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This paper presents a multichannel functional continuous-wave near-infrared spectroscopy (fNIRS) system, which collects data
under a dual-level light intensity mode to optimize SNR for channels with multiple source-detector separations. This system is
applied to classify different cortical activation states of the prefrontal cortex (PFC). Mental arithmetic, digit span, semantic task,
and rest state were selected as four mental tasks. A deep forest algorithm is employed to achieve high classification accuracy. By
employing multigrained scanning to fNIRS data, this system can extract the structural features and result in higher performance.
The proposed system with proper optimization can achieve 86.9% accuracy on the self-built dataset, which is the highest result

compared to the existing systems.

1. Introduction

Brain monitoring has been applied to study human brain
activity and explore the brain-computer interfaces in recent
years. There are many different types of noninvasive brain
activity monitoring methods. Traditional techniques such as
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) are expensive and unsuitable
for continuous daily brain monitoring. Therefore, some por-
table and wearable neuroimaging techniques became more
popular choices, especially the functional near-infrared
spectroscopy (fNIRS).

fNIRS is an optical technique based on the attenuation of
near-infrared light that enables us to monitor hemodynamic
and metabolic changes during cortical activation [1]. As a
noninvasive technique with a balanced spatial-temporal
resolution, fNIRS has drawn increasing attention as a power-
ful alternative or supplement to traditional neuroimaging
techniques over the past years [2]. According to measur-
ing changes in the concentrations of tissue chromophores,

mainly oxy- and deoxyhemoglobin, fNIRS can be applied to
assess functional brain activities in different mental tasks.

Since the brain-computer interface (BCI) technology
paves a new way to interact with machines through brain
activity, it draws increased research efforts. As a result, novel
fNIRS and hybrid {NIRS-EEG systems have been proposed to
develop BCI applications with novel analysis algorithms and
signal processing techniques [3-7].

A very attractive brain region for BCI application is the
prefrontal cortex (PFC), which provides high-quality signals
without the interference of the hair and becomes a suitable
and popular measurement region in fNIRS. It is known that
the PFC is involved in various executive functions, working
memory, and semantic tasks [8].

Nowadays, there are many commercial fNIRS equipment
in the market for researchers. Most of them provide excellent
performance on brain activation detection. But all of these
systems are either very complex not suitable for portability
or very expensive not suitable for larger scale research study.
To implement an fNIRS system for collecting data in the
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FIGURE 1: Overall system diagram of proposed NIRS system.

PEC, there are several light-emitting diode (LED) sources
and detectors located on the brain region of interest to obtain
optical channels. In previous studies, some systems use a
single source-detector separation distance [9-12], and some
systems use multiple source-detector separation distances
[13, 14]. Since detected light intensity varies considerably
not only with source-detector separation distance but also
with light intensity emitted by light source and tissue optical
characteristics, it is necessary to do a careful channel by chan-
nel calibration to improve the signal quality for channels with
different source-detector separation distances, which means
the outputs of all detectors have high signal-to-noise ratio
(SNR) rather than saturation.

Calibration should be supported by a hardware which is
usually expensive. There are two ways to do the traditional
self-adaptive calibration. One is adjusting the emitted source
light intensity to enable the detected light intensity achieving
the input range of the detect circuit. The other way is adjust-
ing the light detection gain, sensitivity of the light sensor, and
related front-end circuit to make the output signal in a
proper range of an analog-digital converter (ADC). Besides
the complicity of the fNIRS hardware, the adaptive procedure
for calibration in software is also complicated, especially for
multiple source-detector separation layout configuration
which is more flexible for specific brain monitors. What is
more, the complicated NIRS system’s size and weight could
not be that compact for wearable applications, and its expen-
sive price also limits the large-scale use of fNIRS.

