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To reconstruct compressed sensing (CS) signal fast and accurately, this paper proposes an improved discrete differential evolution
(IDDE) algorithm based on fuzzy clustering for CS reconstruction. Aiming to overcome the shortcomings of traditional CS
reconstruction algorithm, such as heavy dependence on sparsity and low precision of reconstruction, a discrete differential
evolution (DDE) algorithm based on improved kernel fuzzy clustering is designed. In this algorithm, fuzzy clustering algorithm is
used to analyze the evolutionary population, which improves the pertinence and scientificity of population learning evolution while
realizing effective clustering.The differential evolutionary particle coding method and evolutionarymechanism are redefined. And
the improved fuzzy clustering discrete differential evolution algorithm is applied to CS reconstruction algorithm, in which signal
with unknown sparsity is considered as particle coding. Then the wireless sensor networks (WSNs) sparse signal is accurately
reconstructed through the iterative evolution of population. Finally, simulations are carried out in the WSNs data acquisition
environment. Results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy
of the algorithm proposed in this paper is improved by 36.4-51.9%, and the reconstruction time is reduced by 15.1-31.3%.

1. Introduction

The rapid development of wireless sensor networks (WSNs)
has binging human society into the era of big data. However,
huge amount of data collected from sensor network is also
accompanied by the sharp increase of the signal bandwidth
[1]. If we still adopt the traditional Nyquist sampling theorem
for data acquisition in this case, it will bring unprecedented
challenges to the hardware system [2]. The advent of com-
pressive sensing (CS) [3] solved this problem and created a
whole new approach for the signal information processing
[4, 5]. Through a series of nonlinear optimization algorithm,
CS is able to accurately reconstruct compressible signal from
a small amount of data and greatly reduced the requirement
for the sampling rate [6]. Thus, the theory of compressed
sensing is gradually and widely applied to image processing,
wireless sensor networks, radio communication, etc.

Sparse representation, observation matrix, and recon-
struction algorithm are the core contents in compressed
sensing, and the reconstruction algorithm is the most critical
part [7]. It is commonly divided into three kinds: convex
optimization algorithm, greedy algorithm, and their com-
bination. The key problem in CS reconstruction is how to
use a small amount of observed signal to reconstruct the
original signal rapidly and accurately. Furthermore, several
problems, such as high computational complexity, large
amount of data, and preset sparsity, still need to be solved.
Reference [7] proposed a SL0 reconstruction algorithm for
compressive sensing based on BFGS quasi Newton method,
which effectively improved the iterative efficiency of greedy
matching pursuit algorithm by taking advantage of the
rapid convergence of quasi Newton method. Wang et al. [2]
introduced Dice coefficient matching metric into SWOMP
reconstruction algorithm to overcome the inherent defect
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that the inner product matching criterion of SWOMP is
sensitive to residual signals. Simulation results show that
their algorithm has higher signal reconstruction success
rate. In [8], researchers discussed the signal reconstruction
algorithm for compressed sensing without prior information
of signal sparsity. But the signal reconstruction accuracy of
this algorithm needs to be improved.

Currently, most compressed sensing algorithms recon-
struct the original signal by minimizing its 𝑙0 or 𝑙1 norm
[9]. This is NP-hard problem.Therefore, we propose a WSNs
compressed sensing signal reconstruction algorithm based
on fuzzy clustering and discrete differential evolution. In
this algorithm, we consider signal with unknown sparsity
as differential evolution particle coding and reconstruct the
signal through population iterative evolution. To improve the
efficiency and accuracy of signal reconstruction, fuzzy clus-
tering is utilized while the differential evolution mechanism
is redefined. Finally, simulation experiments are carried out
to verify its validity.

2. Differential Evolution Algorithm
Based on Fuzzy Clustering

2.1. Differential Evolution. Differential evolution (DE) [10]
is a kind of intelligent optimization algorithm with random
search. It preserves the individuals with better fitness through
mutation and competition to achieve the desired end. Due to
its excellent global convergence and good robustness, fewer
number of control parameters, and easy to be implemented,
DE has been widely used in solving complex optimization
problems [11].

An iteration of the classical DE algorithm mainly consists
of three basic steps:mutation, crossover, and selection. ForN-
dimensional optimization, there exists a differential evolution
population composed of 𝑃 particles 𝑋𝑡𝑖(𝑥𝑡𝑖1, ⋅ ⋅ ⋅ , 𝑥𝑡𝑖𝑁) (𝑖 ∈[1, 𝑃]) for the current generation 𝑡.The process of performing
mutation on𝑋𝑡𝑖 (𝑥𝑡𝑖1, ⋅ ⋅ ⋅ , 𝑥𝑡𝑖𝑁) can be expressed as

𝑉
𝑡
𝑖 = 𝑋𝑡𝑎 + 𝐹 × (𝑋𝑡𝑏 −𝑋𝑡𝑐) (1)

where 𝐹 ∈ [0.4, 1] denotes the scalar number, 𝑉𝑡𝑖 denotes
the mutant particle. The indices 𝑎, 𝑏, 𝑐 ∈ [1, 𝑃] are mutu-
ally exclusive integers randomly chosen from the range[1, 𝑃], which are also different from 𝑖. In essence, mutation
randomly selects three different particles from the current
population, multiplies the difference of any two of these
three particles with the scalar number 𝐹, and adds the scaled
difference to the third one to obtain the mutant particle to
fuse more individual information.

