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Data acquisition in large areas has issues of cost and data loss. When sensors are sparse in the physical field, it is critical to
study the deployment methods to improve the accuracy of reconstructed data set and the precision of the recovery of lost
data. It is desirable to place sensors at optimal locations to achieve higher precision of recovery. In this paper, we present
a sparse sensor placement scheme for data interpolation reconstruction based on iterative four subregions using fractal
theory. The results of our experiments demonstrate that the precision of our algorithm is higher than that with random
placement in dispersion degree, coverage rate, and reconstruction accuracy.

1. Introduction

The sensor network is suitable for the information collection
in large areas, for example, ocean monitoring [1], large-scale
crop growth information monitoring [2], reservoir hydrology
information acquisition, and weather forecast. However,
when the monitored area is relatively large, if sensors are
deployed in every corner, the cost will be very high in these
application scenarios. Additionally, the full monitoring of
an entire area causes several disadvantages—high cost of
deployment, long transmission delay, slow response, and
unnecessary data aggregation [3]. When the spatial correla-
tion and time correlation of this monitoring information
are high, we can reconstruct the data set of physical field
information in the whole region with a small amount of
information by effective reconstruction method, for example,
the construction of the wind field and the pressure field and
the application of the ocean hydrological information. The
reasonable sparse sensor deployment is the prerequisite for
improving the precision of the reconstruction. It is necessary
for us to study the sparse deployment of sensors.

A number of prior works on sensor placement are
focused on minimizing the number of sensors or maximizing
the sensing quality provided by a network [2, 4–10]. Sparse
deployment and data recovery involve data incompleteness.
Now, many researchers are studying the reconstruction of
incomplete data [2, 11–13]. Sensor deployment is a key to
solve incomplete data reconstruction. When the monitored
area is not very complex, such as marine hydrological acqui-
sition, reservoir water quality monitoring, and large crop
growth information acquisition, the physical quantity of the
monitored area is more spatially relevant and the changes
in the whole monitored area are relatively gentle. All these
methods need to make use of the spatial correlation of data
in the monitored area to achieve data reconstruction. The
commonly used method is spatial interpolation.

Spatial data interpolation applications are becoming
more and more widely used and highly valued by people.
Interpolation of spatial data pertains to finding a function
relation from a set of known spatial data, which can be a
form of discrete points and can be a form of partitioned
data, so that the relationship is best approximated by the
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known spatial data and the values of other arbitrary points
or arbitrary partitions within the range can be calculated
according to the relation of the function [14]. The closer
the points in space are, the more likely is that they are
to have similar eigenvalues and the points that are farther
away are less likely to have similar eigenvalues. This is the
most basic theoretical assumption of spatial interpolation
techniques [12].

In the spatial data interpolation applications, the sensor
placement is very critical because inappropriate sensor place-
ment can reduce the accuracy of the data reconstruction.

We study how to place the sensor placement problem
based on a data interpolation reconstruction model that
captures the development characteristics of target detection.
The reconstruction accuracy of the interpolation method is
affected by the reconstruction algorithm and sensor deploy-
ment. Among them, the optimization of sensor deployment
is the primary problem that we have to solve. However, the
deployment of sensors is greatly affected by the environment.
How to solve the impact of environment on sensor deploy-
ment is what we need to consider. The deployment of sensors
needs to consider dispersion and uniformity. Interpolation
reconstruction algorithm is greatly affected by the distan-
ce—the farther away from the sensor, the higher the uncer-
tainty of the reconstruction accuracy. We cannot make
individual data too far away from sensors, so the probability
of error is very high.

This paper is focused on developing fast sensor place-
ment algorithms based on four subregions for the data recon-
struction by interpolation. Our approach is inspired by
fractal theory. In particular, we aim to improve the precision
of reconstruction for achieving the data set of physical quan-
tity in a large area. The main contributions of this paper are
as follows:

(1) We are inspired by fractal theory. Considering the
spatial characteristics of the monitored area and
the scalability of sensor placement, we propose a
sensor placement algorithm based on dividing four
iteration subregions to improve the precision of
interpolation reconstruction

(2) In the process of reconstructing data by interpolation,
the dispersion of the sensors is not distributed enough,
which will affect the precision of reconstruction. We
put forward the concept of the dispersion degree of
sensor placement. The dispersion of the sensors for
data acquisition is critical. In order to access the
dispersion degree of sensor placement, the concept of
expansion area is introduced in this paper

(3) When the number of sensors cannot be completely
divisible by 4, to allocate the remainder, this paper
proposes amethod of alternately allocating redundant
sensors based on depth of assignment tree. We have
solved the scalability of sensordeployment. Regardless
of the number of sensors, they can be deployed
according to a given method that is proposed in this
paper. Uniform deployment is a special case of the
proposed placement algorithm

2. Related Works

Sensor placement is the fundament of data processing for
WSN or internet of things (IOT). The purpose of data pro-
cessing is different, and the method of sensor deployment is
also different. To improve the accuracy of signal reconstruc-
tion, Manohar et al. [11] explore optimized sensor placement
based on a tailored library of features extracted from training
data. Sparse point sensors are discovered using the singular
value decomposition and QR pivoting.

To characterize or classify a high-dimensional system, in
[15], Brunton and coauthors present an algorithm that can
solve an ℓ1 minimization to find the fewest nonzero entries
of the full measurement vector that exactly reconstruct the
discriminate vector in feature space; these entries represent
sensor locations that best inform the decision task. They
use the compressed sensing (CS) to find the key points, do
not involve all sensor deployment, and do not deploy the
sensors in the large area. Wu et al. proposed one scalable ran-
dom placement algorithm with higher incoherence with the
sparse representation basis [16]. They obtain the entire field’s
soil moisture value via the classical CS recovery algorithm.

The idea of compressed sensing is used in [15, 16]. PCA is
used to find data of several key points to retrieve data from
the whole monitored area. However, PCA has a constraint
that requires sparse representation. In many cases, it is diffi-
cult to achieve this condition in actual projects. The situation
in this paper is to use a common interpolation method to
reconstruct the data of the whole monitored area.