Building a robust model to classify trial data is also
essential to the fNIRS-BCI system. Previous studies also ver-
ify the feasibility of classifying several mental tasks in the PFC
(e.g., mental arithmetic). So far, there are lots of binary clas-
sification models and some of them can achieve high accu-
racy, even on a single trial [4, 6, 7]. However, the multiclass
classification of mental tasks in the PFC has not been well
studied yet. Different cortical activities show spatial differ-

ences in NIRS patterns, so using a multitask classification
algorithm based on the multichannel system is promising
for more applications in fNIRS-BCL

Taking the above concerns into consideration, this paper
proposes a dual-level light intensity method to provide more
useful channels and decrease the requirement of hardware,
which makes our fNIRS system more suitable for portability,
as it relaxes the need to calibrate the signal channel by chan-
nel. Then, we conduct four different mental tasks to activate
PFC with our multichannel NIRS system and then employ a
deep forest algorithm to classify four cortical activation
states. This paper also compares the performances when tak-
ing different chromophore concentrations as features and
concludes the optimal parameters in feature extraction and
model adjustment to achieve high accuracy.

2. System Design and Experimental Paradigm

2.1. The Hardware of fNIRS System. The overall system block
diagram is shown in Figure 1. The proposed system consists
of a 6-channel light source module, an 8-channel photodiode
(PD) light detector module, and a field programmable gate
array- (FPGA-) based controller with a built-in Wi-Fi mod-
ule. Light source probes and light detector probes are placed
on the forehead for light emitting and collecting, respectively.

In the consideration of measured signal sensitivity and
the optional light sources in the commercial market, the
735 and 850 nm wavelengths have been selected in the system
[15]. The 6-channel light source module consists of 6 double
wavelength optical sources (two LEDs in one package,
735nm and 850 nm, Ushio) and its driving circuit which
utilizes a voltage buffer and a triode-based voltage-current
converter to convert the output of digital-to-analog con-
verters (DAC, AD5542A) to the corresponding LED driving
current without affecting the function of the DAC. In order
to implement the system with high adaptability of various
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FIGURE 2: The layout of sources and detectors.

experiments and subjects, each wavelength light intensity
could be adjusted from 0 mA to 50 mA with a 0.78 yA step.
The light-emitting intensity should be carefully chosen to
realize a better final signal during testing based on different
experiment conditions.

The light-receiving circuit generally magnifies the pyA-
level current detected by a photodiode and digitizes the
amplified signal for the convenience of following data trans-
mission and signal processing. The amplification circuit has
two stages. The first stage is a transimpedance amplifier with
a gain of 5000. The second stage is an active low-pass filter
with a 100 kHz cutoft frequency of antialiasing, followed by
a 24-bit ADC.

The controller maintains the sequences of light driving
and receiving with the multithread capability of FPGA
(ZYNQ?7000) and encodes data received from the ADC for
channel identification and data compression. The wireless
communication between the system and the terminal device
is implemented by the embedded transceiver in TT CC3220SF
SoC for further data processing and classification.

Under the coordination of the controller, there are 48
channels working in time-division multiple access (TDMA)
modulation at the switching rate of 43.8 Hz, by emitting each
light source and each wavelength LED one by one at a certain
intensity. A flexible probe distribution plate is designed to
hold the light source and detector probes. The layout pattern
of the light source and light detector probes placed on the
forehead could be custom based on the requirement of a
special experiment to locate the observation points on
the relative cortex region. A layout used in our BCI task
classification experiment with multiple source and detector
separations is shown in Figure 2.

2.2. Data Acquisition with Dual-Level Light Intensity. Due to
the light highly scattering characteristic in the brain tissue,
photons emitted by the light source will be scattered and
reflected in the propagation path in the tissue, and some of
the photons will be reflected out of the brain and detected
by detectors. The light diffuse reflection transmission path
formed by the detected photons in the brain tissue between
the source and detector is banana-like shaped. And the light
coming out from the brain is attenuated as the light is partly
absorbed by the chromophores along the path [16, 17]. The

fNIRS system measures the light intensity through the
human tissue to obtain the light attenuation change, so as
to measure the concentration changes of oxyhemoglobin
(HbO,) and deoxyhemoglobin (Hb) based on the differential
form of the modified Beer-Lambert Law (dIMBLL) [18-20]:

I
AA =1In 482 = [ A
det,1

oo (1)

where AA is the change of light attenuation, 4., means the
detected intensity values of two different states of the tissue,
L is the total mean path length of detected photons, and y,
is the absorption coeflicient of the tissue.

