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Fatigue driving is becoming a dangerous and common situation for drivers and represents a significant factor for fatal car crashes.
Machine learning researchers utilized various sources of information to detect driver’s drowsiness. This study integrated the
morphological features of both the eye and mouth regions and extensively investigated the fatigue detection problem from the
aspects of feature numbers, classifiers, and modeling parameters. The proposed algorithm REcognizing the Drowsy Expression
(REDE) achieved the 10-fold cross-validation accuracy 96.07% and took about 21 milliseconds to process one image. REDE
outperformed the existing four studies on both fatigue detection accuracy and running time and is fast enough to handle the
task of real-time fatigue monitoring captured at the rate of 30 frames per second. To further facilitate the research of fatigue

detection, the raw data and the feature matrix were also released.

1. Introduction

The AAA Foundation released a report on traffic safety in
2015, and the data strongly suggested the extent and serious-
ness of fatigue driving [1]. During 2009-2013, 21% of fatal car
crashes involved a drowsy driver, and more than two out of
five drivers (43.2%) admitted the experiences of fatigue driv-
ing. However, there are only 17% of fatal car crashes involv-
ing a drowsy driver during 1999-2008. The increasing rate of
fatigue driving is becoming more common and calls for bet-
ter fatigue detection and warning system [2].

Machine learning-based fatigue detection algorithms
may be roughly grouped into three categories. Firstly,
fatigue-specific patterns in driver’s physical behaviors, includ-
ing eye behaviors [3-5] and yawning frequency [6], extracted
from the captured video may be useful to detect fatigue. The
integrated analysis of these multicue features may potentially
improve the detection accuracies of the fatigue detection accu-
racy [7-10]. Secondly, fatigue-specific measurements may be
extracted from a drowsy driver’s physiological signals, e.g.,
heart rate variability [11] and EEG (electroencephalography)

[2, 12, 13]. Thirdly, the external monitoring of the vehicular
behaviors may also facilitate driver’s fatigue detection. For
example, Morris et al. predicted driver’s drowsiness by the
car’s lane deviation and vehicle heading variation [14].
And Krajewski et al. monitored the behaviors of the steer-
ing wheel to predict whether the driver is in fatigue [15].
This study hypothesized that the integration of multiple
physical behaviors might achieve better fatigue detection per-
formance. Many previous studies focused on a single type of
driver’s physical behaviors, e.g., eye activities or mouth yawn-
ing. This study extracted the Local Binary Pattern (LBP) fea-
tures from the eye and mouth regions and summarized the
principal components from LBP features for training the
fatigue detection models. The proposed algorithm REcognizing
the Drowsy Expression (REDE) outperformed the existing four
fatigue detection studies on both accuracies and running times.

2. Material and Methods

2.1. Problem Definition. Fatigue detection is defined as a
binary classification problem of determining whether a person
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is in fatigue or not based on this person’s face photo. The pos-
itive samples are the face photos of persons in fatigue and are
denoted as P={P,,P,, P,, ..., P,}, while the face photos of
persons without fatigue are the negative samples and are
denoted as N={N;,N,,N,, ..., N, }. The total number of
samples is s =71+ m. Let X be the k-feature vector X = (X,
X,, ..., X;) for a given sample, and the binary classification
problem investigated in this study is to assign X as either a
positive or a negative sample [16].

2.2. Data Collection. There is no public database of fatigue
visual images and videos, so we built our video database cap-
tured from our recruited volunteers. Table 1 describes the
details of the volunteered participants. Seven male and seven
female participants were recruited and each of the fourteen
volunteers signed the informed consent form. All of the par-
ticipants do not have sleeping disorders that may affect neu-
rocognitive ability and do not take food/drink/medicine that
affects the neurocognitive system [17].

Two videos were captured for each participant at the sta-
tuses of nonfatigue and fatigue, respectively. A participant
took a normal diet and a full rest for the first day and had
one video recording at 8:00 AM of the next day in a rest state.
After this time, the participant had no rest for 18 hours, and
another video recording was taken at 3:00 AM of the third
day in a rest state. The video was captured using the CMOS
5-megapixel camera in the MacBook Pro (13-inch screen),
and the video resolution is 1280 x 720 in pixels. The captur-
ing frequency is 30 frames per second. Each video was
recorded for 5 minutes and has 9000 (=5 x 60 x 30) images.