In terms of the sensor placement for data fusion, Chang
et al. present fast sensor placement algorithms based on a
probabilistic data fusion model [17]. Simulation results show
that their algorithms can meet the desired detection perfor-
mance with a small number of sensors while achieving up
to sevenfold speedup over the optimal algorithm.

In terms of the optimization method used in sensor
sparse deployment, Chen et al. try to establish a theoretical
framework for finding sensor positions to maximize the
detection probability with a distributed sensor network [5].
They choose a 1-dimensional line deployment model and
present the relevant numerical results. In [18], Moreno-
Salinas et al. used tools from estimation theory and convex
optimization to achieve the proper choice of the sensor posi-
tions, in order to determine the sensor configuration that
yields the minimum possible covariance of any unbiased
target estimator. In [19], Akbarzadeh and coauthors pro-
posed an adaptation of the gradient descent method, which
considers both the topography of the environment and a set
of sensors with directional probabilistic sensing to optimize
the position and orientation of sensors for the sensor place-
ment problem. In [20], Zhu and coauthors used the quantum
genetic algorithm (QGA) to optimize the corresponding sen-
sor network on the upstream surface of a dam.

When the sensors cannot completely cover the moni-
tored area, it can maximize the accuracy of the acquisition
data in the whole area to optimize the sensor position accord-
ing to the importance of different locations. Liu et al. [4]
deduced that when the deployment is determined, the error
based on Voronoi subdivision is the smallest. They define
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the coverage weight of each node partition. Then a deploy-
ment optimization algorithm is proposed based on the per-
ception node coverage weight and the virtual force idea. Liu
and coauthors [21] proposed a node deployment strategy
that combined coverage weight and virtual force for the pri-
oritized event area in mobile sensor networks with low-
density sensors, in which the coverage completely cannot
be realized. However, they do not deal with situations where
all nodes are fixed static nodes.

To cover a sensing area by deploying a minimum
number of wireless sensors while maintaining the connec-
tivity between the deployed sensors, Rebai et al. develop
an integer linear programming model to solve the problem
optimally in [22].

The deployment of sensors is also subject to the moni-
tored environment. In view of the obstacles in the monitored
area, in [3], Chang et al. propose an efficient sensor place-
ment (ESP) approach for a sparse interested area with con-
sideration of obstructers that block the data transmission
among sensors. For the given number of sensors, in [23],
Mukherjee and coauthors proposed algorithms to embed
thermal sensors into a regular structure to minimize the
number of sensors and determine sensor locations required
to maintain a given accuracy in temperature sensing for a
given design. In [24], Yoganathan and coauthors proposed
a novel data-driven approach based on field measurements
in an office building to derive the optimal (number and
locations of) measuring points. Clustering algorithms,
information loss approach, and Pareto principle were used
to derive the optimal sensor placement strategy. There are
many studies on the effective transmission of data in sparse
deployments. In [25], Du and coauthors provided distance-
less transmission to expand the communication range of
sensor motes and devised a communication protocol to
efficiently coordinate the distanceless link transmissions
by leveraging rateless codes. In [26], the authors took the
sensor sparse deployment strategy in the positioning sys-
tem. They proposed FISCP, a fine-grained device-free posi-
tioning system for multiple targets working in sparse
deployments. They do not study a specific method of
sparse deployment.

The deployment of sensors needs to consider the char-
acteristics of monitored objects. For sensor deployment of
water pipe leak location, in [27], the authors provide a
methodology that incorporates uncertainties of different
types and sources in the optimal sensor placement prob-
lem for leak localization shown by the example of the
effect of demand uncertainties on potential pressure mea-
surement points. In [28], for a performance evaluation of
ageing infrastructure, Bertola et al. presented a measure-
ment system design methodology to identify the best sen-
sor locations and sensor types using information-from
static load tests. A modified version of the hierarchical
algorithm for sensor placement is proposed to take into
account mutual information between load tests.

In summary, the purpose of our algorithm is to recon-
struct data based on interpolation, which is suitable for large
area monitoring. Since our idea comes from fractal theory,
our algorithm has strong universality and expansibility.

3. Problem Formulations

In this paper, we assume that the monitored area V0 is a
rectangular region. AV0

represents the area of the whole
monitored area. We assume that the physical information
is uniformly distributed in the monitored area, such as
the temperature field, the wind field, and the humidity
field. When these physical data are collected sparsely, the
inverse distance interpolation algorithm can be used to
reconstruct the physical quantity of the whole monitored
area. The total number of sensors in the monitoring is
given, which is represented by nV0

.
In this paper, the lower left corner of the monitored area

is set as the coordinate origin. oV0
xoV0

, yoV0 is the center of

the monitoring region, as shown in Figure 1.
The effective coverage area of the ith sensor si is Vsi

.
OVsi

is the central position of Vsi
, and its coordinate is

xOVsi
, yOVsi

. Asi
is the effective coverage area of the ith

sensor. If it is a sparse deployment, then

〠
nV0

i=1
Asi

< AV0
1

It is difficult to evaluate the quality of the sparse deploy-
ment by the sensors’ connectivity and energy consumption.
Because of the sparsity, the connection between sensors is
difficult to achieve. For sparse deployment, energy consump-
tion is no longer the main problem. Because of the limited
number of sensors, the sleep strategy is not suitable for
sparse deployment.

In the sparse deployment process, the monitored area
cannot be fully covered when the number of sensors is lim-
ited. In the process of using the inverse distance interpolation
[29] to reconstruct the data set, the node for the data acquisi-
tion is required to be as uniform as possible to avoid the large
area of the monitoring void. A large area of monitoring void
will not only affect the accuracy of the data reconstruction but

Xo

oV0 (xoV0
 , yoV0

)

V0

s i

Vs i

Y

Figure 1: Monitored region with sensors.
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even lead to the leakage. Accordingly, we put forward the
concept of the dispersion degree of sensor placement.

Definition 3.1 (dispersion degree of sensor placement). It
reflects the degree of sensor deployment approaching uni-
form placement. When the sensor is uniformly deployed in
the monitored area, the dispersion degree of the sensor
deployment reaches maximum.

