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A synthetic aperture radar (SAR) target recognition method is proposed via linear representation over the global and local
dictionaries. The collaborative representation is performed on the local dictionary, which comprises of training samples from a
single class. Then, the reconstruction errors as for representing the test sample reflect the absolute representation capabilities of
different training classes. Accordingly, the target label can be directly decided when one class achieves a notably lower
reconstruction error than the others. Otherwise, several candidate classes with relatively low reconstruction errors are selected as
the candidate classes to form the global dictionary, based on which the sparse representation-based classification (SRC) is
performed. SRC also produces the reconstruction errors of the candidate classes, which reflect their relative representation
capabilities for the test sample. As a comprehensive consideration, the reconstruction errors from the collaborative
representation and SRC are fused for decision-making. Therefore, the proposed method could inherit the high efficiency of the
collaborative representation. In addition, the selection of the candidate training classes also relieves the computational burden
during SRC. By combining the absolute and relative representation capabilities, the final classification accuracy can also be
improved. During the experimental evaluation, the Moving and Stationary Target Acquisition and Recognition (MSTAR)
dataset is employed to test the proposed method under several different operating conditions. The proposed method is
compared with some other SAR target recognition methods simultaneously. The results show the superior performance of the
proposed method.

1. Introduction

Synthetic aperture radar (SAR) works day and night to
provide high-resolution observations of ground scenarios.
Specifically, in the field of battlefield information acquisi-
tion, automatic target recognition (ATR) technique is often
employed to determine the labels of interested targets in a
SAR image. Over the past thirty years, a rich set of SAR
ATR methods has been developed, which could be generally
categorized as two main mainstreams—template-based and
model-based ones—which differ in the way of describing
the targets’ characteristics [1]. The Semi-Automated Image
Intelligence Processing (SAIP) program was a typical
template-based SAR ATR system, where the classical three-
stage processing procedure was proposed, i.e., target detection,
discrimination, and classification [2]. The template-based

methods describe the target characteristics by template
images measured from different conditions. The template
set is first constructed by SAR images from different view
angles, backgrounds, target configurations, etc. Afterwards,
the classification stage builds the relations between the test
sample to be classified with the template classes. Finally, the
template class with the highest matching score (relation) with
the test sample is determined as the target class. In compari-
son, the model-based methods describe the targets using
CAD models [3], global scattering center models [4, 5], etc.
The Moving and Stationary Target Acquisition and Recogni-
tion (MSTAR) program [4] provided a feasible way of con-
ducting model-based SAR ATR, in which the CAD models
were used to predict the targets’ signatures. In recent years,
3D scattering center models of complex targets were devel-
oped and applied to SAR ATR because of the concise forms
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and high flexibility [4, 5]. Owing to the release of the MSTAR
dataset, many pattern recognition techniques were employed
or improved to enhance the recognition performance includ-
ing feature extraction techniques and classifiers. Various
types of features are extracted to convey the targets’ charac-
teristics in SAR images. The geometrical features are used
to describe the physical sizes or shapes of the target such as
target contour [6, 7], region [8–11], and shadow [12]. The
projection features are extracted to depict the intensity dis-
tribution of the target’s image using mathematical trans-
formations (e.g., principal component analysis (PCA) [13],
nonnegative matrix factorization (NMF) [14], and other
manifold learning algorithms [15–17]) or signal processing
techniques (e.g., wavelet [18] and monogenic signal [19,
20]). When working in the high-frequency region, the back-
scattering field of the whole target can be regarded as the
summation of several scattering centers [21, 22]. Therefore,
the scattering centers are also good candidates for SAR
ATR-like attributed scattering centers [23–26]. Based on
the extracted features, the classifiers are designed to make
decisions on the target labels. The nearest neighbor (NN)
[13, 27], support vector machine (SVM) [28, 29], sparse
representation-based classification (SRC) [29–31], adaptive
boosting [32], and the recent deep learning classifiers (e.g.,
convolutional neural network (CNN) [33–37]) are popular
classification schemes in SAR ATR.