We randomly extracted 300 images from each video and
labeled them as being fatigue or not by the majority voting
from 100 volunteers. Two videos were recorded for each par-
ticipant, so we have 8400 (= 300 x 14 x 2) images in total. Let
F, be the number of votes for that the i image is fatigue and
A; be the number of votes against this statement. An image
was removed from further analysis if |F; — A,;| < 20. There
were 1581 images removed for this rule. An image with a
nonfatigue expression was defined as a positive sample,
while an image with the fatigue expression was a negative
sample. A person usually stays nonfatigue longer than the
time of being fatigue. So we randomly chose 80 positive
images and 40 negative images for each participant. The final
dataset has 1680 samples with 1120 positive and 560 negative
samples, respectively.

The raw images of the eyes and mouths were released at
http://www.healthinformaticslab.org/supp/resources.php.
The data matrix of grayscale values and extracted LBP (Local
Binary Pattern) features were also released as a benchmark
dataset at this website.

2.3. Data Preprocessing. This study hypothesized that the
morphological patterns in the regions of the eyes and mouth
may well represent the fatigue status. So we detected and
extracted the regions of two eyes and one mouth from each
image by DIlib version 19.4.99 [18] described by Kazemi
and Sullivan [19]. The detection accuracy of a random subset
was inspected manually and illustrated in Figure 1.
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TaBLE 1: Basic information of the participants. Each participant
has the information on gender, age, and whether a pair of glasses
was worn.

ID Gender Age Glasses Glasses
Female 20 No 8

Female 20 No 9

Female 20 No 10
Female 19 No 11
Female 25 No 12
Female 49 No 13

Female 20 Yes 14

ID Gender Age
Male 49 No
Male 49 No
Male 20 No
Male 21 No
Male 20 No
Male 20 No
Male 20 Yes

NN U R W

Each image was preprocessed by the following steps, as
illustrated in Figure 2. An image was first transformed into
the grayscale colors by the formula GrayScale = 0.299 x R +
0.587 x G + 0.114 x B, where R/G/B were the pixel values of
the red/green/blue channels [8]. This conversion was pro-
vided by the function imread() from the library OpenCV. A
gamma correction 1/2.2 was usually applied to normalize
the light variations for human face detection, as recom-
mended in [20]. Let MaxV be the maximal grayscale pixel
value of the image matrix M after the gamma correction.
The final image matrix was calculated as M' = M/(Max
V x 255). After being detected using Dlib, the image sizes
of the face, eye, and mouth were scaled as 320 x 320, 64 x
32, and 64 x 64 in pixels, respectively.

2.4. Extracting Features from the Images. This study extracted
the Local Binary Patterns (LBP) from the eye and mouth
images and then calculated the eigenvector of the LBP feature
vector, as illustrated in Figure 2.

The parameter pCellSize of the LBP algorithm was set to
32 x 32 by default. So each sample has 512 features for each
eye image and 1024 features for the mouth image. There
are 2048 features in total for each sample with two eye images
and one mouth image.

2.5. Experimental Environments. This study integrated the
morphological features of both eyes and mouth to REcogniz-
ing the Drowsy Expression (REDE). A binary classification
model was trained over the principal components calculated
from the LBP features of the facial images.

The experiments were implemented using Python and
C++ on an Intel Core-I5 2.70 GHz CPU and 8 GB memory.
The machine learning experiment was conducted based on
the Python scikit-learn version 0.18.2 [21]. The processing
of video and face recognition was implemented using the
software Photo Booth version 9.0.0 [22]. The whole proce-
dure of extracting features and predicting the binary classifi-
cation result for an image took approximately 0.02 seconds.
So the pipeline may be applied to do the real-time monitor-
ing of videos captured at 30 frames per second in this study.