The sensor deployment with a high dispersion degree can
obtain information in all directions when using interpolation
to restore data, making the basis for recovery more compre-
hensive and thus more accurate. From the validation of the
necessity of the dispersion degree in Section 5.1, we know
that it is necessary to introduce the dispersion degree. We
use C to represent the dispersion degree of the sensor deploy-
ment. In order to calculate the value of C, we also need to
introduce the concept of the area of the monitored expansive
region of a sensor.

AVsi
′ =

AV0

nV0

2

Definition 3.2 (the area of the monitored expansive region of
a sensor). It is the ratio of the area of the monitored region to
the total number of sensors. We assume that Vsi

′ is the
monitored expansive region of the ith sensor si. AVsi

′ is the

area of the monitored expansive region of the ith sensor si.

The expansion area V0′ of all sensors in the monitored
region is the union of each sensor’s expansion area:

V0′ = ⋃
nV0

i=1
Vsi
′ 3

The value of C can be obtained by the ratio of the areaAV0′
of all the sensors’ expansive region to the area AV0

of the
monitored region.

C =
AV0′

AV0

4

When the sensor canbeadded in themonitored region, the
dispersion will decrease if each additional sensor is deployed
at the same location each time. The dispersion degree is
determined by the deployment position of all sensors.

Property 3.1. 1/nV0
≤ C ≤ 1.

Proof. When all sensors are deployed at the same location,
the effective monitoring regions and the expansive regions
of all sensors are overlapped. At this time, the overlap area
is maximal and C reaches minimum. Because

AV0′ =
AV0

nV0

, 5

then we have

C =
AV0′

AV0

= 1
nV0

6

When the sensor is deployed uniformly in the monitored
area and ∩

nV0
i=1 Vsi

′ = ϕ, the overlap area of the expansive
region is almost nonexisting and C reaches maximum.
Because

AV0′ = AV0
, 7

then we have

C =
AV0′

AV0

= 1 8

In order to understand the concept of dispersion, let us
give an example. We assumed that AV0

= 120. If nV0
= 4, then

AVsi

′ =
AV0

nV0

= 120
4 = 30 9

If the sensors are deployed as shown in Figure 2, then

AV0′ = 120,

C =
AV0′

AV0

= 120
120 = 1

10

If the sensors are deployed as shown in Figure 3, then

AV0′
= 120,

C =
AV0′

AV0

= 30
120 = 1

4
11

It can be seen that it is a good method to utilize the
area of the expansive region to obtain the dispersion
degree. C reflects the overlap of the expansive region. In

Vsi
′ Vsi

′

Vsi
′ Vsi

′

Figure 2: Sensor placement in which C is maximal.
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sparse deployment, the higher dispersion degree reflects
that the more uniformly the sensor is deployed and each
cavity area is relatively smaller. The sparse deployment
of sensor for the data reconstruction based on the inverse
distance interpolation is transformed into solving the fol-
lowing optimization problem:

arg max  C

s t   〠
nV0

i=1
Asi

< AV0

12

4. Sensor Placement Based on the
Four Subregions

4.1. Sensor Placement Based on the Four Subregions. If nV0
=1,

then nOV0
=1, where nOV0

represents the number of sensors at

the center of the monitored region V0. It is obvious that
deploying 1 sensor at the center of the region is the best
way. If nV0

>1, it is needed that the monitored region is
divided into subregions according to the size of the
expansion region of the sensor and the sensor is deployed
at the center of each subregion. So, the problem of plac-
ing the sensors has turned into a problem of how to
divide the monitored region into grids. The division of
the region corresponds to the distribution of the number
of sensors.

The rectangle has the tetragonal property, that is,
there are four directions in the space, the sum of rectan-
gle’s four angles is 360°, and the four edges can form a
closed curve. The monitored region in the actual project
usually has the tetragonal property. In this paper, the
sensor placement with a schema based on dividing the
region into four grids is used to obtain high degree of
dispersion.

We make two orthogonal lines whose intersection is the
center of the rectangle and make each line perpendicular to
the edge of the rectangle. This method makes the rectangle
to be divided into 4 small rectangles of the same size, as
shown in Figure 4. Obviously, the four little rectangles are

similar to the original ones. With the increase in the number
of sensors that need to be deployed, we need to subdivide
these small rectangles in the same way. We are inspired by
the fractal theory. We use the method of dividing the grid
into four subregions iteratively to deploy the sensors,
because four small rectangles can be combined into a large
rectangle and the method is easy to implement. If the num-
ber of sensors to be placed in the monitored area is larger
than 1, we have to divide the monitored region into 4 grids
to place the sensors. If the number of sensors placed in a grid
is larger than 1, then we have to divide this grid into 4 sub-
regions in the same way. Iterate in the same way, until the
number of sensors allocated in the subregions is 1. The
algorithm in this paper takes advantage of the tetragonal
property of the rectangle, so that the sensors can be fully
dispersed in space.

Vk+1,1, Vk+1,2, Vk+1,3, Vk+1,4 = FO Vk ,
Vk =Vk+1,1 ∪ Vk+1,2 ∪ Vk+1,3 ∪ Vk+1,4,

13

where the function FO Vk means to divide the grid into
four equal subregions. The effect is shown in Figure 4.

In Figure 4, k represents the kth equal division and OV0
is

the center of the monitored region Vk. If the total number of
sensors allocated to regionVk is 1, the sensor is placed atOV0

.
If the total number of sensors allocated to region Vk is larger
than 1, we have to divide the region into four subregions and
the sensor is placed at the center of each subregion. We make
two orthogonal lines whose intersection is OV0

and make
each line perpendicular to the edge of region Vk. In this
way, Vk is divided into four subregions by the two lines.
Vk+1,1, Vk+1,2, Vk+1,3, Vk+1,4 represent the four subregions of
region Vk. Vk+1 indicates another four division on the basis
of Vk. The subscript k reflects the number of times the region
is divided into four equal parties.