To enhance the potential diversity of the population,
crossover operation is then performed. It is a process of
selecting components from𝑉𝑡𝑖(V𝑡𝑖1, ⋅ ⋅ ⋅ , V𝑡𝑖𝑁) and𝑋𝑡𝑖 according
to certain probability to obtain the trial particle, described as

𝑈
𝑡
𝑖 (𝑢𝑡𝑖1, ⋅ ⋅ ⋅ , 𝑢𝑡𝑖𝑁) ⇐󳨐 𝑢𝑡𝑖𝑗
= {{{

V𝑡𝑖𝑗 (𝑟𝑎𝑛𝑑𝑏 (𝑗) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟 (𝑖))𝑥𝑡𝑖𝑗 (𝑟𝑎𝑛𝑑𝑏 (𝑗) > 𝐶𝑅 𝑜𝑟 𝑗 ̸= 𝑟𝑛𝑏𝑟 (𝑖))
(2)

where 𝐶𝑅 ∈ (0, 1) is called the crossover rate, 𝑟𝑎𝑛𝑑𝑏(𝑗) ∈ (0, 1)
is a random number lying between 0 and 1, and 𝑟𝑛𝑏𝑟(𝑖) is an
integer randomly selected from range [1,𝑁], which ensures
that 𝑈𝑡𝑖 gets at least one component from𝑉𝑡𝑖 .

Then, the next generation particle 𝑋𝑡+1𝑖 is selected in the
form of roulette to keep the population size constant over
subsequent generations. Taking the minimum optimization
as an example, the selection operation is described as

𝑋
𝑡+1
𝑖 = {{{
𝑈𝑡𝑖 , 𝑖𝑓 𝑓 (𝑈𝑡𝑖) ≤ 𝑓 (𝑋𝑡𝑖)
𝑋𝑡𝑖 , 𝑒𝑙𝑠𝑒 (3)

where 𝑓(𝑋𝑡𝑖) is the fitness value of particle𝑋𝑡𝑖 .
We can see that, in each iteration, the population always

keeps the better individual with higher fitness, so as to reach
the global optimal solution.

2.2. Improved Kernel FCM. Fuzzy C-means clustering algo-
rithm (FCM) is one of the most widely used clustering algo-
rithms. It uses membership to describe the degree to which
a data belongs to a certain subclass for data classification
[12]. For a 𝑆-dimension dataset 𝑋 ∈ 𝑅𝑆, clustering is to
divide 𝑛 samples 𝑥𝑘 ∈ 𝑋, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, into 𝐶 subclasses
while making the value of the clustering objective function
minimum; that is,

min 𝐽 (𝑈,𝑉) = 𝐶∑
𝑖=1

𝑛∑
𝑘=1

𝜇𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑣𝑖󵄩󵄩󵄩󵄩2 (4)

where 𝜇𝑖𝑘 is the membership of sample 𝑥𝑘 to the 𝑖th subclass,
𝑈 = [𝜇𝑖𝑘]𝐶×𝑛 is the membership matrix, 𝑉 = {𝑣𝑖} (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝐶) is the set of clustering center, and 𝑚 is the fuzzy
weighted index. Let 𝜕𝐽/𝜕𝜇𝑖𝑘 = 0, 𝜕𝐽/𝜕V𝑖 = 0; we have

𝜕𝐽𝜕𝜇𝑖𝑘 = 0 󳨐⇒
𝜇𝑖𝑘 = 󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑣𝑖󵄩󵄩󵄩󵄩−2/(𝑚−1)∑𝐶𝑗=1 󵄩󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑣𝑗󵄩󵄩󵄩󵄩󵄩−2/(𝑚−1) ,𝜕𝐽𝜕V𝑖 = 0 󳨐⇒
V𝑖 = ∑𝑛𝑘=1 𝜇𝑚𝑖𝑘𝑥𝑘∑𝑛𝑘=1 𝜇𝑚𝑖𝑘
s.t.

𝐶∑
𝑖=1

𝜇𝑖𝑘 = 1, 𝜇𝑖𝑘 ∈ [0, 1] ,
𝑛∑
𝑘=1

𝜇𝑖𝑘 ∈ (0, 1)

(5)

It can be seen that FCM is a kind of local search
algorithm and is sensitive to initial values [13]. Since FCM
uses Euclidean distance to evaluate the similarity, it is only
suitable for processing data with appropriate compactness
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and good dispersion. Therefore, kernel fuzzy C-means clus-
tering algorithm (KFCM) is used to replace the Euclidean
distance with kernel-induced distance, expressed as

min 𝐽 (𝑈,𝑉) = 𝐶∑
𝑖=1

𝑛∑
𝑘=1

𝜇𝑚𝑖𝑘 󵄩󵄩󵄩󵄩Φ (𝑥𝑘) −Φ (𝑣𝑖)󵄩󵄩󵄩󵄩2 (6)

‖Φ(𝑥𝑘) − Φ(𝑣𝑖)‖2 in (6) can be further derived into the
following form:

󵄩󵄩󵄩󵄩Φ (𝑥𝑘) −Φ (𝑣𝑖)󵄩󵄩󵄩󵄩2
= (Φ (𝑥𝑘) −Φ (𝑣𝑖))𝑇 (Φ (𝑥𝑘) −Φ (𝑣𝑖))
= Φ𝑇 (𝑥𝑘)Φ (𝑥𝑘) −Φ𝑇 (𝑥𝑘)Φ (𝑣𝑖)

−Φ (𝑥𝑘)Φ𝑇 (𝑣𝑖) +Φ𝑇 (𝑣𝑖)Φ (𝑣𝑖)
= 𝐾 (𝑥𝑘,𝑥𝑘) − 2𝐾 (𝑥𝑘, 𝑣𝑖) + 𝐾 (𝑣𝑖, 𝑣𝑖)

(7)

where 𝐾(𝑥, 𝑣) = Φ𝑇(𝑥)Φ(𝑣) is the inner product of
kernel function. In this paper, we select Gaussian function
as 𝐾(𝑥, 𝑣), which means 𝐾(𝑥, 𝑣) = exp(−‖𝑥𝑘 − 𝑣𝑖‖2/𝜎2),𝐾(𝑥𝑘,𝑥𝑘) = 1, 𝐾(𝑣𝑘, 𝑣𝑘) = 1, and Φ𝑇(𝑥𝑘)Φ(𝑣𝑖) =
Φ(𝑥𝑘)Φ𝑇(𝑣𝑖). Thus, the clustering objective function, mem-
bership 𝜇𝑖𝑘, and clustering center 𝑣𝑖 can be calculated accord-
ing to the following equations:

min 𝐽 (𝑈,𝑉)
= 2 𝐶∑
𝑖=1

𝑛∑
𝑘=1

𝜇𝑚𝑖𝑘 [1 − 𝐾 (𝑥𝑘, 𝑣𝑖) + 𝐾 (𝑣𝑖, 𝑣𝑖)] (8)

𝜇𝑖𝑘 = [1 − 𝐾 (𝑥𝑘, 𝑣𝑖)]−1/(𝑚−1)∑𝐶𝑗=1 [1 − 𝐾(𝑥𝑘, 𝑣𝑗)]−1/(𝑚−1) ,
V𝑖 = ∑𝑛𝑘=1 𝜇𝑚𝑖𝑘𝐾 (𝑥𝑘, 𝑣𝑖)𝑥𝑘∑𝑛𝑘=1 𝜇𝑚𝑖𝑘𝐾(𝑥𝑘, 𝑣𝑖)

(9)

Although KFCM adopts kernel-induced distance to
broaden its application range, it still has many problems
waiting to be solved. Firstly, the clustering number C should
be set in advance, but the preset value will affect the final
clustering result directly. Secondly, KFCM usually generates
the initial clustering center through random initialization,
which reduces the clustering effectiveness. Finally, the value
of fuzzy weighted index 𝑚, to a great extent, affects the
clustering result.

2.3. Implementation of Improved Kernel FCM. In this part,
we introduce validity index based on compactness and
dispersion to realize the automatic classification of clustering
number and initialization of the cluster center with “maxi-
mum benefit” to increase the clustering performance.

Validity index an appropriate validity index will well
reflect the clustering quality. The number of clusters that
makes the validity index reaches the optimum is called the

optimum number of clusters.Therefore, we use compactness𝑉𝑎𝑟 and dispersion 𝑆𝑒𝑝 to define validity index 𝑉𝑆(𝑈,𝑉) as
𝑉𝑆 (𝑈,𝑉) = 𝑉𝑎𝑟△ (𝑈,𝑉)𝑆𝑒𝑝△ (𝑈, 𝐶) (10)

𝑉𝑎𝑟△ (𝑈,𝑉) = 𝑉𝑎𝑟 (𝑈,𝑉)𝑉𝑎𝑟max
,
𝑉𝑎𝑟max = max⏟⏟⏟⏟⏟⏟⏟

𝐶

𝑉𝑎𝑟 (𝑈,𝑉)
𝑆𝑒𝑝△ (𝑈,𝑉) = 𝑆𝑒𝑝 (𝑈, 𝐶)𝑆𝑒𝑝max

,
𝑆𝑒𝑝max = max⏟⏟⏟⏟⏟⏟⏟

𝐶

𝑆𝑒𝑝 (𝑈, 𝐶)
(11)

where 𝐶 = 2, 3, ⋅ ⋅ ⋅ , 𝐶max and 𝐶max is the maximum number
of clusters. The compactness 𝑉𝑎𝑟 and dispersion 𝑆𝑒𝑝 are
computed in the following way:

𝑉𝑎𝑟 (𝑈,𝑉) = [[
𝐶∑
𝑖−1

𝑛∑
𝑗=1

𝜇𝑖𝑘𝑑2 (𝑥𝑗, 𝑣𝑖)𝑛 (𝑖) ]]√(𝐶 + 1𝐶 − 1)
𝑑 (𝑥𝑗, 𝑣𝑖) = √1 − exp (−𝛽 󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑣𝑖󵄩󵄩󵄩󵄩󵄩2),

𝛽 = (1𝑛
𝑛∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − (1𝑛
𝑛∑
𝑗=1

𝑥𝑗)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)
−1

(12)

𝑆𝑒𝑝 (𝑈, 𝐶) = 1 − max
𝑖 ̸=𝑗

(max
𝑖 ̸=𝑗

(min (𝜇𝑖𝑘, 𝜇𝑗𝑘))) (13)

where 𝑛(𝑖) is the sample number of the 𝑖th subclass. From the
calculation formulas above, it can be seen that a smaller 𝑉𝑎𝑟
means better homogeneity within a class, and a larger 𝑆𝑒𝑝
indicates greater separation between classes. In summary, the
smaller the value of validity index is, the better the clustering
quality.