SRC is a classifier that originated from the compressive
sensing theory, which was first applied to face recognition
byWright et al. [38]. The results demonstrated its superiority
over the traditional classifiers like NN and SVM especially
the robustness to some nuisance situations like noise corrup-
tion and partial occlusion. Liu and Li brought SRC into the
classification of SAR targets and validated its effectiveness
[29]. Thereafter, many SAR ATR methods employed SRC
as the basic classifiers while making some improvements
[19, 20, 30]. As reported in these literatures, the basic idea
that lies behind SRC is the linear representation of the test
sample based on the global dictionary comprised of different
classes and comparing the reconstruction errors. Ideally, the
training samples from the correct class can best reconstruct
the test sample with the minimum error; thus, the target
label can be correctly decided. In essence, the reconstruction
errors from different classes actually reflect their relative rep-
resentation capabilities for representing the test sample.
However, the absolute representation capabilities of different
training classes are not fully compared in traditional SRC. As
a reliable decision, the correct class should be able to approx-
imate the test sample with a small error to validate its abso-
lute representation capability before comparing the relative
representation capabilities of different classes. Therefore,
this study proposes a SAR ATR method via the two-phase
sparse representation over the local and global dictionaries.
The local dictionaries are formed by the test samples from
individual classes. Then, over each local dictionary, the col-
laborative representation is performed [39]. Different from
the sparse representation, the collaborative representation
is aimed at best reconstructing the test sample using all the
atoms in the local dictionary with no constraints on the lin-
ear coefficients. As a result, the collaborative representation

could achieve analytic solutions with high precision. There-
fore, it can get more effective reconstruction results than
traditional sparse representations. By comparing the recon-
struction errors of different classes through the collaborative
representation, their absolute representation capabilities can
be compared, which provide good references for determining
the target label. When the reconstruction error of one class is
notably lower than that of others, the target label can be
directly decided. Otherwise, when more than one class shares
approaching reconstruction errors, the absolute representa-
tion capability is not reliable for the present classification task
singly. In this case, the classes with low reconstruction errors
are selected as the candidates to form a global dictionary,
based on which the test sample is further classified by SRC.
Afterwards, the reconstruction errors from SRC are fused
with those from the collaborative representation for the
classification. In this way, both the absolute and relative rep-
resentation capabilities of a certain training class can be
exploited. In addition, the selection of the candidate classes
for the global dictionary can effectively reduce the computa-
tional complexity and interferences from the wrong classes
during SRC. Therefore, both the effectiveness and efficiency
during the classification can be enhanced.

The remainder of this study is organized as followings. In
Section 2, the collaborative representation over the local dic-
tionary is introduced. Section 3 describes SRC over the global
dictionary formed by the candidate classes selected from the
collaborative representation stage. In Section 4, the proposed
target recognition algorithm via the two-phase sparse repre-
sentation is explained. Experiments are investigated in Sec-
tion 5 on the MSTAR dataset. Section 6 makes conclusions
of this study based on the experimental results.

2. Collaborative Representation over
Local Dictionary

Collaborative representation [39] was proposed by Zhang
et al. with application to face recognition. In comparison with
the sparse representation, the collaborative representation
tries to linearly represent the test sample with the minimum
error. Therefore, the collaborative representation is a convex
optimization problem with an analytic solution. As for target
classification, the reconstruction errors of different classes are
compared, and the one with the minimum error is deter-
mined to be the target label. In this study, the collaborative
representation is used to evaluate the absolute representation
capabilities of different classes. Different from the strategy in
[28], this paper performs the collaborative representation
over the local dictionary formed by the training samples from
a single class. So, each training class can be fully exploited to
represent the test sample. Then, the reconstruction errors of
different classes from the collaborative representation over
the local dictionaries can better reflect their absolute repre-
sentation capabilities.