Vs1
′ Vs2

′

Vs4
′ Vs3

′

Figure 3: Sensor placement in which C is minimal.

Vk + 1,1

Vk + 1,4

Vk + 1,2

Vk + 1,2

Ovk

Figure 4: Four subregions of the monitored region.
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Vk+1,1 = FO1 Vk represents the first subregion after
dividing region Vk into four subregions; Vk+1,2 = FO2 Vk
represents the second subregion after dividing region Vk
into four subregions; Vk+1,3 = FO3 Vk represents the third
subregion after dividing region Vk into four subregions;
Vk+1,4 = FO4 Vk represents the fourth subregion after
dividing region Vk into four subregions.

Vk is the parent region of Vk+1, and Vk+1 is the subregion
of Vk.

Property 4.1. Subregion Vk+1 is similar to parent region Vk,
i.e., Vk+1 ∼ Vk.

Proof. Vk =□ACEG, Vk+1,1 =□ABOH, Vk+1,2 =□BODC,
Vk+1,3 =□ODEF, and Vk+1,4 =□HOFG are shown in
Figure 5. O is the center of □ACEG. BF⊥HD, BF⊥AC,
BF⊥GE, HD⊥AG, and HD⊥CE. According to the defini-
tion of vertical intersection line, we have that ∠BOH = 90∘
, ∠ABO = 90∘, and ∠AHO = 90∘.

Because O is the center of □ACEG, thus,

AB
AC

= AH
AG

= 1
2 14

Because □ABOH ∼□ACEG, thus, Vk+1,1 ∼Vk. In the
same way, Vk+1,2 ∼Vk+1,3 ∼Vk+1,4 ∼Vk; therefore,

Vk+1 ∼Vk 15

If the number of sensors allocated into the subre-
gion is larger than 1, we have to divide the subregion
into 4 smaller subregions. Once the region is divided,
the number of sensors assigned to the region is divided
by 4. The number of sensors allocated to the subregion
is a quarter of the number of sensors in the parent

region. The number of sensors is allocated according
to the four equal division method until the number
of sensors allocated in the subregion is 1. Such itera-
tion makes the division of the monitored region and
sensor assignment form a quadtree, as shown in
Figure 6.

When the number of sensors is divided by 4, it is
possible to have the remainder. It is shown in Figure 6
that the number of redundant sensors is allocated to
the first and third subregions which are on a diagonal
line to the parent region. Because the distance between
the centers of the two subregions on the diagonal line
is greater than the distance between the two subregional
centers on the same side, we choose to allocate redundant
sensors to two diagonal subregions. The problem of
redundant sensor number assignment will be explained
in detail in Section 4.3.

In Figure 6, k also indicates the depth of the tree.
The value of k is determined by nV0

and V0 is the whole
monitored target region. If nV0

= 1, then the sensor is
placed at the center of region V0 and k = 0. If 1 < nV0
≤ 5, then k = 1; if 5 < nV0

≤ 21, then k = 2. The larger
the total number of sensors in the monitored region is,
the larger k is. k is accumulating from 0. Once the mon-
itored region is divided and the number of sensors nVk

is
divided by 4, k accumulates 1 time. Until nVk

was
reduced to 1, k stopped accumulating.

When the area of each subregion is equal and the
central location of the parent region and the central
location of subregion are placed with sensors, then
the partition tree is a full quadtree which is shown
in Figure 7.

As can be seen in Figure 7, when the partition tree is
a full quadtree, adding more sensors will increase the
depth k of the tree. If the partition tree becomes a full
quadtree in the given k, the number of divided subregions
reaches maximum.

Property 4.2. The relationship between the depth k of a parti-
tion tree and the maximum number nmax of sensors in the
corresponding full quadtree is

nmax = 40 + 41 + 42 … +4k 16

Proof.① If k = 0, the monitored region does not need to
be divided and the sensor can be placed at the center of
the monitored region. If the total number of sensors is
2, it is necessary to divide the monitored region. So,
the maximum number of sensors nmax in a quadtree
with k = 0 is 1, nmax = 1 = 40.

② Suppose that when k = p, this equation is set up, i.e.,
nmax = 40 + 41 + 42 … +4p.

Then when k = p + 1, we can reason according to the
following steps.

Because layer p + 1 is the next layer of layer
p in the quadtree, then the maximum number

Vk + 1,1 Vk + 1,2

B CA

O DH

F EG

Vk + 1,4 Vk + 1,3

Vk

Figure 5: Four subregions for the proof.
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of sensors in layer p + 1 in the quadtree is as
follows:

OVk + 1,3
OVk + 1,4

Vk + 1,4Vk + 1,3Vk + 1,2Vk + 1,1

OVk + 1,1 OVk + 1,2

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,3,1
Vk + 2,3,1

OVk + 2,3,2
Vk + 2,3,1

OVk + 2,3,3
Vk + 2,3,1

OVk + 2,3,4
Vk + 2,3,1

Vk + 1,3,1 Vk + 1,3,2

Vk + 1,3,4 Vk + 1,3,3

Vk + 1,1,1 Vk + 1,1,2

Vk + 1,1,4 Vk + 1,1,3

Vk + 1,1 Vk + 1,2

Vk + 1,4 Vk + 1,3

OVk

Vk

Figure 6: Division tree of subregions for the monitored region.

Vk + 1,1

Vk + 1,1,1

Vk + 1,1,4 Vk + 1,1,3

Vk + 1,1,2

Vk + 1,4 Vk + 1,3

Vk + 1,2

OVk

Vk

OVk + 1,1

Vk + 1,3,1

Vk + 1,3,4 Vk + 1,3,3

Vk + 1,3,2

OVk + 1,3

Vk + 1,3,1

Vk + 1,3,4 Vk + 1,3,3

Vk + 1,3,2

OVk + 1,3

Vk + 1,3,1

Vk + 1,3,4 Vk + 1,3,3

Vk + 1,3,2

OVk + 1,3

Vk + 1,1 Vk + 1,3 Vk + 1,3 Vk + 1,3

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,1,1
Vk + 2,1,1

OVk + 2,3,1
Vk + 2,3,1

OVk + 2,3,2
Vk + 2,3,1

OVk + 2,3,3
Vk + 2,3,1

OVk + 2,3,4
Vk + 2,3,1

OVk + 2,3,1
Vk + 2,3,1

OVk + 2,3,2
Vk + 2,3,1

OVk + 2,3,3
Vk + 2,3,1

OVk + 2,3,4
Vk + 2,3,1

OVk + 2,3,1
Vk + 2,3,1

OVk + 2,3,2
Vk + 2,3,1

OVk + 2,3,3
Vk + 2,3,1

OVk + 2,3,4
Vk + 2,3,1

Figure 7: Division of full quadtree for the monitored region.