Initialization of the cluster center with “maximum benefit”
to reduce the influence of the random initialization cluster
center has on the clustering results, the initialization of the
cluster center with “maximum benefit” is designed. In sample
set 𝑋 = {𝑥1,𝑥2, ⋅ ⋅ ⋅ ,𝑥𝑛}, randomly select one sample 𝑥𝑘, 𝑘 =1, 2, ⋅ ⋅ ⋅ , 𝑛, as the first classification clustering center, written
as 𝑣1 = 𝑥𝑘. Then, select another sample 𝑥𝑗 (𝑗 ̸= 𝑘) with
probability 𝑃(𝑥𝑗 󳨀→ 𝑣2) from the remaining samples as the
second classification clustering center, expressed as 𝑣2 = 𝑥𝑗.
Here, the calculation formula for 𝑃(𝑥𝑗 󳨀→ 𝑣2) is
𝑃 (𝑥𝑗 󳨀→ 𝑣2) = 󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − 𝑣1󵄩󵄩󵄩󵄩󵄩2∑𝑛𝑖=1 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑣1󵄩󵄩󵄩󵄩2 ,𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 ∧ 𝑖 ̸= 𝑘

(14)
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(1) Set the original number of clusters𝐶 = 2 and
initialize parameters: maximum number of clusters𝐶max, fuzzy weighted index 𝑚, maximum number of
iterations 𝑇max, and the stopping criterion Θ.

(2) Initialize the clustering center𝑉 according to the
“maximum benefit” clustering center initialization
method. Calculate the initial membership matrix
according to (9).
For 𝐶 = 2 : 𝐶max

(3) While (|𝑣𝑡𝑘 − 𝑣𝑡−1𝑘 | ≤ Θ‖𝑡 ≤ 𝑇max) do
(4) {Calculate membership matrix𝑈𝑡 and clustering

center𝑉𝑡 according to (9).
(5) 𝑡 + 1 󳨀→ 𝑡 . }
(6) Calculate validity index 𝑉𝑆𝐶(𝑈,𝑉) according to

(10)-(13).
End for

(7) Output results: the 𝐶 corresponding to the minimum𝑉𝑆𝐶(𝑈,𝑉) is the optimal number of clusters, and the
corresponding clustering center and membership is the
optimal 𝑉and𝑈 respectively.

Pseudocode 1

The third classification clustering center, 𝑣3 = 𝑥𝑤 (𝑤 ̸= 𝑗 ̸= 𝑘),
is selected from the remaining samples with the probability𝑃(𝑥𝑤 󳨀→ 𝑣3):
𝑃 (𝑥𝑤 󳨀→ 𝑣3) = 󵄩󵄩󵄩󵄩𝑥𝑤 − 𝑣1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥𝑤 − 𝑣2󵄩󵄩󵄩󵄩2∑𝑛𝑖=1 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑣1󵄩󵄩󵄩󵄩2 + ∑𝑛𝑖=1 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑣2󵄩󵄩󵄩󵄩2 ,𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 ∧ 𝑖 ̸= 𝑘 ̸= 𝑗

(15)

and so on, until the C clustering centers are all selected. Such
procedure ensures enough differences between classes and
effectively reduces the probability of the algorithm falling into
local optimal.

The improved kernel FCM (IKFCM) can realize the
automatic classification of clustering number. Its pseudocode
is shown in Pseudocode 1.

2.4. Implementation of Differential Evolution Based on
IKFCM. Like other intelligent optimization algorithms, the
population diversity of DE decreases with the increase of
iteration times, and the random selection of individuals for
mutation may accelerate the population trapped in local
optimal [14]. Thus, in order to further improve the global
optimization ability and convergence accuracy of DE, we use
fuzzy clustering to analyze the population, making it more
scientific for selecting particles formutation in each iteration.

As one of the most widely used clustering algorithms,
FCM classifies data through analyzing how closely a data is
relative to different classes, making data samples with more
similarity be classified into the same class. In this paper,
we utilize IKFCM for cluster analysis before DE, and its
classification result is considered as the basis of selecting
particles for mutation. After a certain number of iterations,

End

Start

Random Generation of Initial Population

Clustering Analysis of Population using IKFCM

i = 1 

Random Selection of �ree Particles for 

NY

Y

N

Algorithm 
Terminate?

N

Y

Xt
i and Vt

i Perform Crossover Operations
to getUt

i

X t
i and Ut

i Perform Crossover Operations

Xt+1
i ←← Xt

i X t+1
i ← Xt

i

i ← i+1 i > P ?

t ← t+1

f (U t
i ) ≤ f (X t

i )?