Denote the training samples from the kth class as Xk =
½xk,1,⋯, xk,nk � ∈ℝd×nkðk = 1,⋯, CÞ, where d is the dimension
of the atoms. The test sample from the kth class can be lin-
early represented as follows:

2 Journal of Sensors



y = xk,1αk,1+⋯+xk,nkαk,nk =Φkαk, ð1Þ

where αk = ½αk,1,⋯, αk,nk �
T ∈ℝnk denotes the linear coeffi-

cient vector.
In the collaborative representation, the solution of the

linear coefficient vector is obtained using the following
Lagrangian formulation:

bαk = arg min y −Xkαkk k22 + λ αkk k22
� �

: ð2Þ

The problem in equation (2) is a convex optimization
problem, which has a closed-form solution as

bαk = Xk
TXk + λ ∗ I

� �−1
Xk

Ty, ð3Þ

where I denotes the identity matrix and λ is the regularized
factor.

With the estimated coefficient vectors bαk, the reconstruc-
tion errors of different training classes can be calculated as
follows:

rCR kð Þ = y − Xkbαkk k22, k = 1, 2,⋯, C: ð4Þ

The reconstruction errors of different classes actually
reflect how precise they can linearly represent the test sample.
In this sense, they can be used to make a decision on the tar-
get label according to the rule of the minimum error as

identity yð Þ = arg min
i

rCR ið Þð Þ: ð5Þ

The decision rule in equation (5) compares the absolute
representation capabilities of different classes to determine
the target label. However, when the minimum reconstruction
error is notably approaching to those of other classes, the
decision from equation (5) is assumed to be not reliable
enough. Therefore, in this study, some modifications are
made to the conventional decision rule. Denote rCRðkÞ as
the minimum of all the reconstruction errors, and the modi-
fied decision rule is as follows:

identity yð Þ =
k, rCR jð Þ − rCR kð Þ ≥ T1 j ≠ kð Þ,
unreliable, otherwise:

(

ð6Þ

In equation (6), T1 denotes the threshold to evaluate the
difference between the minimum reconstruction error and
the other ones. Accordingly, when the minimum reconstruc-
tion error is notably lower than that of the others, the decision
made from the collaborative representation is assumed reliable.
Otherwise, the decision is not adopted, but some candidate
classes can be selected. The candidate classes are assumed to
be the potential target labels of the test sample while those
unselected are not the correct labels with high probabilities.
In this study, the classes with lower reconstruction errors than
the threshold T2 are selected as the candidate classes, which are
used to construct the global dictionary for SRC. In detail, we

define the two thresholds T1 and T2 as m/5 and m/2, respec-
tively, where m =meanð½rCRð1Þ, rCRð2Þ,⋯, rCRðCÞ�Þ.

3. SRC over Global Dictionary

SRC is a popular classifier with successful applications to pat-
tern recognition fields, e.g., face recognition [36] and SAR
target recognition [28–30]. During the linear representation
of the test sample over the global dictionary, the sparsity con-
straint is assigned on the coefficient vector as

bα = arg min
α

αk k0,

s:t: y − Xαk k22 ≤ ε,
ð7Þ

where X = ½X1,⋯, XC� ∈ℝd×n represents the global dictio-
nary comprised of n training samples from all the C classes;
α and ε represent the sparse coefficient vector and error tol-
erance, respectively.

Unlike the solution of the collaborative representation,
the problem in equation (7) is a nonconvex one due to the
ℓ0-norm objective. To improve the efficiency of solution,
the ℓ1-norm relaxation [38] or some greedy algorithms
(e.g., orthogonal matching pursuit (OMP)) [30] can be
employed to obtain an approaching solution. Similar to the
decision mechanism in equation (5), SRC classifies the target
label as the training class, which achieves the minimum
reconstruction error.

According to equation (7), the representation precision
of the test sample is closely related to the completeness of
the global dictionary. If the dictionary could cover the condi-
tion of the test sample, then the linear representation is a cor-
rect one. In this sense, a large and comprehensive dictionary
is preferred. However, when the dictionary has too many
atoms, the solution of the sparse coefficients becomes com-
plex. As reported in [30], the complexity of the OMP algo-
rithm for solving the sparse representation problems is
OðLNdÞ, where L denotes the sparsity level, N is the number
of atoms, and d is the dimensionality of the atom.

