the mean squared error (MSE) of the test data as the train-
ing time increases is obtained. In this way, we can find the
most appropriate training times to ensure that the fuzzy neu-
ral network has satisfactory generalizability after learning.

Path
curvature 

Heading
deviation

Lateral
deviation

𝜇
i
j

𝛼
k

𝜔
k

x1

x2

x3

y

Steering
angle of
vehicle

𝛼
k

Figure 3: Structure of the fuzzy neural network controller.
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The change in the test data MSE with the training time in this
study is shown in Figure 4.

As the training time increases, the MSE decreases first
rapidly and then slowly. When the numbers of training
reaches 331, the MSE reaches a minimum of 0.01; after-
wards, it begins to increase, which is due to the influence
of noise and model complexity, and a tendency of overfit-
ting occurs. Early stopping method of iterations is applied
to determine the training times. Thus, the result obtained
from the upper position in 331 training is the best. We
take the result of this training as the final result and then
determine ωj, σij, and cij.

In order to verify the control effect of the fuzzy neural
network path tracking, the input parameters of the test
data are input into the trained fuzzy neural network con-
troller, and the steering angle of the vehicle obtained by
the solution is compared with the actual measured steering
angle of the vehicle. As shown in Figure 5, it can be seen
that the output steering angle by the fuzzy neural network
can well predict the change of the actual steering angle
during the testing, with an average deviation of 1.12°. It
shows that the designed fuzzy neural network controller
has good control performance for the automatic driving
of the vehicle.

5. Results and Discussion

5.1. Simulation of Information Fusion. To verify the correct-
ness of the fusion processing and the improving effect of the
positioning accuracy of the modified KF algorithm, the infor-
mation fusions were simulated by MATLAB R2015. The
simulation is based on the following steps:

(a) Set the initial state of the field road vehicle. Accord-
ing to the geographical location of Chongqing, the
vehicle was located at 30° N., 106° E., and 0 height.
The initial speed of the vehicle was set to 2m/s with
the positive south direction

(b) A series of accelerations of the vehicle are randomly
generated. The acceleration values of the x-axis
(i.e., the lateral direction), the y-axis (i.e., the lon-
gitudinal direction), and the z-axis (i.e., the plumb
direction) were limited within ±0.2m/s2, ±0.5m/s2,
and± 0.1m/s2, respectively. The maximum speed of
the vehicle was limited to 10m/s

(c) Calculate the attitude angle of the vehicle according
to the kinematic model of the vehicle and the random
acceleration generated in step (b)
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Figure 4: The mean squared error of test data with respect to the training time.
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(d) Calculate the simulated trajectory of the vehicle
based on the time integration of the random acceler-
ation and the attitude angle

(e) Simulate the GNSS output data. According to the
performance of the selected GNSS, a series of noise
values were added to the trajectory as the output
values of the GNSS. The deviation between the simu-
lated GNSS output data and the simulated trajectory
of the vehicle is shown in Figure 6

(f) Simulate the INS output data. According to the per-
formance of the selected INS module, a series of noise
values were added to the simulated acceleration and
the attitude angle as the output values of the INS.
The simulated INS output data are shown in Figure 7

(g) Calculate the driving trajectory of the vehicle utiliz-
ing the proposed KF fusion of the simulated vehicle
trajectory, simulated GNSS output data, and INS out-
put data. The driving trajectory was taken as the
result of the KF information fusion

Figure 6 shows that the deviation between the simulated
GNSS output value and the simulated trajectory fluctuates
around zero with a deviation of 5 cm, which is consistent
with the performance of the GNSS used in the test.

Figure 7 shows the simulated INS output data, which
has slight fluctuations compared to the simulated driving
state of the vehicle. The simulated INS output is obtained
through adding noise to the simulated vehicle trajectory,
which is consistent with the performance of the tested
INS module.

From Figure 7, the acceleration and rotation of the simu-
lated trajectory, which are irregular and mutable, can reflect
the objective situation of the vehicle driving on the field roads
in hilly areas. The simulated GNSS and INS output values,
which include simulated measurement noises, are also
consistent with the performance of the selected equipment.
So, the simulated trajectory and GNSS and INS output
values can be used to verify the modified KF information
fusion algorithm.

Comparing the calculated driving trajectory through the
modified KF fusion algorithm and the simulated trajectory,
the deviation between them is obtained, as shown in Figure 8.