Mutation in Different Classed with Xt
i

Figure 1: Flow chart of IDDE.

the population is divided into C subclasses by IKFCM,
and there are more similarities within classes and greater
differences between classes. When it comes to mutation,
particles 𝑋𝑡𝑎, 𝑋

𝑡
𝑏, and 𝑋

𝑡
𝑐 will be selected from different

classes, thus effectively expanding the diversity of mutant
particle and ensuring that particleswith larger differenceswill
be participated in the population’s evolution and eventually
improves the convergence performance of DE. The specific
process of the DE based on fuzzy clustering, named IDDE, is
presented in Figure 1.
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3. Compressed Sensing Signal
Reconstruction Based on IDDE

3.1. Compressed Sensing Sparse Signal Reconstruction. In
compressed sensing, Ψ𝑁×𝑁 is called sparse matrix if it can be
used to linearly describe signal𝑋𝑁×1 sparsely.We can express
it as

𝑋𝑁×1 = Ψ𝑁×𝑁𝑠𝑁×1 (16)

where 𝑠𝑁×1(𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁) denotes the linear description of𝑋𝑁×1
under Ψ𝑁×𝑁 and its sparsity satisfies 𝐾 << 𝑁. There exists
a measurement matrix Φ𝑀×𝑁 that allows 𝑋𝑁×1 be described
with a small amount of data as

𝑦𝑀×1 = Φ𝑀×𝑁𝑋𝑁×1 (17)

where𝑦𝑀×1 is the measurement vector and satisfies 𝑀 << 𝑁.
From (6) and (7), we have

𝑦𝑀×1
𝐴𝑀×𝑁=Φ𝑀×𝑁Ψ𝑁×𝑁= 𝐴𝑀×𝑁𝑠𝑁×1 = 𝐴𝑠 (18)

Once 𝐴𝑀×𝑁 satisfies RIP condition [12], the original signal
can be reconstructed by solving the 𝑙0 norm; that is,

min ‖𝑠‖𝑙0
s.t. 𝑦 = 𝐴𝑠 = ΦΨ𝑠 (19)

Since the process of solving (9) is a NP-hard, considering
the signal with unknown sparsity as the differential evolution
particle coding, we propose a compressive sensing signal
reconstruction algorithm based on IDDE, which accurately
reconstructed the unknown sparsity signal through popula-
tion evolution.

3.2. Implementation of Compressed Sensing Signal Recon-
struction Based on IDDE. DE is mainly used for contin-
uous optimization, but for discrete optimization, it will
generate large numbers of solutions that do not conform
to the requirements, severely reducing its convergence effi-
ciency. In this case, taking the CS reconstruction algo-
rithm into account, the differential evolutionary particle
coding method and evolutionary mechanism in IDDE are
redefined.

Definition 1 (particle coding). In CS reconstruction algo-
rithm optimization, define particle coding as

𝑋𝑖 (𝑥𝑖1, ⋅ ⋅ ⋅ , 𝑥𝑖𝑁) ←󳨀 𝑥𝑖𝑗 = {{{
1, 𝑖𝑓 𝑠𝑗 ̸= 0
0, 𝑒𝑙𝑠𝑒 (20)

It is obvious that 𝑋𝑖(𝑥𝑖1, ⋅ ⋅ ⋅ , 𝑥𝑖𝑁) is correspondence with the
nonzero elements in the sparse signal 𝑠𝑁×1(𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁).
Definition 2. Randomly select 𝐹󸀠 (1 ≤ 𝐹󸀠 ≤ 𝑁) code bits
in particle 𝑋𝑗, and replace the corresponding code bits in

particle 𝑋𝑖 (𝑖 ̸= 𝑗) with it. The exchange process is denoted
as 𝐹󸀠(𝑋𝑖 ←󳨀 𝑋𝑗):

𝐹󸀠 (𝑋𝑖 ←󳨀 𝑋𝑗) = 𝑥𝑖1 ←󳨀 𝑥𝑗1, ⋅ ⋅ ⋅ , 𝑥𝑗𝑘 ←󳨀 𝑥𝑗𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹󸀠

(21)

Then, the mutation step in IDDE can be refreshed as

𝑉
𝑡
𝑖,1 = 𝐹󸀠1 (𝑋𝑖 ←󳨀 𝑋𝑎) ,
𝑉
𝑡
𝑖,2 = 𝐹󸀠2 (𝑋𝑖 ←󳨀 𝑋𝑏) ,
𝑉
𝑡
𝑖,3 = 𝐹󸀠3 (𝑋𝑖 ←󳨀 𝑋𝑐)

(22)

where 𝑋𝑎, 𝑋𝑏, and 𝑋𝑐 are three particles randomly selected
from three different clusters, which are also different from the
cluster that contain 𝑋𝑖.