Therefore, when k = p + 1, this formula nmax = 40 + 41 +
42 … +4p+1 is established.

From steps ① and ②, we can see that the
equation is established for all the natural numbers
of k.

nmax = 40 + 41 + 42 … +4p + 4p × 4 = 40 + 41 + 42 … +4p + 4p+1

17
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nmax = 40 + 41 + 42 … +4k 18

Property 4.3. The maximum depth of the partition tree con-
strained by nV0

is as follows:

log4nV0
= k 19

Proof. Set the depth of the partition tree to k and the number
of sensors to nV0

.

Then it can be derived by Property 4.2 as follows:
nV0

is larger than the number of sensors of a full quadtree
in which the depth is k − 1 and is less than or equal to the
number of sensors of a full quadtree in which the depth is
k, that is,

40 + 41 + 42 … +4k−1 < nV0
≤ 40 + 41 + 42 … +4k−1 + 4k

20

Then we have

0 < nV0
≤ 4k 21

The following inequality is obtained by performing the
base 4 logarithmic operation on inequality (21):

log nV0
≤ k, 22

because log nV0
is not necessarily an integer but it is less than

or equal to k and greater than k − 1.
We have that k needs to round up log nV0

and then
log4nV0

= k.
Since the iterative dividing method uses the same

method for each iteration, it gives similarity between
subregions and entire regions and subregions and subre-
gions. The iterative subregions have self-similarity, that
is, the subregions divided at different depths have certain
similarities.

4.2. Alternate Assignment of Remainders. The purpose
of dividing the monitored area is to distribute the
number of sensors and to determine the location of
the sensors. The monitored region is divided into 4
subregions; correspondingly, the number of sensors
assigned to the monitored region would be divided into
four parts.

nVk
= nVk+1,1

+ nVk+1,2
+ nVk+1,3

+ nVk+1,1
+ nOVk

, 23

where nVk
represents the total number of sensors in

region Vk. nVk+1,1
, nVk+1,2

, nVk+1,3
, nVk+1,1

represent the number

of sensors assigned to the four subareas. nOVk
denotes the

number of sensors at center OVk
of region Vk. The value of

nOVk
is 0 or 1. nOVk

= 0 indicates that no sensor is placed at

center OVk
of Vk. nOVk

= 1 indicates that the sensor is placed
at center OVk

of Vk.
When the total number of sensors is divided equally,

there will be cases where the total number of sensors cannot
be completely divided into four equal parts, i.e., there may be
a remainder divided by 4. In order to improve the dispersion
of sensor deployment, we adopt the strategy of alternately
allocating the remainder to the two diagonal subregions in
this paper.

For example, if k = p, the remainder when nVk
is

divided by 4 is assigned to the first and third
subregions.

Then if k = p + 1, the remainder when nVk+1
is

divided by 4 is assigned to the second and fourth
subregions.

If k = p + 2, the remainder when nVk+2
is divided by 4

is assigned to the first and third subregions.
With the increase of k, the remainder allocation

is analogous to this method. Alternate allocation of
remainder avoids being sensor intensive in the diagonal
area.

We set quot nk, 4 to represent the quotient when nk is
divided by 4. mod nVk

, 4 represents the remainder when
nk is divided by 4. The value of the remainder is [0, 1, 2, 3].
We discuss the allocation of the remainder from the follow-
ing four cases:

Case 1. If mod nVk
, 4 = 0, it means that the total num-

ber of sensors in region Vk is just divided into four
equal parts. nVk+1,1

= quot nVk
, 4 , nVk+1,2

= quot nVk
, 4 ,

nVk+1,3
= quot nVk

, 4 , and nVk+1,4
= quot nVk

, 4 .

Case 2. If mod nVk
, 4 = 1, the remaining 1 sensor is

deployed at the center of region Vk, i.e., nOVk
= 1.

Case 3. If mod nVk
, 4 = 2, in order not to destroy the

symmetry of the monitored area in the subregions, we allo-
cate the redundant sensors to two diagonal subregions of
the quadrilateral. We allocate the redundant sensors to the
first and the third subregions, i.e., nVk+1,1

= quot nVk
, 4 + 1

and nVk+1,3
= quot nVk

, 4 + 1, or allocate them to the second

and the fourth subregions, i.e., nVk+1,2
= quot nVk

, 4 + 1 and

nVk+1,4
= quot nVk

, 4 + 1. The odd-numbered subregions

(nVk+1,1
and nVk+1,3

) and the even-numbered subregions

(nVk+1,2
and nVk+1,4

) are rotated alternately to obtain the oppor-

tunity for accumulation.

Case 4. If mod nVk
, 4 = 3, one sensor is placed at the center

of region Vk, i.e., nOVk
= 1, and the other two sensors are

assigned using the method of Case 3.
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where the function of max ⋅ , ⋅ is to take the maximum of
two parameters.

We set OVk
to represent the center of region Vk and set

the sensor to be placed at the center of the region. If

mod nVk
, 4 = 1, 25

then

nOVk
= 1 26

Theorem 4.1. If the total number n of sensors that can be
deployed satisfies n = 4x, x ∈ Z, x > = 0, then uniform
distribution can be achieved. Uniform deployment of sensors
is a special case of our proposed placement scheme.

Proof. ① If x = 1, then n = 4. According to our proposed
placement scheme, the sensor deployment is shown in
Figure 8.

Sensors are placed at the center of each subregion. It is
clear that uniform deployment is achieved.