From Figure 8, it can be seen that the eastward deviation,
northward deviation, and upward deviation between the KF
fused driving trajectory and the simulated trajectory fluctuate
around 0, and the maximum deviation value is within 3 cm.
Compared with the simulated GNSS output in Figure 6, the
deviation trend of the KF fusion output is consistent with
that of the simulated GNSS output, but the maximum devia-
tion of the KF fusion output is reduce by 40%. This shows
that the proposed GNSS/INS integrated navigation and the
adjusted KF fusion algorithm can effectively reduce the devi-
ation of a single GNSS measurement and improve the overall
accuracy. It provides a more reliable parameter basis for the
automatic driving control.

In order to verify the information fusion functionality
when the GNSS signal is lost for a short time, an artificial
noise error is added to the original GNSS data from 781 s to
800 s as shown in Figure 9 to simulate an abnormal GNSS
signal. The improved vehicle Kalman filter designed by this
paper is compared with the simulated vehicle trajectory to
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Figure 6: The deviation between the simulated GNSS output and the simulated trajectory.
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verify the effectiveness of the proposed algorithm in the case
of GNSS signal loss during a short time. Figure 9 shows the
eastward, northward, and upward deviation between adap-
tive Kalman output and simulated vehicle’s track from 770 s
to 810 s, respectively.

It can be seen from Figure 9 that the deviation between
the output value of the Kalman filter information fusion
and the simulated vehicle travel trajectory increases at 780 s

(point A). The deviation reaches the maximum at 800 s
(point B), with an eastward deviation of 14 cm, a northward
deviation of 16 cm, and a upward deviation of 23 cm. After
crossing the point B, the difference between the output value
of the Kalman filter information fusion and the simulated
vehicle travel trajectory is rapidly reduced, and the output
value of the Kalman filter information fusion returns to
normal at 805 s.
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It can be seen from the simulation results that when the
GNSS signal is lost, the Kalman filter information fusion
relies on the output data of the INS to calculate the driving
state of the vehicle. Although the deviation of the solution
will accumulate over time, it can still be used in a short period
of time. When the GNSS signal returns to normal, the
Kalman filter information fusion algorithm uses the output
data of GNSS and INS at the same time, which can quickly
correct the previous deviation.

5.2. Experiment on Normal Field Roads. To verify the effec-
tiveness of the GNSS/INS integrated navigation system and
the fuzzy neural network tracking control strategy for the
vehicle, automated driving tests were performed on normal
field roads and roads where the GNSS suffers from occasional
outages in terms of the position. The length of the field road
vehicle is 1.13m, its wheelbase is 0.76m, its tread is 0.45m,
and its maximum load capacity is 150 kg. The experimental
field road is 1.2m wide, with significant changes in altitude
and curvature. The speed of the vehicle is 2m/s. The high-
accuracy RTK-GPS (model K706, manufactured by ComNav
Technology Ltd.), which includes a fixed base station and a
rover on the vehicle to reduce the position error, was used
to collect the middle line coordinate information of the road
and store it as the autonomous navigation path. The posi-
tioning accuracy of the RTK-GPS is 2 cm. The INS module
(model LPMS-NAV2, manufactured by LP-RESEARCH
Inc.), which is composed of a high-accuracy one-axis gyro-
scope and a 3-axis accelerometer, is low cost with a resolution
of 0.122mg/LSB and an angle resolution of 0.01°.

During the test, the vehicle is placed in the starting posi-
tion facing the forward direction of the road. The driving
mode of the vehicle is set to autonomous travel. The auto-
mated vehicle driving scene is shown in Figure 10.

In the process of autonomous traveling, the main con-
troller records the real-time longitude, latitude, and altitude
data of the GNSS/INS integrated navigation system and com-
pares this information with the expected path information to
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Figure 10: Automated vehicle driving experiment.
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obtain the actual path deviation. The eastward, northward,
and upward deviations of the autonomous traveling trajec-
tory are shown in Figure 11.

The deviations of the autonomous traveling trajectory all
fluctuate around 0 because of the unevenness of the acceler-
ometer measurement due to the roughness of the road sur-
faces coupled with GNSS positioning errors, mechanical
errors of the steering system, and other errors. In the east-
ward direction, the maximum deviation is 8.9 cm and the
average deviation is 4.6 cm. In the northward direction, the
maximum deviation is 11.9 cm and the average deviation is
4.9 cm. In the upward direction, the maximum deviation is
17.3 cm and the average deviation is 6.8 cm.

The deviation in the horizontal direction, which reflects
the accuracy of the path tracking control, could be directly
calculated by vector operation of the eastward deviation
and the northward deviation. The maximum deviation in
the horizontal direction is 12.2 cm and the average deviation
is 5.3 cm. The test results show that the designed GNSS/INS
integrated navigation system can accurately control the auto-
mated driving of a vehicle on a field road in hilly areas.