2.6. Classification Performance Measurements. Sensitivity
(Sn), specificity (Sp), accuracy (Acc), and Matthews’ correla-
tion coefticient (MCC) were widely used to evaluate how well
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FIGURE 1: Detection of the eyes and mouth in a facial image. (a, b) The nonfatigue images 1 and 2 and (¢) the fatigue image for participant 10.
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F1GURE 2: Original images, abstracted images using eigenvalues, and histograms of the nonfatigue and fatigue images. (a) The left eye, (b) the

right eye, and (c) the mouth of the 10" participant.

TaBLE 2: Baseline information of the dataset. This table gives the
numbers of the positive (nonfatigue) and negative (fatigue) images.

Positive Negative
Glasses 80 40
Male
Nonglasses 480 240
Glasses 80 40
Female
Nonglasses 480 240
Total 1120 560

a binary classification model performs [16, 23, 24]. This
study chose these four performance measurements to dem-
onstrate the performance of fatigue detection algorithms.
Let TP and FN be the numbers of positive samples that are
predicted as positives and negatives, respectively. The mea-
surements TN and FP are defined as the numbers of neg-
ative samples that are predicted as negatives and positives,
respectively. So the number of positive samples is P=
TP +FN. And the number of negative samples is N =

TN + FP. The performance measurements Sn and Sp are
the percentages of correctly predicted positive and negative
samples, i.e., Sn = TP/(TP + FN) = TP/P and Sp = TN/(TN +
FP) = TN/N. The measurement accuracy is defined as the
overall percentage of correctly predicted samples, ie.,
Acc= (TP +TN)/(P+ N) [25]. Matthews’ correlation coef-
ficient (MCC) ranges between -1 and 1 and is defined as
MCC = (TP x TN — FP x EN)/sqrt((TP + FP) x (TP + FN) x
(TN +FP) x (IN+FN)) [26-28]. The function sgri(X)
returns the square root of X.

All the performance measurements mentioned above
were calculated using the 10-fold cross-validations [29].

3. Results and Discussion

3.1. Baseline Information of the Dataset. After the video cap-
turing and image preprocessing, we retrieved 1120 positive
images and 560 negative images, as shown in Table 2. One
male and one female participants wear glasses. So 1/7 facial
images were included for further analysis proportionally.
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F1GURE 3: The differences of LBP features between the two groups of samples. (a) For each feature, the averaged value of the fatigue samples
minus that of the nonfatigue samples was plotted. (b) The ¢-test P value was calculated between the two groups of samples for each feature,

and the value -log10(P value) was plotted.

3.2. Not All the Features Contribute to Fatigue Detection.
Firstly, we investigated the differences of the 2048 LBP fea-
tures between the fatigue and nonfatigue samples, as shown
in Figure 3. The maximal difference was 0.0387 for the
452" feature. Moreover, there were only 26 features with
the differences at least 0.01. The t-test was used to evaluate
the discriminative power of each LBP feature, as shown in
Figure 3(b) [30]. 512 LBP features had significant discrimina-
tive powers of fatigue detection, i.e., t-test P value < 0.05.
So the majority of the LBP features did not have discrimina-
tive powers for detecting fatigue samples. The P value was
calculated by the ¢-test function in the Python package scipy
version 1.1.0 [31].

So we calculated the principal components of all the 2048
LBP features and evaluated the top 20 principal components
for the fatigue detection problem, as shown in Figure 4. The
principal components were calculated on the data mixture
of both fatigue and nonfatigue samples, but they already
demonstrated significant differences between these two
groups of samples, as shown in Figure 4(a). The discrimina-
tive power of these principal components was evaluated by
the t-test P value. Figure 4(b) demonstrates that 11 out of
the top 20 principal components had a P value < 0.05. The

9™ principal component achieved the best discrimination
by P value = 5.2805e-35. The principal components were
calculated by the PCA function in the Python package
scikit-learn version 0.18.2 [31].