As can be seen from (22), by performing crossover on
the three mutant particles, respectively, we will obtain three
trial particles 𝑈𝑡𝑖,1, 𝑈

𝑡
𝑖,2, and 𝑈

𝑡
𝑖,3. Then, a particle with better

fitness will be selected between the three trial particles and𝑋𝑖
as

𝑋
𝑡+1
𝑖 = {{{
𝑈𝑡𝑖,𝑗, 𝑈𝑡𝑖,𝑗 = min

𝑓( )
(𝑈𝑡𝑖,1,𝑈𝑡𝑖,2,𝑈𝑡𝑖,3)

𝑋𝑡𝑖 , 𝑒𝑙𝑠𝑒 (23)

Definition 3 (objective function). In CS reconstruction algo-
rithm optimization, define the objective function as

min 𝑓 (𝑋𝑖) = 󵄩󵄩󵄩󵄩𝑦 − ΦΨ𝑋𝑖󵄩󵄩󵄩󵄩2 (24)

As the objective function of CS reconstruction algorithm
optimization is defined, IDDE would locate the nonzero
elements of the sparse signal code after certain times of
evolution and obtain the amplitude of the nonzero elements
through least square method. Finally, the signal is precisely
reconstructed. The performance of the CS reconstruction
algorithm is superior due to its utilization of fuzzy clustering
and improved discrete differential evolution algorithm. The
pseudocode of the CS reconstruction algorithm based on
IDDE is shown in Pseudocode 2.

3.3. Application of IDDE in WSNs. In this part, we study the
sparse event detection [13] in the context of wireless sensor
networks (WSNs). 𝑄 wireless sensor nodes are placed within
themonitoring scope ofWSNs tomonitor𝑁 event sources.𝐾
network events randomly occurred from the𝑁 event sources
at some time.We use vector 𝑠𝑁×1 = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑁]𝑇 to denote
the energy signal of the event sources (𝑠𝑖 = 0 means that the𝑖th event source did not happen any event). Obviously, if𝐾 ≪𝑁, 𝑠𝑁×1 is a sparse signal with sparsity of𝐾. Assuming𝑄 = 𝑁,
signals received by 𝑁 nodes 𝑥𝑁×1 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑁]𝑇 can be
written as
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(1) Initialize parameters: maximum number of iterations𝑇max, cluster number 𝐶 and the stopping criterion.
(2) Initialize the population of IDDE, and set 𝑡 = 0.
(3) While (the requirement of IDDE is not satisfied) do{
(4) While (the stopping criterion of IKFCM is not

satisfied) do// cluster analysis the population{
(5) Calculate𝐻 = [ℎ𝑖𝑘]𝐶×𝑃 and𝑂 = {𝑜𝑖} according to (3).}
(6) For 𝑖 = 1 : 𝑃// update the particle
(7) Randomly select 3 particles from different clusters

which do not contain𝑋𝑡𝑖 . Perform mutation
according to (22) to obtain 𝑉𝑡𝑖,1, 𝑉

𝑡
𝑖,2 and𝑉

𝑡
𝑖,3.

(8) Generate𝑈𝑡𝑖,1,𝑈
𝑡
𝑖,2 and𝑈

𝑡
𝑖,3 through crossover in the

following way:

𝑈𝑡𝑖 (𝑢𝑡𝑖1, ⋅ ⋅ ⋅ , 𝑢𝑡𝑖𝑁) ⇐󳨐 𝑢𝑡𝑖𝑗 = {{{
V𝑡𝑖𝑗 (𝑟𝑎𝑛𝑑𝑏 (𝑗) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟 (𝑖))
𝑥𝑡𝑖𝑗 (𝑟𝑎𝑛𝑑𝑏 (𝑗) > 𝐶𝑅 𝑜𝑟 𝑗 ̸= 𝑟𝑛𝑏𝑟 (𝑖))

(9) Evaluate the trial particle𝑈𝑡𝑖
If 𝑈𝑡𝑖,𝑗 = min𝑓()(𝑈𝑡𝑖,1, 𝑈𝑡𝑖,2, 𝑈𝑡𝑖,3), then 𝑋𝑡+1𝑖 = 𝑈𝑡𝑖,𝑗
Else 𝑋𝑡+1𝑖 = 𝑋𝑡𝑖
End if

(10) End for
(11) 𝑡 + 1 󳨀→ 𝑡}
(12) Output results.

Pseudocode 2

[[[[[[[

𝑥1𝑥2...𝑥𝑁

]]]]]]]
=

[[[[[[[[

󵄨󵄨󵄨󵄨ℎ1,1󵄨󵄨󵄨󵄨 (𝑑1,1)−𝛼 󵄨󵄨󵄨󵄨ℎ1,2󵄨󵄨󵄨󵄨 (𝑑1,2)−𝛼 ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨ℎ1,𝑁󵄨󵄨󵄨󵄨 (𝑑1,𝑁)−𝛼󵄨󵄨󵄨󵄨ℎ2,1󵄨󵄨󵄨󵄨 (𝑑2,1)−𝛼 󵄨󵄨󵄨󵄨ℎ2,2󵄨󵄨󵄨󵄨 (𝑑2,2)−𝛼 ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨ℎ2,𝑁󵄨󵄨󵄨󵄨 (𝑑2,𝑁)−𝛼... ... d
...󵄨󵄨󵄨󵄨ℎ𝑁,1󵄨󵄨󵄨󵄨 (𝑑𝑀,1)−𝛼 󵄨󵄨󵄨󵄨ℎ𝑁,2󵄨󵄨󵄨󵄨 (𝑑𝑀,2)−𝛼 ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨ℎ𝑁,𝑁󵄨󵄨󵄨󵄨 (𝑑𝑀,𝑁)−𝛼

]]]]]]]]

[[[[[[[

𝑠1𝑠2...𝑠𝑁

]]]]]]]
= Ψ𝑁×𝑁𝑠 (25)

where 𝑑𝑖,𝑗 is the distance the signal transmitted, ℎ𝑖,𝑗 is the
energy attenuation model. According to CS theory, sparse
event can be detected by the data received by 𝑀 nodes.