② Suppose that when x = p, this equation is set up. n = 4p,
then n can be divisible by 4, and uniform distribution can be
achieved.

When x = p + 1, we can follow the following steps to
reason, because

x = p + 1, 27

and then n = 4p+1. When dividing the number n into 4 equal
parts, the number of sensors assigned to each subregion is

4p+1
4 = 4p 28

When x = p, n = 4p, Theorem 4.1 is set up. When n = 4p,
uniform distribution can be achieved. The number of sensors
is uniformly distributed in each subregion and throughout
the entire area.

Therefore, when x = p + 1, Theorem 4.1 is set up.
From steps ① and ②, we can see that Theorem 4.1 is

set up.

4.3. Fine Adjustment of Sensor Position. When mod nVk
, 4

≥ 2, we assigned redundant sensors to two diagonal subareas
in this paper. It makes the density of sensors in the four
subregions different. It will be the reason that the disper-
sion degree of the two subregions that get the redundant
sensors is smaller than that of the two subregions which
do not acquire them. Since the dispersion degree of sensor
placement is related to the positions of the sensors, we can
move the sensors in the subregions assigned with the
redundant sensors closer to the subregions that are not
allocated with the redundant sensors. It allows the sensor
placement in the parent regions to be distributed approx-
imately uniformly.

We assume that the coordinates of the center position
OVk

of region Vk are xOVk
, yOVk

and the coordinates of the

center position OVk+1
of subregion Vk+1 are xOVk+1,i , yOVk+1,i ,

where i is the index of the subregions. The coordinates of
the center position of the child region and the parent
region have the following relationship:

The coordinates of the center position of subregion
Vk+1,1 are

xOVk+1,1 = xOVk
−
dVk

4 ,

yOVk+1,1 = yOVk
+
dVk

4

29

nVk+1,1
=

quot nVk
, 4 + max −1 k+1 × 1, 0 , when mod nVk

, 4 = 2 or mod nVk
, 4 = 3,

quot nVk
, 4 , when mod nVk

, 4 = 0 or mod nVk
, 4 = 1,

nVk+1,2
=

quot nVk
, 4 + max −1 k × 1, 0 , when mod nVk

, 4 = 2 or mod nVk
, 4 = 3,

quot nVk
, 4 , when mod nVk

, 4 = 0 or mod nVk
, 4 = 1,

nVk+1,3
=

quot nVk
, 4 + max −1 k+1 × 1, 0 , when mod nVk

, 4 = 2 or mod nVk
, 4 = 3,

quot nVk
, 4 , when mod nVk

, 4 = 0 or mod nVk
, 4 = 1,

nVk+1,4
=

quot nVk
, 4 + max −1 k × 1, 0 , when mod nVk

, 4 = 2 or mod nVk
, 4 = 3,

quot nVk
, 4 , when mod nVk

, 4 = 0 or mod nVk
, 4 = 1,

24
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The coordinates of the center position of subregion
Vk+1,2 are

xOVk+1,2 = xOVk
+
dVk

4 ,

yOVk+1,2 = yOVk
+
dVk

4

30

The coordinates of the center position of subregion
Vk+1,3 are

xOVk+1,3 = xOVk
−
dVk

4 ,

yOVk+1,3 = yOVk
−
dVk

4

31

The coordinates of the center position of subregion
Vk+1,4 are

xOVk+1,4 = xOVk
+
dVk

4 ,

yOVk+1,4 = yOVk
−
dVk

4

32

When k = 0, the coordinates of the center position OV0
of region V0 do not need to be updated. We set that dVk

is the diameter of region Vk. We assume that the adjust-
ment distance of the subregion is set to Δd.

0 < Δd <
dVk+1

2 ,

Δd =
dVk+1

4

33

In this paper, we update the coordinates as follows:

Case 1. Sensors in the horizontal regions are adjusted close to
each other.

The sensor in subregion Vk+1,1 is adjusted close to subre-
gion Vk+1,2:

x′OVk+1,1 = xOVk+1,1 + Δd ,

y′OVk+1,1 = yOVk+1,1 ,

when max −1 k+1 × 1, 0 = 1,

mod nVk
, 4 = 2 or mod nVk

, 4 = 3

34

The sensor in subregion Vk+1,3 is adjusted close to subre-
gion Vk+1,4:

x′OVk+1,3 = xOVk,3 − Δd ,

y′OVk+1,3 = yOV3
,

when max −1 k+1 × 1, 0 = 1,

mod nVk
, 4 = 2 or mod nVk

, 4 = 3

35

Case 2. Sensors in the vertical regions move closer to each
other.

The sensor in subregion Vk+1,2 is adjusted close to subre-
gion Vk+1,4:

x′OVk,2 = xOVk,2 ,

y′OVk,2 = yOVk,2 + Δd ,

when max −1 k+1 × 1, 0 = 0,

mod nVk
, 4 = 2 or mod nVk

, 4 = 3

36

The sensor in subregion Vk+1,4 is adjusted close to subre-
gion Vk+1,1:

x′OVk,4 = xOVk,4 ,

y′OVk,4 = yOVk,4 − Δd ,

when max −1 k+1 × 1, 0 = 0,

mod nVk
, 4 = 2 or mod nVk

, 4 = 3

37

4.4. Algorithm for the Sensor Placement Based on the Four
Subregions. We define the following notation before we
design the algorithm:

n represents the number of sensors that can be deployed.
The coordinates of the central position of the monitored
region are x, y . The diameter of the monitored area is d.
The vector of the location of the sensor deployment is D =
xi, yi ∣ i = 1, 2,⋯, n . k is the depth of the division tree.

The initial value of k is 0. p is the quotient when n is divided
by 4. q is the remainder when n is divided by 4.

Figure 8: Uniform placement of sensors in the four subregions.
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4.5. Fine Adjustment for Making Up for the Voids. In the
actual deployment project, there will be some scenarios
where subregions can not deploy sensors. This will affect
the dispersion degree of sensors in the whole monitored
region and further affect the precision of data reconstruction.
It is necessary to perform fine adjustment so that the impact
is as small as possible. We set the coordinates of center OVΠ
of subregion VΠ where sensors cannot be deployed, which
is xOVΠ

, yOVΠ
, as shown in Figure 9.