Therefore, the best choice is to construct a global dictio-
nary, which only contains the highly possible class labels of
the test sample. Then, the high time consumption and inter-
ferences caused by the redundant classes can be avoided.
According to the classification scheme based on the collab-
orative representation, it can serve as a prescreener to select
the candidate classes for the building of a proper global dic-
tionary for SRC.

It is much easier to get a precise solution using the col-
laborative representation in contrast with SRC. So, the repre-
sentation precision of different classes for the test sample can
be better compared. However, SRC over the global dictio-
nary can reflect the relative representation capabilities of dif-
ferent classes under a unified framework. Therefore, it is a
feasible way to combine the results from the collaborative
representation and SRC to comprehensively evaluate the
correlations or differences between the test sample and each
training class. Then, the final classification accuracy could be
promisingly enhanced.
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4. Target Recognition

In this study, the collaborative representation and SRC are
jointly used to comprehensively evaluate the absolute and
relative representation capabilities of different training clas-

ses in order to form robust decisions. Figure 1 shows the gen-
eral idea of the proposed method, which can be divided into
two stages.

In the first stage, the collaborative representation is used
for classification according to the decision rules in equation

Selection of candidate classes

Training samples

Class 1

Test sample

Class 2 ... Class C Global dictioanry

Test sampleSRC

Reconstruction
errors

N

Y

Reliable?

Fused reconstruction
errors

Target label

Target label

Reconstruction
errors

Collaborative
representation

Figure 1: Procedure of the proposed SAR target recognition method by combination of collaborative representation and SRC.

(1) BMP2 (2) BTR70 (3) T72 (4) T62 (5) BRDM2

(10) 2S1(9) ZIL131(8) D7(7) ZSU23/4(6) BTR60

Figure 2: Illustration of ten targets in MSTAR dataset.

Table 1: Training and test samples for the experimental setup under SOC.

Depr. BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1

Training set 17° 233 (Sn_9563) 233 232 (Sn_132) 299 298 256 299 299 299 299

Test set 15°
195 (Sn_9563)

196

196 (Sn_132)

273 274 195 274 274 274 274196 (Sn_9566) 195 (Sn_812)

196 (Sn_c21) 191 (Sn_s7)
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(6). In this case, when one class significantly outperforms the
others on the absolute representation capability, the target
label can be directly determined. Otherwise, the candidate
classes are selected based on the reconstruction errors to
form the global dictionary for SRC in the second stage. The
reconstruction errors from the collaborative representation
and SRC are fused to form more robust decisions. Compared
with SRC, the proposed method incorporates the collabora-
tive representation as a prescreener, which has much higher
efficiency. For those test samples, which could be reliably
classified by the collaborative representation, there is no need
to perform SRC further. In addition, the collaborative repre-
sentation selects the candidate classes for SRC, thus effec-
tively relieving the interferences from the classes, which
share notably low similarities with the test sample. Therefore,
it helps improve the classification accuracy during SRC as
well as the efficiency. Denote theM selected candidate classes
from the collaborative representation as Γð1Þ, Γð2Þ,⋯, ΓðMÞ,
where ΓðMÞ corresponds to the original class index, and
the reconstruction errors from the collaborative representa-
tion and SRC of the candidate classes are rCRðΓðmÞÞðm = 1,

2,⋯,MÞ and rSRðΓðmÞÞðm = 1, 2,⋯,MÞ, respectively. When
there is no reliable decision from the collaborative representa-
tion, the two reconstruction errors are linearly fused as

r Γ mð Þð Þ = ω1rRC Γ mð Þð Þ + ω2rSR Γ mð Þð Þ, ð8Þ

where ω1 and ω2 are the weights. This study defines ω1 = 1/3
and ω2 = 2/3 to impose more importance on SRC because
the collaborative representation could not achieve a reliable
decision in this situation. Based on the fused reconstruction
errors, the target label can be decided.

