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The health condition of rolling-element bearings is important for machine performance and operating safety. Due to external
interferences, the impulse-related fault information is always buried in the raw vibration signal. To solve this problem, a hybrid
time-frequency analysis method combining ensemble local mean decomposition (ELMD) and the Teager-Kaiser energy operator
(TKEO) is proposed for the fault diagnosis of high-speed train bearings. The ELMD method is a significant improvement over
local mean decomposition (LMD) for addressing the mode-mixing problem. The TKEO method is effective for separating
amplitude-modulated (AM) and frequency-modulated (FM) signals from a raw signal. But it is only valid for monocomponent
AM-FM signals. The proposed time-frequency method integrates the advantages of ELMD and TKEO to detect localized defects
in rolling-element bearings. First, a raw signal is decomposed into an ensemble of PFs and a residual component using ELMD.
A novel sensitive parameter (SP) is introduced to select the sensitive PF that contains the most fault-related information.
Subsequently, the TKEO is applied to extract both the amplitude and frequency modulations from the selected PF. The
experimental results of rolling element and outer race fault signals confirmed that the proposed method could effectively recover
fault information from raw signals contaminated by strong noise and other interferences.

1. Introduction

Rolling-element bearing is a critical component of rotating
machinery. The malfunction of a rolling-element bearing
can cause a decrease in performance or even catastrophic
failure with huge economic losses. To monitor the health
condition and detect localized defects in a rolling-element
bearing, many signal-processing techniques have been pro-
posed and developed in recent years. As one of the most
widely-used methods for vibration signal analysis, time-
frequency methods, including wavelet transform [1, 2], time-
frequency distribution [3, 4], time series model [5, 6], match-
ing pursuit [7, 8], and empirical mode decomposition (EMD)
[9], have been explored as powerful tools for fault detection
and diagnosis of rolling-element bearings.

Local mean decomposition (LMD), originally proposed
by Smith [10] in 2005, is a nonparametric, data-driven
time-frequency decomposition method. It adaptively decom-
poses any complicated multicomponent signal into a series of
product functions (PFs), each of which is a product of an

envelope signal and a purely frequency-modulated (FM)
signal. In addition, the instantaneous amplitude and fre-
quency of each PF can be calculated directly according to
the envelope and purely FM signals, respectively. Based on
its inherent advantages, LMD is effective for analysing any
complicated signal with time-varying frequency, phase, and
energy. Most importantly, compared with EMD, the results
of LMD are physically plausible, making the conclusions
drawn from LMD relevant for various applications. Because
of its simple implementation and adequate ability to reveal
a signal’s nonstationary and nonlinearity information, LMD
is widely used as a time-frequency analysis tool for fault diag-
nosis in rotating machinery [11–15]. However, the mode-
mixing phenomenon has a significant influence on the
results. It causes LMD to produce different scale oscillations
in a single PF or similar scale oscillations in multiple PFs,
resulting in some PFs with no physical meaning in the
decomposition results. To overcome this drawback of LMD,
Yang et al. [16] proposed a noise-assisted time-frequency
analysis method called ensemble LMD (ELMD) in 2005.
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With ELMD, an ensemble of white noise is added to the orig-
inal signal, and then the LMD method is used to decompose
each of these signals into a series of separate PFs. The final
PFs are calculated by averaging the corresponding PFs
derived by LMD. The ELMD method can adaptively filter
local oscillations into appropriate PFs through the uniform
filtering characteristics of white noise, reducing the mode-
mixing phenomenon and achieving better decomposition
performance compared with LMD. Owing to this significant
improvement, ELMD has a diverse range of applications in
rotating machinery such as bearing [17, 18] and gear fault
diagnoses [19]. However, after performing ELMD on a vibra-
tion signal, the added white noise in the raw signal pollutes
the PFs and residual signal according to the filter bank struc-
ture of LMD. Thus, further procedure is required to precisely
and effectively detect the fault characteristic information of
rolling-element bearings.