Although the sensor cannot be deployed in subregion VΠ
, we can reconstruct the physical quantity of monitoring in
this region by interpolation. In order to get high precision
of reconstruction, the positions of sensors around it are fine
adjusted. They were adjusted to get closer to it. In the section,

we assume that the adjustment distance of subregion is set to
Δd′ (Algorithm 2).

5. Experiments

In this section, we outline the tests used to investigate the
performance of the proposed algorithm on MATLAB. Evalu-
ation indexes include the dispersion degree of sensor place-
ment, the precision of data reconstruction, and the
coverage rate.

5.1. Verification of Reconstruction Precision. It is necessary to
verify the impact of the deployment mechanism on the preci-
sion of data reconstruction. The reconstruction algorithm

Sparsedeploy4 (int n, float x, float y, float d)
{intp, q;
p = n/4;
q = n \ 5;
k = k + 1;
Switch q
Case 0:

{
Sparsedeploy4(p, x − d/4, y + d/4 , d/2);
Sparsedeploy4(p, x + d/4 , y + d/4 , d/2);
Sparsedeploy4(p, x + d/4 , y − d/4, d/2);
Sparsedeploy4(p, x − d/4, y − d/4, d/2);
}

Case 1:
{
x, y →D;
Return;
}

Case 2:
{

If k == 1 then
{

Sparsedeploy4(p +max −1 k+1 × 1, 0 , x − d/4 + Δd , y + d/4 , d/2);
Sparsedeploy4(p +max −1 k × 1, 0 , x + d/4 , y + d/4 , d/2);
Sparsedeploy4(p +max −1 k+1 × 1, 0 , x + d/4 − Δd , y − d/4, d/2);
Sparsedeploy4(p +max −1 k × 1, 0 , x − d/4, y − d/4, d/2);
}

Else
{

Sparsedeploy4(p +max −1 k+1 × 1, 0 , x − d/4, y + d/4 , d/2);
Sparsedeploy4(p +max −1 k × 1, 0 , x + d/4 , y + d/4 − Δd , d/2);
Sparsedeploy4(p +max −1 k+1 × 1, 0 , x + d/4 , y − d/4, d/2);
Sparsedeploy4(p +max −1 k × 1, 0 , x − d/4, y − d/4 + Δd , d/2);
}

Endif
}

Case 3:
{ x, y →D;

Goto case 2;
}

}

Algorithm 1: The sensor placement based on the four subregions.
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used in this paper is an inverse distance-weighted (IDW)
interpolation reconstruction algorithm, which is proposed
by Shepard. Subsequently, IDW algorithm is widely applied
in spatial analysis of various fields. Inverse distance-weighted
interpolation is also known as “inverse distance-weighted
average” or “Shepard method.” Suppose that there are n
known locations whose plane coordinates are xi, yi and the
known data is zi, where i = 1, 2, 3,… , n, i.e., zi xi ,yi ∣ i = 123
⋯ n . The interpolation function for the inverse distance-
weighted interpolation is

f x, y =
∑n

i=1 zi/d
p
i

∑n
i=1 1/dpi

if x, y ≠ xi, yi , i = 1, 2,… , n,

zi if x, y = xi, yi , i = 1, 2,… , n,
38

where di = x − xi
2 + y − yi

2 is the distance between

point x, y and point xi, yi , i = 1, 2,… , n. p is a constant
greater than zero, called a weighted exponent. In this experi-
ment, we set the value of p to 1.

The data set that we use is the measured data provided by
the Intel Berkeley Research lab [30].We select the data of each
sensor at the same time in this experiment. We select this
moment with a timing of 33. The sensor set, whose sensor
index numbers are {1,3,7,9,14,15,18,19,21,22,24,26,28,29,30,
31,36,38,39,41,43,46,47,48,50,51,54}, provides the acquisition
data at time 33. We test it by means of reconstructing the
temperature value. The length of this monitored region is kh
= 41 and the width is kv = 32. The x and y coordinates of the
sensors are relative to the upper-right corner of the lab in
meters. However, the x′ and y′ coordinates of the sensors in
our algorithm are relative to the lower-left corner of the lab.
It is necessary to transform the coordinates of the sensors pro-
vided by the Intel Berkeley Research lab to the coordinates in

the coordinate system of our algorithm. We use formula (39)
to transform them:

x′ = −x + kh,
y′ = −y + kv

39

The coordinates of the central location of thewhole region
in our coordinate system are (20.5, 16).

In order to compare the precision of the reconstruction,
we choose the mean relative error (MRE). It reflects the pre-
cision of the estimated data relative to the measured data.
The formula for the calculation of MRE is as follows [13]:

MRE = 1
n
〠
n

i=1

z xi − ẑ xi
z xi

, 40

where z xi is the actual acquisition value of the ith sensor.
Correspondingly, ẑ xi is the reconstructed value. n is the
total number of sensors.

We first evaluate the impact of the dispersion degree of
sensor placement. The definition of the dispersion degree is
in Section 3. For the cases that the dispersion degree of sensor
placement is not considered, we compare the placement of
sensors concentrated at the bottom of the region and the
placement of sensors concentrated on the right of the region
with our placement. Because the placement proposed in this
paper is designed based on the dispersion degree of sensor
placement, they can be compared.

We take 10 sensor nodes in the bottom region. Their
index numbers are {24, 26, 28, 29, 30, 31, 36, 48, 39, 41},
which are the subset of the sensor set with a timing of 33.
We only deploy sensors at the location of some sensors out
of these 10 sensors to reconstruct temperature values at other
sensor locations. Ten tests were conducted for the compari-
son. We calculate the average MRE corresponding to the
different total sensors number of the 10 tests. We compare
the average MRE of the proposed placement and the place-
ment without consideration of dispersion, as shown in
Figure 10.