For different kinds of tissues, the path length L is related
to the differential path length factor (DPF) and the source-
detector separation distance d:

L=DPF-d (2)

The value of the DPF could be obtained through experi-
ments or Monte Carlo simulations under different conditions
[21, 22]. In this work, we use 5.98 and 6.5 for 735 nm and
850 nm wavelength, respectively.

From Equation (1), we know that the attenuation change
is proportional to the change of absorption, which is the
weighted sum of the change in the concentration of HbO,
and Hb:

Apty = Ao, Ao, + X Acyy (3)

where the o weights are the absorption coefficients of differ-
ent chromophores.If the attenuation change is measured at
two wavelengths, the concentration changes can be calcu-
lated from the detected intensity values [20]:

A A A A A A
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Aty = I
%0, ¥Hb ~ YHbO, ¥Hb

(4)

Therefore, during the process of converting detected light
attenuation to concentration changes of chromophores, the
measurement for AA is crucial to the accuracy of final results.
As shown in Figure 3, the detected light intensity is related to
the emitted light intensity of the source and the distance of
source-detector separation. LED sources could work under
two different intensity levels, and two identical photodiode
detectors are marked as PD1 and PD2. The banana-like
shapes show different spatial distributions of NIR lights
in channels.

The total detected light intensity decreases when the
interval of source-detector separation increases. However,
the ratio of photons went through the white matter layer
increases, which means a gain in sensitivity [23, 24]. There-
fore, there is a trade-off between the detected light intensity
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different channels.

and the useful information in fNIRS signal. As shown in
Figure 3, if the emitted source light intensity is high, the
intensity of signals in channels with a long separation dis-
tance of source-detector will be improved, but the detector
of channels with a short distance might be saturated. On
the contrary, if the emitted source light intensity is low, the
quality of signals in the channels with a short distance of
source-detector separation will be good, but the channels
with a long distance might suffer from low achievable SNR.
Although the SNR of some channels is not good under some
conditions, it still contains effective information related to
the mental state.

To achieve the optimal SNR for each channel, the light
intensity of the LED source should be well chosen and be
adjusted for each detector with different distances. As shown
in Figure 2, there are different source-detector (SD) paths
among all channels; it is obvious that single-level light inten-
sity is unable to provide good SNR for long SD path and short
SD path channels at the same time. If we calibrate light inten-
sity for each channel and adjust the light intensity for each
detector with different distances, 8 kinds of configurations
will be used, and the temporal resolution will be decreased
by 8 times. In order to solve the confliction between signal
quality and temporal resolution, we propose a dual-level light
intensity data acquisition method to balance it, as shown in
Figure 4.

The single-level intensity mode is easy to realize. How-
ever, when the spaces and locations of source/detector pairs
are limited, it is impossible to be adjusted properly for all
measurement requirements and test objects. Since LED
sources are driven by DAC, the controller in this system is
able to adjust the light intensity. Therefore, the LED sources
could be coded to work at different light intensity levels by
software. Based on TDMA, each LED is switched on twice
with high-level intensity (Lv.H) and low-level intensity
(Lv.L), and all LEDs work in this mode and be switched on
one by one. The switching scheme will affect the detection
result, especially on the distortion between different chan-
nels. This is a common problem for time-division control
method in NIRS. If one switching cycle period (in our
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system, the cycle period is 1/43.8 Hz=0.023 sec) is much
shorter than the response time of the brain activity hemoglo-
bin signal (usually larger than 1 second), the effect could be
ignored. And, in our system, as there is only one DAC, the
light source can only be switched one by one. Each time we
change the output of DAC to decide the level of light inten-
sity, about five milliseconds later a stable output can be
obtained because of the setup time of circuits. If we change
the levels frequently, the total additional waiting time will
become unacceptable. The number of level change in
Figure 4 is one which costs the minimal additional time so
as to provide the smallest distortion in final signals. In our
system, we keep the light intensity exposure on the tissue
much weaker than the requirement of safety standard
(IEC62471).