𝑦𝑀×1 =
[[[[[[[

𝑦1𝑦2...𝑦𝑀

]]]]]]]
=

[[[[[[[[

1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 00 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 1 0 0

]]]]]]]]

[[[[[[[

𝑥1𝑥2...𝑥𝑁

]]]]]]]
= Φ𝑀×𝑁𝑥𝑁×1

(26)

By (25) and (26), we have 𝑦𝑀×1 = Φ𝑀×𝑁𝑥𝑁×1 =
Φ𝑀×𝑁Ψ𝑁×𝑁𝑠𝑁×1 = 𝐴𝑀×𝑁𝑠𝑁×1. It can be shown that when𝑀 ≥ 𝑂(𝑐(𝐾 + 1) ln(𝑁/𝐾)), 𝐴 can meet the requirement
of RIP. But the CS reconstruction algorithm based on IDDE

requires that an accurate measurement matrix should be
guaranteed.Thuswe transform matrix𝐴𝑀×𝑁 in the following
way:

𝐴 = 𝑈Σ𝑉T (27)

where Σ𝑀×𝑁 is semipositive definite diagonal matrix, 𝑈, and
𝑉 is orthogonal matrix. Therefore, (27) can be rewritten as

𝑦 = Φ𝑀×𝑁𝑥𝑁×1 = 𝐴𝑠 = 𝑈Σ𝑉𝑇𝑠

= 𝑈
[[[[[[[[[

𝑀×𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜎1 0 ⋅ ⋅ ⋅ 00 𝜎2 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 𝜎𝑀

(𝑁−𝑀)×𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0... 00 ⋅ ⋅ ⋅ 0

]]]]]]]]]
𝑉
𝑇
𝑠

(28)
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Equation (28) can be further transformed into

Σ
−1
1 𝑈
𝑇
𝑦

= Σ−11 𝑈𝑇𝑈[𝑀×𝑀⏞⏞⏞⏞⏞⏞⏞
Σ1

(𝑁−𝑀)×𝑀⏞⏞⏞⏞⏞⏞⏞0 ] [𝑀×𝑀⏞⏞⏞⏞⏞⏞⏞
𝑉1

(𝑁−𝑀)×𝑀⏞⏞⏞⏞⏞⏞⏞
𝑉2

] 𝑠
= 𝑉1𝑇𝑠 󳨐⇒
𝑦
󸀠 = Σ−11 𝑈𝑇𝑦 = 𝑉1𝑇𝑠

(29)

Equation (29) represents a newmeasurement system. As seen
from the derivation process, the measurement matrix 𝑉1

𝑇 is
row orthogonal matrix; thus RIP condition is satisfied.

In this case, sparse event detection in WSNs is trans-
formed into the problem of using 𝑀 wireless sensor nodes
to detect 𝐾 event sources. The detailed steps include training
parameters with the experimental data in the deployment test
stage ofWSNs to obtain the optimal parameter configuration;
processing received signal by the use of reconstruction
algorithm based on IDDE to obtain the sparse signal vector
𝑠𝑁×1 in the detection stage tomonitor sparse events effectively
and timely.

4. Simulation

Simulations are performed in MATLAB to demonstrate the
effectiveness of our algorithm. We deploy 𝑄 = 500 sensor
nodes to monitor the temperature of 𝑁 = 120 places. The
event source sequence corresponded to event energy signal
𝑠𝑁×1 = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑁]𝑇. Reconstruction success rate 𝑅𝑆,
reconstruction time 𝑇, and reconstruction relative error 𝑅𝐸
are selected to evaluate the reconstruction performance. The
reconstruction relative error 𝑅𝐸 is calculated as follows:

𝑅𝐸 = √ [∑𝑁𝑖=1 (𝑠𝑖 − 𝑠𝑖)][∑𝑁𝑖=1 𝑠𝑖2] × 100% (30)

where 𝑠𝑁×1(𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁) denotes the original signal and
𝑠𝑁×1(𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁) stands for the reconstructed signal. The
reconstruction success rate 𝑅𝑆 refers to the probability that𝑅𝐸 is less than the threshold 𝛿.
4.1. Reconstruction Performance. Selecting typical discrete
signal as the original signal and the reconstruction per-
formance of the reconstruction algorithm based on IDDE
under the assumption that 𝐾 is unknown is analyzed. The
performance of our algorithm is also compared to the blind
sparsity reconstruction algorithm in [8], SWOMP in [2],
and the classical StOMP. Run each algorithm independently
for 50 times, calculate the average reconstruction success
rate 𝑅𝑆, the average reconstruction time 𝑇, and the average
reconstruction relative error 𝑅𝐸 for performance analysis,
and set different 𝛿 for different signal. The reconstruction
result of the CS reconstruction algorithm based on IDDE
is shown in Figure 2. The evaluation index results of the 4
reconstruction algorithms are compared in Table 1.