Table 2: Accuracy and efficiency comparison of different methods under SOC.

Method Proposed KNN SVM SRC CRC CNN

Average recognition rate (%) 98.86 93.79 95.24 94.66 94.16 98.72

Time consumption (ms) 43.31 86.9 50.2 63.5 33.1 54.3

Table 3: Training and test samples with different configurations.

Depr. BMP2 T72 BTR60 T62

Training set 17° 233 (Sn_9563) 232 (Sn_132) 256 299

Test set 15°
196 (Sn_9566)
196 (Sn_c21)

195 (Sn_812)
191 (Sn_s7)

195 273

Table 4: Accuracy of different methods under configuration
variance.

Method Proposed KNN SVM SRC CRC CNN

Average
recognition rate (%)

96.32 91.79 93.14 94.64 93.08 95.15

Table 5: Training and test samples from different depression angles.

Depr. 2S1 BDRM2 ZSU23/4

Training set 17° 299 298 299

Test set
30° 288 287 288

45° 303 303 303
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Figure 3: Confusion matrix on 10 classes of targets under SOC.
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Figure 4: Illustration of 2S1 SAR images with depression angle variances: (a) 17°; (b) 30°; (c) 45°.
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Figure 5: Accuracy of different methods under depression angle variance.

Table 6: Results of the proposed method under different depression angles.

Depr. Class
Results

Recognition rate (%) Average (%)
2S1 BDRM2 ZSU23/4

30°
2S1 283 1 4 98.26

98.15BDRM2 2 283 2 98.61

ZSU23/4 2 5 281 97.57

45°
2S1 202 64 38 66.67

72.06BDRM2 36 221 46 72.94

ZSU23/4 25 47 231 76.24
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5. Experiment

5.1. Experimental Setup. The MSTAR dataset is used to com-
prehensively examine the performance of the proposed
method. The dataset collects SAR images of ten different
ground targets by the airborne X-band SAR sensors under
various operating conditions such as different view angles

or configurations. Figure 2 shows the optical images of the
ten targets. Table 1 displays the training and test samples
for the experimental setup under the standard operating con-
dition (SOC). Images at 17° depression angle are adopted as
the training samples whereas those at 15° depression angle
are classified. In addition, the dataset contains some extended
operating conditions (EOC) like configuration variance and
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Figure 6: Illustration of noisy samples at different SNRs: (a) original image; (b) 10 dB; (c) 5 dB; (d) 0 dB; (e) -5 dB; (f) -10 dB.
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depression angle variance. Furthermore, by simple simula-
tions, some additional EOCs can be simulated for experimen-
tal evaluation such as noise corruption and partial occlusion.

Some other methods in current literatures are used for
comparison during the experiments including KNN, SVM,
SRC, SRC, and CNN. Their implementation details are given
as follows.

(i) KNN. The number of neighbors “K” is set to be 3,
and the Euclidean distance is adopted as the distance
measure between the test sample and training ones

(ii) SVM. LIBSVM [40] is used to perform the multiclass
SVM, and the parameters (e.g., the kernel parameter
and cost factor) are determined via the cross
validation

(iii) SRC. The sparse representation is performed over
the global dictionary comprised of all the training
classes. The sparsity level and error tolerance are
consistent with those in the proposed method

(iv) CRC. The collaborative representation-based classi-
fication (CRC) in [39] is introduced in SAR ATR
for comparison, which is performed on the global
dictionary

(v) CNN. The networks designed in [33] are used for
comparison

For fair comparison, PCA is employed for feature extrac-
tion in the proposed method, KNN, SVM, SRC, and CRC,
whose feature dimension is set as 80. CNN conducts the
training and classification based on the image intensities. In
the remainder of this section, SOC is first established to test
the proposed method. Afterwards, different types of EOCs
are used to evaluate the robustness of the proposed method.