The Teager-Kaiser energy operator (TKEO) was origi-
nally proposed by Kaiser in 1990 [20] to measure the energy
of a mechanical process, based entirely on the local differen-
tial operation without involving any transform. It was
designed to extract the amplitude-modulated (AM) and
frequency-modulated (FM) signals from a monocomponent
AM-FM signal. With its localization property and low com-
putational complexity, the TKEO method has been widely
used in machinery fault diagnosis. Liang and Bozchalooi
[21] applied the TKEO to extract both the amplitude and fre-
quency modulations of the vibration signals measured from
mechanical systems and validated its effectiveness using both
simulated and experimental data. Tran et al. [22] proposed a
new approach to valve fault diagnosis of reciprocating com-
pressor using three widely used signals involving vibration,
pressure, and current of induction motor using TKEO and
deep belief networks. Studies on the use of the TKEO tech-
nique for signal and image analysis are reviewed herein
[23]. It should be noted that TKEO is only valid for mono-
component AM-FM signals. Thus, TKEO always fails to
modulate the fault-related information when the analysed
signal contains multiple signal components showing modu-
lation phenomenon.

In this paper, a novel hybrid time-frequency analysis
method based on ELMD and TKEO is proposed for fault
diagnosis in rolling-element bearings. It integrates the merits
of ELMD and TKEO to detect localized defects in rolling-
element bearings. First, the ELMD method is applied to
decompose a multicomponent raw signal measured from
faulty rolling-element bearings into a series of PFs, where
each PF was a monocomponent AM-FM signal, namely, a
product of an envelope signal and a purely FM signal. Sec-
ond, a sensitive parameter (SP) based on correlated kurtosis
(SK) and Pearson’s correlation coefficient (PCC) is employed
to select the PF component that contains the most character-
istic of the fault information. Finally, the TKEO is applied to
extract both the amplitude and frequency modulations from
the selected PF. Furthermore, the spectrum analysis is used to
explore the fault information according to the appearance of
the fault characteristic frequencies. To highlight the superior-
ity of the proposed method, some comparisons with two
popular signal processing methods including variational

mode decomposition [24] and minimum entropy deconvolu-
tion (MED) [25, 26] were conducted in the analysis of exper-
imental fault signals.

The rest of this paper is organized as follows. Section 2
briefly introduces the ELMD and TKEO techniques. Section
3 details the proposed hybrid time-frequency analysis
method. Section 4 describes the application of the proposed
technique to fault diagnosis in rolling elements. Furthermore,
comparisons with VMD and MED are conducted in this sec-
tion. Concluding remarks are presented in Section 5. The
introduction should be succinct, with no subheadings. Lim-
ited figures may be included only if they are truly introduc-
tory and contain no new results.

2. Background Theories

2.1. The Theory of ELMD

2.1.1. LMD. LMD is an adaptive, nonparametric time-
frequency analysis method pioneered by Smith [10] in
2005. This method decomposes a raw signal into a series of
PFs using the local oscillations of the signal itself. Meanwhile,
the instantaneous amplitude and frequency of each PF can be
estimated from the corresponding amplitude envelope and
FM signals, respectively. The LMD procedure is summarized
briefly as follows [10].

Step 1. Find the local extreme points ni i = 1, 2,… ,M of the
targeted signal x t , where M is the number of extreme
points. Then, calculate the local mean value and local enve-
lope magnitude of two successive extreme points as

mi =
ni + ni+1

2
,

ai =
ni − ni+1

2

1

Step 2.Use the moving average algorithm to smooth the local
mean values and local amplitudes, and obtain a varying con-
tinuous local mean function m1,1 t and a varying continu-
ous local amplitude function a1,1 t , respectively.