It can be seen from Figure 2 that the CS reconstruction
algorithm based on IDDE can obtain enough recovered data
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Figure 2: Reconstruction result of the IDDE reconstruction algo-
rithm.

points from the compressed sensing data and reconstruct
to the original signal, indicating that the algorithm we
proposed in this paper is capable of reconstructing signal
with unknown sparsity. In Table 1, the reconstruction success
rates of the algorithm we propose reached 100% for different
original signals, the algorithm in [8] reached above 97%,
and the algorithm in [2] was only about 50% and StOMP
could hardly reconstruct the original signal. In terms of
reconstruction time, our algorithm is significantly faster than
the other 3 algorithms, with 𝑇 reduced by 15.1-31.3%. As for
reconstruction error, compared with the algorithm in [2],
which has relatively better reconstruction success rate, the𝑅𝐸
of our algorithm decreased by about 36.4-51.9%. In summary,
compared with previous reconstruction algorithms such as
StOMP, the CS reconstruction algorithm based on IDDE
proposed in this paper performs better, much more suitable
for reconstructing signal with unknown sparsity. All these
advantages on one hand could be accredited to the utilization
of IDDE. Through IDDE, the signal sparsity is transformed
into particle coding, which makes the differential evolution
algorithm be able to find the global optimum solution while
obtaining the location of nonzero elements. On the other
hand, fuzzy clustering is used to analyze the population,
making the learning target of the population evolution
more rational and scientific, which ultimately improves the
reconstruction performance of our algorithm.

4.2. Effects of Parameters on the Reconstruction Algorithm
Performance. Sparsity 𝐾 and observation time𝑀 are critical
to the reconstruction accuracy. Simulations were carried out
to examine the reconstruction success rate of the CS recon-
struction algorithm based on IDDE under different 𝐾 and𝑀, respectively, the blind sparsity reconstruction algorithm
in [8], SWOMP in [2], and StOMP are also simulated as
a comparison. Each algorithm runs 50 times. Comparison
results are shown in Figures 3 and 4.

Figure 3 shows that, when the signal length and 𝑀 are
fixed, all the four reconstruction success rate curves decrease
with the increase of𝐾. Comparedwith the other 3 algorithms,
our algorithm maintains a reconstruction success rate of over
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Table 1: Evaluation index comparisons of the four reconstruction algorithms.

Signal Index Algorithm
This paper Literature[8] Literature[2] StOMP

Signal1
𝑅𝑆 100% 97.3% 50.2% 17.3%𝑇/s 0.17 0.38 0.28 0.37𝑅𝐸 0.007 0.012 1.845 3.330

Signal2
𝑅𝑆 100% 98.2% 49.2% 15.3%𝑇/s 0.25 0.44 0.36 0.82𝑅𝐸 0.014 0.018 1.038 2.143

Signal3
𝑅𝑆 100% 97.6% 55.7% 10.8%𝑇/s 0.56 0.92 0.66 1.27𝑅𝐸 0.013 0.017 1.836 3.045
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Figure 3: Sparsity 𝐾 versus reconstruction success rate (𝑀 = 100).

94% when 𝐾 is within the range of (25, 35), while that of the
other 3 algorithms decrease significantly.

As shown in Figure 4, when the signal length and 𝐾 are
unchanged, all the 4 curves rise with the increase of 𝑀, and
the 𝑅𝑆 of the algorithm we proposed is much better than the
other 3 algorithmswith the same𝑀. Especiallywhen𝑀 = 80,
the 𝑅𝑆 of our algorithm can reach 100%.

However, large number of sensor nodes means large net-
work energy consumption, which is unfavorable to prolong
the survival time of WSNs. Thus, in the following part, we
analyze the robustness and antinoise performance of our
algorithm.

4.3. Antinoise Performance. Addwhite noise into the discrete
signal to be detected and select the reconstruction algorithm
in [8] and StOMP as a comparison. We investigate their
antinoise performances under 𝑆𝑁𝑅 ranging from 20dB to
45dB.

From Figure 5, we can see that if the noise is not
very serious, the reconstruction success rates of the three
algorithms change a little as the noise level changes.When the
noise is at a high level, the reconstruction success rates change
significantly with the noise level. The 𝑅𝑆 of the algorithm
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Figure 4: Observation time 𝑀 versus reconstruction success rate
(𝐾 = 20).

SNR (dB)

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50

Re
co

ns
tr

uc
tio

n
su

cc
es

s r
at

e (
%

) 

�is paper
Literature[8]
StOMP

Figure 5: SNRversus reconstruction success rate (𝐾 = 30,𝑀 = 100,𝑁 = 120).

we propose will still remain around 93% if the SNR decrease
to 15dB while the other two algorithms decrease obviously,
indicating that our algorithm is good at resisting noise.
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5. Conclusions

In this paper, we propose a compressed sensing signal recon-
struction algorithm based on IDDE. The algorithm employs
intelligent optimization and fuzzy clustering together, trans-
forming signal reconstruction into the global optimization of
differential algorithm, to reconstruct signal with unknown
sparsity through fuzzy cluster analysis, particle coding, and
differential evolution. Its application in WSNs sparse event
detection is also discussed. Simulation results testify that the
algorithm we propose performs excellent in signal recon-
struction and is robust to noise and interference.
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