Then we take 10 sensor nodes in the right side of the
region again. Their index numbers are {14, 15, 18, 19, 21,
22, 24, 26, 28, 29}. We did ten tests. The comparison result
is shown in Figure 11.

From Figures 10 and 11, we can see that the dispersion
degree of sensors does affect the precision of data reconstruc-
tion. It is obvious that the more sensors are deployed, the
smaller the reconstruction error is. Our placement is based
on the dispersion degree of the sensor deployment. The
MRE of our placement is lower than that of the placement
without considering the dispersion degree. From the results
of many experiments, we can see that in the process of recon-
structing data using interpolation, the dispersion degree
affects the precision of reconstruction. The physical quantity
in the space has spatial correlation; the reconstructed data is
based on data from all directions, which is more comprehen-
sive, so the reconstruction precision will be higher.

In terms of reconstruction accuracy, our algorithm has
made some improvements based on other algorithms. Ten

OVII

Figure 9: Subregion where sensors cannot be deployed.
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tests were conducted for the comparison. We calculate the
average MRE corresponding to the different total sensor
numbers of the 10 tests. The proposed method is compared
with the scalable random placement [16]. The result is shown
in Figure 12.

After several experiments, we found that when the num-
ber of sensors is small, the gap in the mean relative error
between the two algorithms is very large. The MRE of our
placement algorithm is much smaller than that of the scalable
random placement algorithm. This is because our placement
algorithm takes into account the dispersion degree during
deployment. The sensors that we deployed have an impact
on the physical quantity of the location where the data needs
to be reconstructed in all directions, resulting in high recov-
ery accuracy. Our algorithm has obvious advantages in sparse
deployment. As the number of sensors that can be deployed
increases, the sensors assigned to each direction are available
and the MRE of scalable random deployment is also decreas-
ing but the magnitude of reduction is not much larger than
that of our placement algorithm. And, we can see from
Figure 12 that my algorithm is showing a steady decline.

5.2. Verification of Dispersion and Coverage.We set that the
coordinates of the central position of the monitored area
are (500m, 500m). The diameter of the monitored region

For all x, y in D
If x > xOVΠ

− d/2 log4 n−1 then x = x + Δd′ end if

If x < xOVΠ
+ d/2 log4 n−1 then x = x − Δd′ end if

If y > yOVΠ
− d/2 log4 n−1 then y = y + Δd′ end if

If y < yOVΠ
+ d/2 log4 n−1 then y = y − Δd′ end if

End for

Algorithm 2: The fine adjustment algorithm for making up for the voids.

0.5

Proposed placement

Number of the sensors

M
ea

n 
re

la
tiv

e e
rr

or

Placement without consideration of dispersion

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05
2 3 4 5 6 7 8

Figure 10: MRE comparison of the placement where the sensors are
concentrated at the bottom and the proposed placement where the
sensors are dispersed throughout the region.
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Figure 11: MRE comparison of the placements where the sensors
are concentrated on the right of the region and the proposed
placement where the sensors are dispersed throughout the region.
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Figure 12: Result of the comparison of the proposed placement and
scalable random placement.
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is 400m. The diameter of the monitoring range of the sen-
sor is 40m. The communication radius of the sensor
nodes is assumed to be 40m. The dispersion degree of
sensor placement can be used as a measure of the quality
of the deployment.

Ten tests were conducted for the comparison. We calcu-
late the average dispersion degree corresponding to the dif-
ferent total sensor numbers of the 10 tests. The dispersion
degree of sensor placement varies with the number of
sensors, as shown in Figure 13. It is obvious that the disper-
sion of the algorithm is higher than that of the scalable
random algorithm with different total numbers of sensors
that can be deployed. When the total number of sensors

is 4x, where x ∈ℤ, x ≥ 0, the sensor can be uniformly dis-
tributed and the dispersion degree is 1. From Figure 10, we
can see that the dispersion degree of the sensor placement
in our algorithm is 1, if the total numbers of sensors are 1,
4, and 16, i.e., 4x when x=0, 1, and 2.

We introduce sensor coverage efficiency (CE) [31] to
measure the utilization rate of sensor coverage. CE is defined
as the ratio of the area of the effective coverage union of all
sensors in the region to the area of the monitored region, as
shown in

CE = ∪n
i=1Ai

A
, 41

where Ai is the coverage area of the ith sensor.
In this experiment we, define the sensor sensing radius

as 3. Ten tests were conducted for the comparison. We cal-
culate the average CE corresponding to the different total
sensor numbers of the 10 tests. The result is shown in
Figure 14. With the increase of the number of sensors,
the sensor coverage rate is on the rise. In the case that
the number of sensors is less than 4, the effective coverage
of our algorithm and that of random deployment are not
much different. As the number of sensors increases, the
concentration of sensors in some local regions may increase
in random deployment but our algorithm ensures that
there are no regions where the sensors are placed densely.
As can be seen from Figure 14, with the increase in the
number of sensors, in most cases, our algorithm coverage
is higher than the coverage of the random deployment
algorithm. From Figure 14, we can see that with the
increase of sensor number, in most cases, the coverage rate
of our algorithm is higher than that of random deployment
algorithm. In the first test, it has 9 cases that the coverage
rate of our algorithm is higher than that of random place-
ment, accounting for 90%.

6. Conclusions

In large area information acquisition, it is desirable to col-
lect information by means of sparse sensor coverage to
acquire data information. In this paper, we proposed a sen-
sor deployment algorithm based on four subregions to
improve the precision of data reconstruction by IDW.
The placement was implemented with a realistic data set
of the Intel Berkeley Research lab for testing the reconstruc-
tion precision and simulated for testing of the dispersion
and coverage of the sensor network. We compared our
placement with the scalable random placement. In compar-
ison, we found that the MRE of our sensor placement is
lower than that of the random placement, while the num-
ber of sensors is not very large. Another advantage of our
placement lies in its coverage, as on the tested maps, its
performance is better than the random placement. The final
advantage of the algorithm is related to its distributed
nature. Our placement was inspired by the fractal theory,
and it possesses good scalability.
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Figure 13: Dispersion of the two different placements varies with
the number of sensors.
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