5.2. Recognition of 10-Class Targets under SOC. Based on the
experimental setup in Table 1, the proposed method is first

evaluated under SOC. The detailed recognition results of
the ten targets are recorded as the confusion matrix in
Figure 3, in which the diagonal elements represent the recog-
nition rates of the corresponding targets. Each of them can be
classified with a recognition rate of over 97%, and the average
reaches 98.86%. BMP2 and T72 suffer the lowest recognition
rates among the ten targets because there are configuration
differences between their training and test samples as shown
in Table 1. Table 2 compares the performance of different
methods. With a slightly higher recognition rate than CNN,
the proposed method works much better than the remaining
ones with a notable margin. As a deep learning technique,
CNN is able to learn highly discriminative features when the
training samples are sufficient for the recognition task. Under
SOC, the test samples share high similarities with the training
ones so CNN could work with very high effectiveness with an
approaching recognition rate to the proposed one. In com-
parison with SRC and CRC, the proposed method effectively
improves the recognition performance by combining their
advantages. The time consumption of different methods for
classifying one image is also compared in Table 2. For fair
comparison, all the methods perform the classification on a
PC platform with Intel i7 3.4GHz CPU and 8GB RAM.
The proposed method significantly improves the efficiency
in contrast with the traditional SRC. The collaborative repre-
sentation has an analytic solution, which can be solved with
very high efficiency in this situation. In this experiment,
2144 of the 3203 test samples can be reliably classified during
the collaborative representation. In addition, the selection of
candidate classes also reduces the computational complexity
of SRC. Therefore, the actual time consumption of the pro-
posed method can be reduced.

5.3. Configuration Variance. The variety in configurations is
common for the ground vehicle targets. Take tanks, for
example; its shield and spare barrels may be equipped or
removed for different applications. In this experiment, the
training and test samples are set in Table 3. As listed, the con-
figurations of BMP2 and T72 for classification are different
from those of their training samples. The average recognition
rates of different methods are listed in Table 4 for compari-
son. Because of the existing configuration differences, the
average recognition rates of all the methods decrease com-
pared with the ones under SOC. The superior robustness of
the proposed method to possible configuration variance
can be validated because of its highest recognition rate.
The collaborative representation and SRC could comple-
ment each other when evaluating the representation capabil-
ities of different training classes. Therefore, the combination
of their results could better find the configuration differences
between the test sample and corresponding training class,
which helps improve the classification accuracy under the
configuration variance. CNN achieves the second highest
recognition rate among all the methods due to its high clas-
sification capability. However, it is assumed that the network
trained by one configuration may lose some effectiveness
when classifying other configurations. As a result, the gap
between CNN and the proposed method becomes more
remarkable in this case.
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Figure 7: Accuracy of different methods under noise corruption.
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5.4. Depression Angle Variance. It is also a common situation
that the test samples to be classified are collected at depres-
sion angles different from those of the training ones. Due to
the depression angle variance, the similarity between the test
and training samples may notably decrease, which causes
more obstacles to correct target recognition. The training
and test samples for this experiment are listed in Table 5, in
which the training set is from 17° depression angle whereas

the test samples are from 30° and 45° depression angles.
Figure 4 illustrates the influence of the depression angle var-
iance on the captured SAR images. It is clear that the image at
45° has many differences between that at 17°. Table 6 shows
the results of the proposed method at different depression
angles, which achieves a very high average recognition rate
of 98.15% at 30° depression angle but decreases sharply to
72.06% at 45° depression angle. The performance of different
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Figure 8: Illustration of occluded samples: (a) original image; (b) direction 1; (c) direction 2; (d) direction 3; (e) direction 4.
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methods under the depression angle variance is compared in
Figure 5, which shares a similar trend, i.e., high recognition
rates at 30° depression angle but much lower ones at 45°

depression angle. This is mainly because the images at 45°

depression angle have many differences with the training
samples at 17° depression angle as shown in Figure 4. In com-
parison, the proposed method outperforms the other
methods at both depression angles, reflecting its superior
robustness to the depression angle variance.