Step 3. Subtract the local mean function from the original
signal x t and obtain

h1,1 t = x t −m1,1 t , 2

where h1,1 t is the residual signal. Then, h1,1 t is divided
by the amplitude function a1,1 t , resulting in

s1,1 t =
h1,1 t
a1,1 t

3

Step 4. Set s1,1 t as the target signal and repeat steps
(1–3) until a purely FM signal h1,n t is obtained. This is
expressed as
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h1,1 t = x t −m1,1 t ,

h1,2 t = s1,1 t −m1,2 t ,

⋱

h1,n t = s1, n−1 t −m1,n t ,

4

where

s1,1 t =
h1,1 t
a1,1 t

,

s1,2 t =
h1,2 t
a1,2 t

,

⋱

s1,n t =
h1,n t
a1,n t

5

Step 5. The envelope signal is calculated as

a1 t =
n

i=1
a1,i t , 6

and the first PF is given as

PF1 t = a1 t s1,n t 7

The corresponding instantaneous phase ϕ1 t and
instantaneous frequency f1 t are calculated as

ϕ1 t = arccos s1,n t ,

f 1 t =
f sdϕ1 t
2πdt

8

Step 6. Subtract the derived PF1 t from the original signal
x t , obtaining the signal u1 t . Then, regard set u1 t as
the new target signal and repeat the steps (1–5) until uJ t
is a constant or contains no oscillations:

u1 t = x t − PF1 t ,

u2 t = u1 t − PF2 t ,

⋱

uJ t = uJ−1 t − PFJ−1 t

9

Finally, the original signal can be reconstructed as

x t = 〠
J

j=1
PFj t + uJ t 10

2.1.2. ELMD. LMD is essentially a filter bank with a self-
adaptive bandwidth and centre frequency; however, it is sus-
ceptible to mode mixing. The results of LMD often contain
pseudo-PFs with no physical meaning, which confuse
researchers and engineers in a wide variety of fields. To

improve LMD, ELMD was proposed by Yang et al. [16] to
mitigate the mode-mixing problem by adding white noise
to the original signal. The final ELMD PFs are calculated by
taking the ensemble means of the corresponding PFs decom-
posed from the original signal plus the Gaussian white noise
in each trial. A flowchart of the ELMD algorithm is illustrated
in Figure 1:

Step 1. For any trial index i i = 1, 2,… , I , add the white
noise βni t to the original signal x t to generate the pol-
luted signal xi t :

xi t = x t + βni t , 11

where ni t denotes the white noise with zero mean and unit
variance, β is the amplitude of the added white noise, and I is
the trial number.

Step 2. Decompose the polluted signal xi t using the LMD
algorithm:

xi t = 〠
J

j=1
PFi,j t + ui t , 12

where PFi,j t is the jth PF of the ith trial, ui t denotes the
residual of the ith trial, and J is the number of PFs.

Step 3. Calculate the ensemble means of the corresponding
decomposed PFs:

PFj t =
1
I
〠
I

j=1
PFi,j t , 13

where PFj t is the jth PF for j = 1, 2,… , J .

2.2. The Theory of TKEO. The Teager-Kaiser energy operator
(TKEO) is an attractive demodulation method proposed by
Kaiser [20]. It is an alternative for obtaining the amplitude-
modulated (AM) signal and frequency-modulated (FM) sig-
nal from the vibration signal. For a continuous time signal
x t , the TKEO is defined as

ψ x t =
dx t
dt

2
− x t

d2x t
dt2

14

Thus, the TKEO is defined in discrete format by [21]

ψ x n = x n 2 − x n + 1 x n − 1 15

As a signal demodulation method, TKEO offers superior
performance in recovering the time-frequency information
of a vibration signal and provides a vital approach for fault
diagnosis of rolling-element bearings. Note that the TKEO
method is only applicable to monocomponent AM-FM sig-
nals. This shortcoming greatly limits the wide application
of TKEO. For a multicomponent signal, a decomposition or
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modulated procedure is always necessary before the imple-
mentation of TKEO.