The use of a dual-level light intensity method reduces the
dependence on hardware and makes the system to be wear-
able. Moreover, for channels with multiple source-detector
separations, there is always a better result for each channel
under two levels. The calibration is to make every channel
with good signal-to-noise ratio and no saturation. By using
the dual-level light intensity method in a multiple separated
source-detector configuration, the source-detector pair with
a short separation distance will not be saturated under low-
intensity emitted light, and for long separated source-
detector pair, a low noise signal will be detected under
high-intensity emitted light. The dual-level light intensity
method expands the tolerance of source-detector separation
and relaxes the need for a channel by channel calibration.
By combining them together, we could maximize the number
of effective channels in the limited area on the forehead. And
dual-level mode sacrifices less temporal resolution than any
other multilevel modes or channel by channel calibrations
under multiple source-detector separations.

Finally, we use the designed fNIRS system with a custom
layout pattern under dual-level light intensity mode to collect
the PFC activity data during experiment. The complete
output consists of 48 channels from all source-detector
combination, and its preprocessing procedure is shown in
Figure 5. After being applied to the dMBLL, the measured
signals are then filtered by a fifth-order Butterworth filter
with a passband of 0.01-1Hz, which prepares the data for
the following feature extraction.

2.3. Experimental Paradigm. The NIRS data were collected by
our continuous-wave NIRS system with two wavelengths
(735nm and 850nm). As shown in the right part of
Figure 1, the multichannel system consists of eight detectors
and six sources; all of them are attached to a special cap made
of silicone, providing good coupling to the scalp. The subject
needs to wear this cap during the experiment, and the setup is
shown in Figure 6.

During the experiment, the subject was asked to sit in a
chair and try to avoid head and body movements. Each trial
comprised a 30-second prerest period to get the baseline, 5
repetitions of the given task, and a 30-second postrest period.
Before each experiment, the instruction was displayed on the
screen, and the subject needs to respond as quickly and as
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three different tasks:

@)

(ii)

(iii)

Mental arithmetic (MA) task: the subject needs to
calculate the subtraction of a small prime number
(such as 13, in this case) from a random three-digit
number and continue to do the subtraction with suc-
cessive subtractions until the task period is finished.
During the MA task, only the first number is dis-
played on the screen.

Digit Span (DS) task: when it begins, a random six-
digit number is displayed on the screen digit by digit;
each digit display lasts for 0.1s with a 0.4 s interval.
After displaying the entire number, the subject needs
to recall the number in reverse order and then press
the button to continue the next number display
throughout the task period.

Semantic (SM) task: two Chinese nouns randomly
selected from the word database are displayed on
the screen. The subject needs to use these two words
to make a sentence and press the button to get the

next set of words to continue the same semantic task
until the task is finished.

The experimental paradigm and an example of screen
display are shown in Figure 7. All procedures are controlled
by the software automatically to guarantee a standard para-
digm, and the NIRS system collects data simultaneously.

3. Deep Forest for Mental Task Classification

Deep forest is a novel decision tree-based approach. By com-
bining multigrained scanning with a cascaded random forest,
deep forest is structurally aware and performs excellently
even on small-scale data by automatically setting the model.
Moreover, deep forest has fewer hyperparameters than tradi-
tional deep neural networks, and its performance is quite
robust to hyperparameter settings [25]. Compared to a stan-
dard decision tree algorithm, the deep forest approach is bet-
ter in a feature study as dimensionality reduction of raw data
is unnecessary. Secondly, the results of deep forest are more
accurate as the results are the decision of multiple classifica-
tions and regression trees. Besides, the deep forest approach
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has the ability of parallel computing which makes it very
effective.

As NIRS data are sampled at a high frequency with mul-
tiple channels, it will get high dimensions to deal with and
have a strong spatial-temporal structure. For future real-
time applications in the NIRS-BCI system, the classification
algorithm should be as fast and efficient as possible. Since
the running efficiency of deep forest is high and can be
improved further with optimized parallel implementation
[25], deep forest is a suitable and promising choice.