This study evaluated three image feature extraction
algorithms, i.e., LBP, HOG [32], and LeNet [33], for their
classification performances on the fatigue detection problem.
The performances were calculated by the 10-fold cross-
validation of the classifier decision tree (scikit-learn version
0.18.2). Figure 5 demonstrates that LBP achieved the best
classification performances among these three algorithms.
HOG performed slightly worse than LBP, and LeNet features
achieved 0.0458 worse in Acc than LBP. So the following sec-
tions used the LBP-extracted features to build the fatigue
detection model.

3.3. Optimizing the Features. We evaluated different values
for the parameter cell size (pCellSize) of the image feature
extraction algorithm LBP and the parameter component
number (pComponentNum) of the principal component
analysis (PCA). The 10-fold cross-validation accuracy of
the Support Vector Machine (SVM) classifier with the radial
basis function (RBF) kernel was calculated to evaluate a given
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F1GURE 5: Classification performances of different image feature extraction algorithms. Three image feature extraction algorithms LBP, HOG,

and LeNet were compared.

feature subset. The experiment was implemented by the
Python scikit-learn version 0.18.2, and all the other parame-
ters of these algorithms were used with their default values.

The best prediction accuracy 90.60% was achieved
with pCellSize = 32 x 32, as shown in Figure 6. Overall, the
classifier SVM-RBF performed very well on the fatigue
detection problem and achieved the accuracies ranging
between 87.86% and 90.60%. If Width was fixed as 16

or 32, SVM-RBF performed the best when Height = 32. If
Width =8, SVM-RBF performed slightly better (1.01%) on
Height = 32 than Height = 64. If Height was fixed as 16 or
32, Width=32 was the best choice for the classifier
SVM-RBF, while the SVM classifier performed slightly better
(0.12%) in accuracy on Width=16 than Width =32, if
Height was 8. So the parameter pCellSize = 32 x 32 was cho-
sen as the default value for further analysis.
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FIGURE 6: Prediction accuracies of the fatigue detection problem by different values of the parameter pCellSize. A cell of the LBP algorithm has
two values, i.e., Width and Height, and pCellSize is represented as Width x Height.
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FIGURE 8: Performance measurements of the six classifiers on the fatigue detection dataset. The classification performance was measured by

Sn, Sp, Acc, and MCC.

The classifier SVM-RBF reached the best accuracy
95.18% at the value pComponentNum =20, as shown in
Figure 7. A smaller or larger value of pComponentNum
reduced the fatigue prediction accuracy, and the classifier
SVM-RBF performed stably well after the parameter pCom-
ponentNum is greater than 11, with the maximal decrease

0.65% in accuracy when pComponentNum =50. Experi-
ments in the following sections were conducted using
pComponentNum = 20.

3.4. Choosing a Good Classifier. Six binary classification algo-
rithms were compared for their prediction performances of
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the fatigue detection problem, as shown in Figure 8. The
Support Vector Machines with both Linear and RBF kernels
were denoted as SVM-L and SVM-RBF. The k-nearest-
neighbor (KNN) was also used to evaluate how a simple
distance-based classifier performed on the fatigue detection
problem. A decision tree (DTree) classifier has an inherent
nature of easy interpretability, and random forest (RForest)
classifier tends to have a better classification performance.

The extreme gradient boost (XGBoost) algorithm was a
recently developed meta-algorithm and outperformed the
existing classification algorithms in many cases [34].
XGBoost was implemented in the Python package XGBoost
version 0.71. All the other classifiers were provided in the
Python package scikit-learn. The features were extracted
from the images using the parameters pCellSize = 32 x 32
and pComponentNum = 20.

Figure 8 demonstrates that the classifier SVM-RBF
performed the best on three of the four performance mea-
surements of the fatigue detection problem. Although
SVM-L shares the same framework of support vectors with
SVM-RBF, SVM-L performed much worse than SVM-RBF.
XGBoost performed similarly well with SVM-RBE, with a
slight decrease (4.39%) in accuracy. XGBoost achieved the
best sensitivity Sn=99.11%, but its specificity Sp was worse
than SVM-RBF. KNN generated the third best fatigue detec-
tion model, but the two tree-based classifiers RForest and
DTree did not achieve satistying classification accuracies. So
SVM-RBF was chosen as the classifier for the final model.