3. Time-Frequency Analysis Method Based on
ELMD and TKEO

3.1. Selection of Sensitive PF. The ELMD method can yield
better decomposition performance than the classical LMD
method in terms of overcoming the mode-mixing problem
and reducing the pseudo modes. However, the existing noise
still remains in the PFs according to the filter bank structure
of LMD. Thus, to achieve a precise fault detection result, it is
necessary to carefully select the PF component. Most of the
studies conducted so far ignored systematic selection of most
effective PFs for bearing diagnosis. Kurtosis is sensitive to the
impacts induced by localized defects and thus is widely cho-
sen to select the sensitive PF containing the most fault-related
information. But it is also sensitive to random impulses
caused by external interferences on the bearing housing. Cor-
related kurtosis [24] is another index for measuring the
intensity of periodic impulses. The first-shift correlated kur-
tosis of the jth PF is defined as follows:

CKj =
∑N

n=1 PFj n PFj n −mT 2

∑N
n=1PFj

2 n
2 , 16

where T is the fault period of interest and is calculated as
follows:

T =
Fs
f m

, 17

where f m and Fs are the fault frequency and the sampling
frequency, respectively. When the fault period T ,

calculated according to Equation (17), is a fractional num-
ber, the resampling technique is necessary before the iter-
ative procedure can be implemented [26]. Compared to
kurtosis, correlated kurtosis remains unaffected by the ran-
dom impulses and is more robust and more suitable for
detecting the fault-related information contained in PFs.

Besides, Pearson’s correlation coefficient (PCC) is widely
used to select the sensitive PF. It measures the consistence
between the recovered signal and the reference signal.
The PCCj j = 1, 2,… , J between the jth PF of the raw
signal x n and the raw signal x n is defined as

PCCj =
x − x T PFj − PFj

x − x · PFj − PFj

, 18

where · represents the root-mean-square operator and x
and PFj represent the mean values of x and PFj, respec-
tively. Note that the value of PCCj is limited in [0, 1].
The sensitive parameter (SP) of the jth PF is defined as

SPj = PCCj · f j, 19

where

f j =
CKj −min CK

max CK −min CK
20

To avoid extreme value of CK, the min–max normali-
zation technique is utilized to normalizing the function f j
ranging from 0 to 1. Hence, after calculating using Equa-
tion (20), the PF with maximum correlation value will
be normalized to a value of 1 and the PF with the least
correlation is normalized to a value of 0. Only the first 6
PFs from the decomposition are considered in this study
as the remaining PFs are typically residual or trends and
do not contain bearing-related fault information.

3.2. Time-Frequency Analysis Method for Fault Detection of
Rolling-Element Bearings. A novel time-frequency method
combing the capabilities of ELMD and TKEO, automatically
decomposing a nonstationary signal into PFs and extracting
the AM signal, respectively, is proposed for fault detection
and diagnosis of rolling-element bearings. In the proposed
method, a series of PFs is obtained using ELMD and the PF
that contains the most fault-related information is selected
according to the SP value. Then, the TKEO method is
adopted to obtain the amplitude and frequency modulations
from the selected PF. The scheme of the proposed method for
fault diagnosis of rolling-element bearings is illustrated in
Figure 2.

Step 1. Decompose original vibration signal into a series of
PFs using ELMD.

Step 2.Calculate the SP value of each PF, and select a sensitive
PF based on the SP value.

Vibration signal x(t) 

Initialize the ensemble number I and
the added noise amplitude 𝛽

Add white noise 𝛽ni(t) to the original
signal x(t):

Decompose xi(t) using LMD method
and obtain a series of PFs: {PF i,j (t)}

Calculate ensemble mean:

Output the final PFs

i = 1
i = i + 1

Yes

No
i < l

xi (t) = x (t) + 𝛽ni (t)

PFj (t) = 1 Σj=1PFi,j (t)I
I

Figure 1: The flowchart of the ELMD method.
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Step 3. Extract the amplitude and frequency modulations
from the selected PF using TKEO.

Step 4. Detect faults using spectrum analysis.