5.3. Experiment during GNSS Outages. In hilly areas, obsta-
cles such as trees and crops along the field road may can
block the signals of the GNSS. As a result, the GNSS position-
ing information may be strongly distorted or unavailable. To
verify the effectiveness of the designed GNSS/INS integrated
navigation system during GNSS outages, the following exper-
iment is designed.

In the experiment, a small segment of the field road along
which the GNSS system signal is blocked by a tall plant is
selected (see Figure 12).

When the vehicle travels along the road section shown in
Figure 12, the GNSS suffers from outages in position due to
communication link failures and loss of satellite lock due to
occlusion by the fruit trees along both sides of the field road,
resulting in a large positioning error. The measured position
coordinate of the vehicle during automated driving is shown
in Figure 13. Starting from point A, the GNSS signal
begins to be distorted, and the positioning information
strongly deviates. After the vehicle travels to point B, the
GNSS signal returns to normal.

The eastward deviation, northward deviation, and
upward deviation of the automated operation of the vehicle
during GNSS outages are shown in Figure 14.

Figure 14 shows that the deviations of the vehicle still
slightly fluctuate around 0 during automated operation. In
the eastward direction, the maximum deviation is 12.3 cm
and the average deviation is 5.6 cm. In the northward
direction, the maximum deviation is 7.2 cm and the
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average deviation is 3.8 cm. In the upward direction, the
maximum deviation is 14.1 cm and the average deviation
is 5.2 cm.

The maximum deviation in the horizontal direction
calculated from the eastward deviation and the northward
deviation is 12.7 cm and the average deviation is 6.1 cm,
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which shows that the vehicle can still proceed normally
along the planned road when the GNSS is disturbed for
a short time.

An analysis of the AB segment while the GNSS is
perturbed shows that the eastward deviation continues to
increase until reaching a maximum deviation of 12.3 cm.
The northward deviation declines at a slow rate, and the sky-
ward deviation is relatively fluctuant along this segment. This
result principally occurs because the GNSS/INS integrated
navigation system uses only the navigation information mea-
sured by the INS during GNSS outages. The INS error accu-
mulates over time, leading to an increase in bias and a slow
correcting rate in the eastward and northward directions.
Since the INS device is composed of a single-axis gyroscope
and a three-axis accelerometer, the height information is
converted using the accelerometer measurements. Due to
the roughness of the field road surfaces and the shaking of
the vehicle, the accelerometer’s measurement noise is large,
resulting in large errors in the converted height information
and the phenomenon of fluctuation of the skyward deviation.

In summary, the GNSS system is affected by vegetation
on both sides of the road during automated operation of
the vehicle, resulting in a lack of signal availability and a large
positioning error. At that time, the GNSS/INS integrated
navigation system uses the measurements of the INS to cal-
culate the navigation information and imports the result into
the fuzzy neural network controller. As a result, the vehicle
can still automatically travel along the predetermined path
of the field road.

6. Conclusions

In this paper, based on the characteristics of vehicles driving
along field roads in hilly areas, these authors design a loosely
coupled GNSS/INS integrated navigation system structure
and utilize modified indirect KF for information fusion.
The fuzzy neural network is used as a path tracking controller
for the vehicle.

Simulation results showed that, compared with the simu-
lated GNSS output, the deviation trend of the KF fusion out-
put is consistent with that of the simulated GNSS output, but
the maximum deviation of the KF fusion output is reduce by
40%. The proposed GNSS/INS integrated navigation and the
adjusted KF fusion algorithm can effectively reduce the devi-
ation of single GNSS measurement and improve the overall
accuracy.

In the normal field road experiment, the maximum devi-
ation in the horizontal direction is 12.2 cm and the average
deviation is 5.3 cm. In the GNSS short-term outage experi-
ment, the maximum deviation in the horizontal direction is
12.7 cm and the average deviation is 6.1 cm. The field road
experiment verifies that the proposed GNSS/INS integrated
navigation system can accurately control the automated
operation of a vehicle along field roads in a hilly area.

The GNSS/INS integrated navigation system used in this
paper can deal with the GNSS outages in a short period of
time. However, if the GNSS signals were lost for a long time,
the navigation error will increase due to the accumulation of
INS system errors, resulting to the deviation of vehicles from

the narrow mountain roads in the hilly mountains. There-
fore, complementary navigation systems such as machine
vision navigation have been added to subsequent studies in
this project, which can improve the ability of the navigation
system to cope with the harsh navigation environment in
hilly areas.
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