5.5. Noise Corruption. The measured SAR data may be con-
taminated by the background clutters or system noises [41,
42], and the noisy SAR images at low signal-to-noise ratio
(SNR) are much more difficult to be classified with high pre-
cision. Therefore, it is necessary that the target recognition
method could work with robustness under noise corruption.
The original MSTAR images are collected at high SNRs,
which indeed relieves the difficulty of target recognition. In
this experiment, different levels of additive Gaussian noises
are first added to the test samples in Table 1, and then, the
noisy test samples are classified. Some simulated noisy SAR
images are given in Figure 6 to illustrate the influences of
noise corruption. Compared with the original image in
Figure 6(a), the noisy samples at lower SNRs have more
obscure target contours and unstable intensity distributions.
Figure 7 shows the average recognition rates of the proposed
method at different SNRs, which are simultaneously com-
pared with those of the other methods. The proposed method
obtains the highest recognition rate at each SNR, so its robust-
ness to possible noise corruption is validated. Both the collab-
orative representation and sparse representation perform the
linear representations of the test sample. In essence, the two
are both optimization problems, so they can actually elimi-
nate the noise interferences during the classification. By
combining their advantages, the robustness to noise corrup-
tion can be further improved. Similar to the situations of the
former two EOCs, the performance of CNN degrades signif-
icantly with the decrease of SNR.

5.6. Partial Occlusion.Object occlusion is a nuisance problem
in pattern recognition fields, e.g., face recognition. Also, par-
tial occlusion is common in SAR ATR because the ground
targets may be occluded by the nearby obstacles. To test the
robustness of the proposed method to partial occlusion, the
occluded SAR images are first simulated according to the
model in [43, 44] based on the original test samples in
Table 1. Then, these occluded images are classified. Figure 8
illustrates the influences of partial occlusion, where 20% of
the target regions are occluded (removed) from different
directions. Compared with the original image in Figure 8(a),
the absence of some portions of the targets corrupts the orig-
inal target outlines and intensity distributions. Figure 9
shows the performance of the proposed method at different
occlusion levels and compares it with those of the other
methods. The linear approximation of the test sample in both
the collaborative representation and sparse representation is
assumed to have some robustness to partial occlusion as
demonstrated in [36]. Then, via the combination of the col-

laborative representation and SRC in a hierarchical way, the
robustness to partial occlusion can be further strengthened.

6. Conclusions

In this study, we propose a SAR ATR method by the two-
phase sparse representation, which combines the advantages
of the collaborative representation and SRC. The collabora-
tive representation is performed on the local dictionaries to
evaluate the absolute representation capabilities of different
classes whereas SRC is employed to evaluate the relative rep-
resentation capabilities of the selected candidate classes. The
two classification schemes are fused hierarchically to perform
the recognition tasks. Therefore, both the efficiency and clas-
sification accuracy of the proposed method can be improved.
Based on the experiments on the MSTAR dataset under sev-
eral operating conditions, some conclusions can be reached.
First, the proposed method achieves a notably high recogni-
tion rate of 98.86% on 10 classes of targets under SOC,
which demonstrates its good performance for the classifica-
tion tasks of several similar targets. In addition, because of
the fast prescreening by the collaborative representation,
the average time consumption of the proposed method is
significantly reduced to enhance the overall efficiency. Sec-
ond, under different types of EOCs such as the configuration
and depression angle variances, noise corruption, and partial
occlusion, the performance of the proposed method is much
more superior than that of the reference methods. Although
deformed or corrupted by EOCs, the proposed method
could still maintain its higher robustness to obtain reliable
classification results. Third, as an overall evaluation, the pro-
posed method could keep robust performance under differ-
ent operating conditions compared with other methods
with relatively high efficiency. In the future, the proposed
method can be further improved via adaptive determination
of the threshold in the collaborative representation and
intelligent fusion of the decisions from the collaborative rep-
resentation and SRC.
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Figure 9: Accuracy of different methods under partial occlusion.
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study is available online at http://www.sdms.afrl.af.mil/
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