3.1. Feature Extraction with Multigrained Scanning. Accord-
ing to the experiment paradigm mentioned before, we need
to select and extract the features from the raw NIRS data in
advance. When selecting the concentration changes of
HbO,, Hb, and HbT (a summation of HbO, and Hb) as fea-
tures, there are 1315 raw features in each time sequence sam-
pled in a 30-second task period under a frequency of 43.8 Hz.
For a total of 48 channels with three variables, signals col-
lected under low-level light intensity (LI) and high-level light
intensity (HI) are concatenated into a 288 x 1315 matrix as a
raw instance of each task according to the given spatial
locations.

Taking the spatial-temporal characteristics of NIRS data
into account, we scan NIRS data in the style of processing
images; thus, we can extract structural features without image

reconstruction of cortical activity. As shown in Figure 8,
taking the dimensions of final feature vectors into account,
the raw instance (with 288 x 1315 raw features) is sliced by
sliding a w-dimensional window with a step of s; then,
((288—w)/s+1)((1315-w)/s+1) new small instances
will be produced, which belongs to the same task class as
raw instance. If we slide the window one feature by one fea-
ture, which means the step is one, the number of new small
instances is equal to (289 —w)(1316 —w) (e.g., if w =288,
sliding the window will produce 1028 small instances for
each raw instance).

All instances extracted from the same size of windows
will be used to train two different kinds of forest, a
completely-random tree forest A and a random forest B.
Since we have three tasks and a rest state, each class feature
will be generated with 4 dimensions and then concatenated
as transformed features. By using multiple sizes of sliding
windows, different feature vectors will be generated and pre-
pared for the following cascaded forest stage.

3.2. Cascaded Random Forest. Deep forest employs a cas-
caded structure, as illustrated in Figure 9, making each layer
receive and pass feature information. Since we use multi-
grained scanning, there will be several levels in each layer,
and each level is an ensemble of forests based on decision
trees. We use two completely random tree forests and two
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random forests for each level, and each forest will produce an
estimate of the class distribution.

After using three window sizes to conduct multigrained
scanning, three feature vectors in different dimensions are
produced, which will be used to train the three grades of
the cascaded random forest correspondingly. For each
instance, each tree will generate a distribution with the per-
centage of different classes that the training examples are
divided into. By averaging across all trees in the same forest,
each forest will produce the estimated result and form a 4-
dimension class vector. Class vectors of all forests are then
concatenated with the original feature vector of the corre-
sponding level to be inputted to the next level of the cascade.

After increasing a new level, the performance of the
whole cascade will be estimated on the validation set. This
procedure will be repeated until the validation performance
converges. If there is no performance gain, the training pro-
cedure will terminate automatically; then, the final prediction
will be generated by pooling the results of the four random
forests in the last layer.

4. Experimental Results and Discussion

To verify the proposed system and test the performance of
classifiers, we use a dataset collected by the experiments men-
tioned before from two average 23-year-old healthy men.

There are four classes labelled with MA, DS, SM, and REST,
and each class has 48 instances.

In order to determine the optimal models, we firstly com-
pared the performance of different kinds of chromophores
for feature selection with and without scanning. The fNIRS
signals of HbO, and Hb usually have a negative correlation
relationship during mental tasks, and the change of HbO,
is larger than Hb in actual cortical activation [26]. It is consis-
tent with the result that only taking HbO, as a feature can
achieve higher accuracy than Hb in Figure 10. This also
explains the poor performance of only taking HbT as raw fea-
tures, because it usually has the same tendency as HbO, but
with a smaller change. However, when the blood flow change
gives rise to similar trend changes in HbO, and Hb, HbT
could be an important feature to reflect facts. It is obviously
shown that taking the combination of all three kinds of
concentrations has a better performance than taking any
single kind of chromophores.