4. Experiment Results

To demonstrate the effectiveness of the proposed time-
frequency analysis method, high-speed train bearing fault
signals measured in a bearing test rig are analysed in this sec-
tion. The experimental test rig and the investigated faulty
bearing are presented in Figure 3. Two accelerometer sensors
mounted on the shaft box were used to collect vibration sig-
nals from the faulty bearings. The defects on the rolling ele-
ment and outer race were implanted artificially with a
width of 0.2mm and a depth of 0.3mm. The rolling element
number (n), rolling element diameter (d), rolling element
pitch diameter (D), and load angle (ϕ) were 17, 26.691mm,
187.205mm, and 12.083 degree, respectively. The four types
of bearing characteristic frequency, namely, bearing pass fre-
quency of outer race (BPFO), bearing pass frequency of inner
race (BPFI), ball spin frequency (BSF), and fundamental
train frequency (FTF), can be calculated as follows [27]:

BPFO = nf r
2

1 −
d
D

cos ϕ ,

BPFI =
nf r
2

1 +
d
D

cos ϕ ,

BSF =
D
2d

1 −
d
D

cos ϕ
2
,

FTF = f r
2

1 − d
D

cos ϕ ,

21

where f r is the shaft speed. The sampling frequency and sig-
nal length were 5120Hz and 8192, respectively. In addition,
in the experimental analysis, the amplitude of the added
white noise β and the trial number I of the ELMD were set
as 0.1 and 100, respectively.

4.1. Bearing with a Rolling Element Fault at Rotation Speed of
818 rpm. The rolling element fault signal was measured at a
shaft rotational speed of 818 rpm, and the fault characteristic
frequency BSF and rotational frequency were 46.9Hz and
13.6Hz, respectively. Figure 4 presents the fault signal of roll-
ing element and its envelope spectrum, respectively. The BSF
and its harmonics are completely buried in the envelope
spectrum, and no useful information can be identified to
detect the localized defect on the rolling element, as shown
in Figure 4(b).

Figure 5 displays the decomposition results of the rolling
element signal obtained using ELMD. The raw signal is
decomposed into seven PFs and one residual component.
SP is employed to quantify the impulse amplitude of each
PF, as illustrated in Table 1. The first PF has the largest SP
value, indicating that it contains the most fault-related infor-
mation. Figures 6(a) and 6(b) display the resulting signal of
the selected PF1 obtained using TKEO, along with the corre-
sponding TKEO spectrum. It should be noted that the char-
acteristic frequency BSF and its first three harmonics can be

Signal decomposition
using ELMD

Extract the AM signal and FM
signal using TKEO

Fault detection using
spectrum analysis

Selection PF based on
SP value

PF1
PF2

PFn

Rolling element bearings
with sensors

Figure 2: Flowchart of the proposed method.

(a) (b)

(c) (d)

Figure 3: Experimental equipment and faulty elements of the tested
high-speed train bearings: (a) test rig; (b) location of accelerometer
sensor; (c) localized defect on rolling element; (d) localized defect on
outer race.
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clearly identified from the TKEO spectrum of the selected
PF1, which immediately indicates a localized defect on the
rolling element.

To further validate the effectiveness of the proposed
method, VMD [24] and MED [25, 26] are utilized to com-
pare with the proposed method by processing the rolling-
element bearing fault signal. VMD is a newly proposed time-
frequency analysis method, and a nonrecursion decomposi-
tion procedure is designed to decompose themulticomponent
signal into several finite bandwidth single components (IMF)
with sparse features. MED is a classical deconvolution
method for recovering the fault-related impulses from the
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Figure 4: Rolling element fault signal and its envelope spectrum: (a)
raw signal; (b) envelope spectrum.
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Figure 5: Decomposition results of the rolling element fault signal
obtained using ELMD.

Table 1: SP values of the first six PFs obtained using ELMD.

Mode PF1 PF2 PF3 PF4 PF5 PF6
SP 0.4182 0.1152 0.1289 0.0764 0 0.0185
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Figure 6: Results of the selected PF1 obtained using TKEO: (a)
time-domain signal; (b) TKEO spectrum.