3.5. Optimizing the Parameters of the Classification Module.
We further refined the best classifier SVM-RBF by screening
for the best values of the two parameters C and Gamma, as
shown in Figure 9. Twenty values between 0.125 and 3.000
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TaBLE 3: Four recent studies on the fatigue detection problem. The column “Year” gives the publication year of each study. And the column
“Algorithms” summarizes the techniques used in each study. The column “Accuracy” gives the accuracy achieved by the best model on the
complete or largest test dataset in each study. The column “Time (ms)” is the processing time of the algorithm on one image.

Authors Year Algorithms Accuracy Time (ms)
Ma et al. 2017 Two-stream CNN 91.57% —
Wathiq and Ambudkar 2017 V] method, SVM 94.32% 70
Wang et al. 2017 Iris tracking, EBF, PERCLOS 80.75% —
Gao and Wang 2017 Eye feature extracting, SVM 88% —

with step size 0.125 were evaluated for the parameter C.
Seven values {0.100, 0.178, 0.316, 0.562, 1.00, 1.334, and
1.778} were evaluated for the other parameter Gamma. A
grid search was conducted to find the best choices of these
two parameters. The classifier SVM-RBF achieved the best
accuracy of 96.07% when C =2.125 and Gamma = 0.100.

3.6. Summarization of the Best Model. The best model to
detect fatigue using the facial images was achieved after
the above optimization procedure, as shown in Figure 10.
The classifier SMV-RBF with the parameter C=2.125 and
Gamma = 0.1 achieved a satisfying performance on our data-
set. The sensitivity Sn = 98.75% and overall accuracy Acc =
96.07% were very high, while the specificity Sp=90.71%
might need further improvements.

3.7. Comparison with the Existing Studies. Four recent studies
were chosen for a comparison with our work, as shown in
Table 3. Ma et al. refined the background removal of the
two-stream video and trained a depth video-based convolu-
tional neural network (CNN) model [35]. They achieved an
overall fatigue detection accuracy of 91.57%. Wathiq and
Ambudkar proposed a fatigue detection model based on the
texture features of facial components and achieved the accu-
racy 94.32% on the largest dataset [36]. Wang et al. focused
on the patterns of the eye activities and implemented an
Android-based fatigue detection system with an accuracy of
80.75% [37]. Gao and Wang described the fatigue status by
the percentage of eye closure time, the average eye closure
time, and the eye blinking frequency and achieved the fatigue
detection accuracy 88% [38].

The algorithm REDE in this study achieved the best accu-
racy 96.07% using the SVM-RBF algorithm and took 21 mil-
liseconds to process one image. So REDE outperformed all
the existing four studies on the fatigue detection accuracy.
Only the Wathiq and Ambudkar study discussed the process-
ing time of one facial image and ran about 3.33 times slower
than REDE proposed in this study. The calculation of REDE
was also fast enough to support the real-time fatigue moni-
toring since the video capturing technology used in this study
generated 30 images per second.

4. Conclusions and Future Directions

The facial image-based fatigue detection system REDE con-
sists of three major steps. Firstly, the regions of two eyes
and one mouth were extracted from the facial image. Sec-
ondly, the LBP algorithm was used to extract features from

the three regions, and the principal components were calcu-
lated using the PCA algorithm. Lastly, the SVM model with
the RBF kernel was trained to do the classification. REDE
outperformed the four existing fatigue detection algorithms
and ran fast enough to do the real-time fatigue monitoring.

We will focus on improving the first two steps of REDE in
the future. To facilitate the fatigue detection community, we
also released the images for feature extractions in this study
at http://www.healthinformaticslab.org/supp/resources.php.
The readers and fatigue detection researchers may also
directly use our LBP feature matrix extracted from the images
for classification model refining.

Data Availability

To further facilitate the research of fatigue detection,
the raw data and the feature matrix were also released at
http://www.healthinformaticslab.org/supp/resources.php.
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