We then compared the performance of different light
intensity levels. After scanning the raw feature with the
window size ranging from 36 to 144, corresponding to 1/8
and 1/2 width, respectively, the results are shown in
Figure 11. Different scanning window sizes show different
data features from different time frequency domains. Some
of them contain more useful information for classification.
As a result, the classification accuracy varies with the
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scanning window size. Selecting data under dual-level light
intensity shows higher mean accuracy than a single high-
level or low-level intensity. This result is consistent with the
fact that dual-level light intensity provides more channel
information than single level under multiple source-
detector separation distance layout configuration, relaxes
the complexity of hardware, and also saves the temporal res-
olution by avoiding channel by channel calibration, which
are the two important aspects for wearable BCI equipment.
The data collected by the dual-level light intensity
method and all three kinds of chromophores were then
selected to construct the features. To compare some tradi-
tional machine learning classifiers employing support vector
machine (SVM), decision tree (DT), and k-nearest neigh-
bours (KNN) with the deep forest (DF) classifier, we per-
formed 4-fold cross-validation to evaluate the accuracy. As
shown in Figure 12, all models and datasets were evaluated
with different single-grained scanning sizes, and size 0 means
no scanning for the raw features. It is vividly shown that the
deep forest classifier has a better performance than other

TaBLE 1: Parameters of the deep forest algorithm in this work.

Symbol Value Remark

W1 36 Size of the first scanning window

W2 90 Size of the second scanning window

W3 126 Size of the third scanning window

S 36 Size of the scanning step

N_cls 4 Number of fNIRS data classes

N_mf 30 Number of trees in multigrained scanning forests
N_cf 101 Number of trees in cascade forests

F 0.2 Split fraction for cascade training set splitting

classifiers, especially without scanning to reconstruct the
raw features. Other classifiers also benefit a lot from the scan-
ning process with forests, which shows an improvement of
mean accuracy in Figure 12.

After a comparison among all these algorithms and sizes,
we selected three window sizes with the best performance in
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TaBLE 2: Comparison with fNIRS-based mental task classification.
Year/publication 2018 [3] 2015 [6] 2012 [7] This work
# of detector/source 6/6 18/15 3/10 8/6
Sample rate 13.3Hz 10Hz 31.25Hz 43.8Hz
Wireless Yes No No Yes
Weight Approx. 750 g Approx. 130Kg 20kg 450¢g
Portability Yes No No Yes
# of intensity level 1 1 1 2
# of mental state 3 3 3 4
Classifier sLDA LDA LDA DF
Accuracy 64.1% 71.7% 62.5% 86.9%

different size ranges to do multigrained scanning. The values
of hyperparameters in the deep forest algorithm are listed in
Table 1.

After training with optimal hyperparameters, the gener-
ated model was used to predict the test sets and achieved an
average accuracy of 86.95%, and the confusion matrixes of
two subjects are shown in Figure 13.

The results indicate that the rest state is easy to be identi-
fied as the right label, but the MA task, DS task, and SM task
might be predicted as the rest state by mistake when there are
no obvious fluctuations in the concentration. These three
tasks might also be confused with each other sometimes; it
is mainly because motion artifacts exist. It will be improved
with other algorithms in our further work.

Table 2 also compares this work with other recently pub-
lished fNIRS-based mental task classification. With the
designed multichannel fNIRS system, dedicated source-
detector layout, and dual-level intensity data acquisition,
the proposed work is convenient to wear and transmit data
and achieves the highest classification accuracy with 4 states.

In conclusion, dual-level light intensity excitation will
benefit the brain activity classification by providing more
useful channels, which is important for portable compact
NIRS-BCI equipment when using a multi-interval source/de-
tector layout to locate the monitoring point on a specific
brain region. And the deep forest algorithm can achieve
higher accuracy than other methods, especially without scan-

ning. This indicates that deep forest has a potential to deal
with raw data, which will cost less time and is be promising
in future NIRS-BCI application.

5. Conclusions

This paper proposed a continuous-wave fNIRS system, which
has multiple channels of different source-detector intervals to
extract the spatial characteristic and collect data, providing
flexibility for choosing the concerned brain region. The system
is compactable and wearable by involving a dual-level light-
emitting intensity mode for better SNR. The system was
applied to collect {NIRS data during three cognitive mental
tasks and the rest state in the PFC. By employing a deep forest
algorithm, our system could achieve a higher classification
accuracy than other methods, even with raw data. According
to the comparison of different hyperparameters, we deter-
mined the optimal model with three-grained scanning.
Finally, this work achieves 86.9% accuracy for 4 different cor-
tical activation states.
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