−20
0

20
IM

F 1

−20
0

20

IM
F 2

−20
0

20

IM
F 3

−20
0

20

IM
F 4

−20
0

20

IM
F 5

−20
0

20

IM
F 6

−10
0

10

IM
F 7

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

−10
0

10

IM
F 8

Figure 7: Decomposition results of the rolling element fault signal
obtained using VMD.
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raw vibration signal. The inverse filter of MED is iteratively
solved by maximizing the kurtosis of the filtered signal.
Figure 7 shows the decomposition results of VMD by set-
ting the number of the IMFs as 8. According to the SP value
of each IMF as listed in Table 2, the fourth IMF is selected
as the sensitive signal component to further identify the
fault information. Figure 8 displays the envelope signal
and envelope spectrum of the selected IMF4, respectively.
It shows that only the fault frequency can be found and
its harmonics are submersed in the envelope spectrum, as
displayed in Figure 8(b). The results of MED are presented
in Figure 9. The filter length and number of iterations are
40 and 100, respectively. It shows that the large impulses
have great influence on the performance of MED, as shown
in Figure 9(a), and the envelope spectrum of the filtered sig-
nal provides no information about the localized defect on

the rolling element. In conclusion, the proposed method
has better performance in comparison with VMD and
MED in this case study.

4.2. Bearing with an Outer Race Fault at Rotation Speed of
602 rpm. The outer race fault signal measured at a rotation
speed of 602 rpm further validated the effectiveness of the
proposed method. The fault characteristic frequency PBFO
is 73.4Hz. The raw outer race fault signal and its envelope
spectrum are plotted in Figure 10, respectively. Note that
the envelope spectrum is dominated by the interference fre-
quencies. Seven PFs and one residual signal decomposed by
ELMD are presented in Figure 11. Table 3 lists the SP values
of the first six PFs, from which the first PF is selected.
Figures 12(a) and 12(b) show the resultant signal of the
selected PF1 obtained using TKEO and the corresponding

Table 2: SP values of IMFs obtained using VMD.

Mode IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

SP 0.1017 0.0544 0 0.4228 0.2076 0.0227 0.0785 0.0480
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Figure 8: Results of the selected IMF5 obtained using VMD: (a) envelope signal; (b) envelope spectrum.
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Figure 9: Results of MED: (a) filtered signal; (b) envelope spectrum of the filtered signal.
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Figure 10: Outer race fault signal and its envelope spectrum: (a) raw signal; (b) envelope spectrum.
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TKEO spectrum, respectively. The BPFO (73.4Hz) and its
first four harmonics are easily identified in the TKEO spec-
trum of the selected PF1, as shown in Figure 12(b), indicating

the effectiveness of the proposed time-frequency method in
this analysis.

Figure 13 presents the IMF components of VMD, and
Table 4 lists the SP of each IMF shown in Figure 13. The fifth
PF has the largest SP value, indicating that it contains
the most fault-related information. The envelope signal of
IMF5 and the responding envelope spectrum are displayed
in Figure 14, respectively. It shows that only the amplitude
of BPFO, 2BPFO, and 3BPFO can be easily identified from
the envelope spectrum and the amplitudes of 4BPFO and
5BPFO are mixed, as shown in Figure 14(b). Figure 15
presents the results obtained by MED. It shows that the
MED prefers to deconvolve a single impulse, and only
the amplitudes of 2BPFO and 3BPFO can be found in
the envelope spectrum of the filtered signal, as shown in
Figure 15(b). Again, the proposed method outperforms
VMD and MED.

4.3. Bearing with an Outer Race Fault at Rotation Speed of
884 rpm. In the last experimental case, we analyse the outer
race fault signal measured at a rotation speed of 884 rpm.
The bearing pass frequency of the outer race (BPFO) is
107.9Hz. The measured outer race fault signal and its enve-
lope spectrum are plotted in Figure 16. It shows that, because
of the existing strong noise, the BPFO amplitudes and its har-
monics are buried in the envelope spectrum of the raw vibra-
tion signal. Figure 17 displays the decomposition results of
the raw signal obtained using ELMD. It shows that the raw
signal is decomposed into eight PFs and one residual compo-
nent. According to the SP values listed in Table 5, the first PF
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Figure 11: Decomposition results of the outer race fault signal
obtained using ELMD.

Table 3: SP values of the first six PFs obtained using ELMD.

Mode PF1 PF2 PF3 PF4 PF5 PF6
SP 0.4403 0.1914 0.0538 0.1725 0.0873 0
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Figure 12: Results of the selected PF1 obtained using TKEO: (a)
time-domain signal; (b) TKEO spectrum.
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Figure 13: Decomposition results of the rolling element fault signal
obtained using VMD.
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is selected as the sensitive signal. Figures 18(a) and 18(b)
display the resulting signal of the selected PF1 obtained using
TKEO, along with the corresponding TKEO spectrum. The
characteristic frequency of BPFO and its first harmonic
(2BPFO) can be easily recognized from the envelope spec-
trum shown in Figure 18(b). In conclusion, this case study
confirms the effectiveness of the proposed hybrid time-
frequency method.

Appling VMD to decompose the outer race fault signal,
the results are presented in Figure 19. Table 6 lists the SP
values of the IMF components, and the sixth IMF is
selected as the sensitive signal component. Figure 20 dis-
plays the envelope signal and envelope spectrum of IMF6
obtained by VMD, respectively. The amplitudes of BPFO
and 2BPFO are noticeable in the envelope spectrum shown

in Figure 20(b). However, the amplitudes of the BPFO and
2BPFO are notably larger in the envelope spectrum obtained
by the proposed method (Figure 18(b)) than in that deter-
mined by VMD (Figure 20(b)), indicating the superiority of
the proposed method over the VMD in this case. The results
obtained by MED are presented in Figure 21. Again, the
deconvolution method fails to deconvolve the fault-related
signal component and the envelope spectrum of the filtered
signal contained on fault information.

5. Conclusions

In this paper, a hybrid time-frequency analysis method based
on ELMD and TKEO was proposed for the fault diagnosis
of rolling-element bearings. The ELMD method, as an

Table 4: SP values of IMFs obtained using VMD.

Mode IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

SP 0.121 0 0.0902 0.1205 0.3514 0.1388 0.1422 0.0500
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Figure 14: Results of the selected IMF5 obtained using VMD: (a) envelope signal; (b) envelope spectrum.
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Figure 15: Results of MED: (a) filtered signal; (b) envelope spectrum of the filtered signal.
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Figure 16: Outer race fault signal and its envelope spectrum: (a) raw signal; (b) envelope spectrum.
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improved version of the original LMD, can effectively alle-
viate the mode-mixing phenomenon by adding an ensem-
ble of Gaussian white noise to the raw signal. The TKEO

method is a powerful tool for extracting the AM and
FM signals from a monocomponent AM-FM signal and
is well adapted for enhancing the fault information of
rotation machinery. The proposed time-frequency analysis
method integrates the merits of ELMD and TKEO and
involves two steps. First, the raw signal is decomposed
into a series of PFs by using ELMD, and the PF that con-
tains the most fault-related information is selected based
on the SP value. Subsequently, TKEO is applied to extract
the fault signal contained in the selected sensitive PF. The
rolling element and the outer race fault signals were inves-
tigated to verify the effectiveness of the proposed time-
frequency method. The experimental results confirmed
that the proposed method could effectively recover the
fault information from a raw signal contaminated with
strong noise and other interferences. The comparison
analysis with VMD and MED further confirmed the supe-
riority of the proposed method.

The next step of this research will shift toward applying
the proposed method to the fault diagnosis of other rotating
machinery, such as gearing and motor. Furthermore, with
the rapid development in the hardware and fault detection
technology, the proposed method can compare with an
increasing number of state-of-the-art techniques.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Table 5: SP values of the first six PFs obtained using ELMD.

Mode PF1 PF2 PF3 PF4 PF5 PF6
SP 0.3800 0.1623 0 0.1000 0.1104 0.0113
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Figure 18: Results of the selected PF1 obtained using TKEO: (a)
time-domain signal; (b) TKEO spectrum.
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Figure 19: Decomposition results of the rolling element fault signal
obtained using VMD.
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obtained using ELMD.
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