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Wireless sensor networks (WSNs) are a huge number of sensors, which are distributed in area monitoring to collect important
signals. WSNs are widely used in several applications such as home automation, environment, and healthcare monitoring.
However, most of these applications face various difficulties due to sensor design. Therefore, the major challenge of designing
WSNs is saving the energy consumed during communication and extending the network lifetime. Multicriteria Decision
Analysis (MCDA) methods have been exploited for saving network energy. However, the majority of researches focus on the
Cluster Head (CH) selection. In this paper, we aim to enhance the process of forwarder selection using an efficient combined
multicriteria model. The proposed scheme improved the intercluster communication by controlling the distance separating CHs
from the sink node. To minimize the cluster density, this work consists of activating only sensor nodes that detect enough
strong signals. The activation phase presents a fault-tolerant technique to succeed in the communication process. Moreover, the
proposed work is aimed at selecting the most efficient hops, which are responsible for routing data to the sink using the Analytic
Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods.
Simulation results proved that our new protocol maximized the residual energy by 15% and 25% and the network lifetime by
35% and 47% compared to the Distributed Clustering Protocol using Voting and Priority (DCPVP) and Low-Energy Adaptive
Clustering Hierarchy (LEACH), respectively.

1. Introduction

WSNs [1, 2, 3] can be defined as a huge number of nodes that
occupy a target area. Their main role is sensing critical events
and forwarding them to the sink node for making the right
and required decisions. The simple architecture of this kind
of network eases their use in various applications as home
automation healthcare monitoring and pollution control.
Although they are widely used for easing our lifestyle, they
have limited power resources. Therefore, resolving this prob-
lem is required more. Wireless communication tasks are
proven to have a high energy consumption rate compared
to remaining sensor node tasks. Hence, saving energy during
data routing permits enhancing the network performances
and achieving the real goal of the applications. Recently, the
majority of researchers have directed their research works
in this context to design efficient routing protocols. However,
wireless applications suffer from communication complica-
tions due to the sensors’ energy constraint. The clustering

mechanism has proven its efficiency among more effective
solutions designed previously. It is, therefore, widely used
for achieving sensor distribution inside a target area. It con-
sists of organizing sensor nodes in a predefined number of
groups (clusters) for easing communication between sensors.
In each group, one sensor is picked as a node leader named
CH for leading communication inside and outside its group.
Even though several improvements have been done for
selecting the network leaders efficiently, wireless communi-
cation is still inefficient. Effective leaders’ selection is insuffi-
cient for making successful communication because it is
based on data forwarders too. This work is aimed at minimiz-
ing the energy consumed while data transmitting by selecting
efficient forwarders. We use a combined AHP-TOPSIS
model for ensuring successful transmission using important
criteria where both intracluster and intercluster factors are
considered. This paper is organized as follows: In Section 2,
we review well-known clustered protocols like LEACH and
recent routing protocols based on multicriteria decision
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making. Section 3 proves the choice of method. Section 4 pre-
sents the multicriteria decision analysis methods. Section 5
describes our novel approach in detail. Section 6 represents
the performance evaluation where our method is compared
to the DCPVP and LEACH schemes. Section 7 summarizes
the proposed work.

2. Related Works

The clustering technique represents an alternative solution
for maximizing the network lifetime. Clustered approaches
reduced transmitted messages inside clusters by aggregating
sensed events by CHs. Cluster leaders play a vital role while
they have to succeed in transmission tasks for both direct
and multihop communication. In this section, we review
various clustered approaches citing those based on multi-
criteria decision analysis. The LEACH protocol [4] is one
of the routing techniques based on the clustering mecha-
nism. It is mainly composed of two phases: setup end
steady phases. The first one consists of selecting CHs using
the following probability:

Tp nð Þ =
Pr

1 − Pr rn mod 1/Prð Þð Þ if n inG,

0 else,

8><
>: ð1Þ

where Pr and rn represent the percentage proposed for CHs
in the network and round, respectively. The second phase
focuses on routing data directly to the sink node. CH selec-
tion and the data routing way represent the critical limita-
tions of LEACH. Thus, various clustered approaches have
been designed for improving network lifetime. In [5], the
authors proposed an improved version of LEACH, where
the clustering method is based on two types of clusters:
superclusters and miniclusters. Initially, sensors are orga-
nized in superclusters where SCH is elected for making data
aggregation. Then, miniclusters are formed from the super-
cluster’s members and MCH represents a leader inside the
minicluster that aggregated sensed data and transmitted
them to SCH. Its selection considered residual energy and
cluster density factors using

Qi tð Þ =
Ei tð Þ ⋅ k ⋅ density

Einitial
: ð2Þ

A networks’ lifetime is increased thanks to the use of two
clusters. In [6], the authors designed a location-based
protocol named Energy-Efficient Grid-based Clustering and
Routing Protocol (GCMRA). The GCMRA process consists
of dividing the network into several grids. Nodes are distrib-
uted in grids forming several clusters. After the cluster con-
struction step, the remaining nodes elect the most efficient
node as CH. The number of clusters are fixed by the number
of grids and the network size. The next step is based on
determining the node that will be the CH using the sum of
distances to each cluster node. The node that has the mini-
mum sum and sufficient energy level according to a prede-
fined threshold is picked as CH. Moreover, it uses multihop

communication between the CHs and the BS. In [7], the
authors proposed the DCPVP protocol. This routing scheme
is aimed at selecting CHs using priority and voting tech-
niques. Each node generates a priority list of its neighbors
using a weighted function. Then, sensors broadcast a
vote-packet to select the best CH. Collected data is routed
using a multihop way. The DCPVP protocol has enhanced
the network performances compared to classical clustered
approaches. Some approaches are based on renewable energy
to save energy in wireless sensor networks [8, 9]. However,
renewable resources are unstable and unsuitable for critical
applications where making a decision requires low delay. In
[10], the authors designed an energy-efficient data gathering
protocol in an unequal clustered WSN using fuzzy multiple
criteria decision making (DGUCF). This protocol allows
selecting CH using an intuitionistic fuzzy analytic process
and hierarchical fuzzy integral. In [11], the authors proposed
another routing method called a multiobjective fuzzy cluster-
ing algorithm that was explored for saving energy. Moreover,
this approach improved network distribution in WSNs. The
authors in [12] designed a reliable energy-efficient multilevel
routing algorithm for WSNs. This algorithm enhances the
clusters’ formation by introducing different critical factors:
remaining energy level, neighbor size, and sensor centrality.
Due to the combination of these factors, energy dissipation
is more reduced and the network lifetime is also increased.
In [13], the authors explored an effective routing method
for minimizing CH selection using the Analytical Network
Process (ANP) model. This work optimizes CH selection
and its reselection considering essential parameters, which
improved network performances. Another work based on
CH selection is proposed in [14]. The authors contribute to
the CH selection problem using the TOPSIS method. To
make an effective CH selection, four parameters are used as
inputs of TOPSIS. In most existing studies using the cluster-
ing mechanism, the authors contribute to CH selection or
enhance the communication between CHs and the sink node.
Novel techniques are proposed for maximizing the coverage
of clusters. However, handling data redundancy is not taken
into account as the most essential routing concern. Addition-
ally, forwarder selection is rarely taken into account where
only global criteria are considered. The applications of the
MCDM to the problem of maximizing network lifetime are
mostly applied to the CH selection or reselection problems.
In the present study, we design a novel approach based on
data redundancy where an intelligent activation phase is pro-
posed. Moreover, we propose the use of the AHP-TOPSIS
model for resolving the forwarder selection problem. In this
stage, we consider the most important criteria and their
subcriteria for making an efficient forwarder selection. The
next section explains our motivation to use the integrated
AHP-TOPSIS model.

3. Positioning of the Contribution

The majority of the previously reviewed research works con-
sist of enhancing CH selection or reselection, improving the
number of hop counts, and enhancing cluster formation
and data aggregation. Even though various efficient routing
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schemes have been designed, data redundancy and forwarder
selection are not considered as important routing goals.
However, for ensuring data reachability and ease of making
a decision according to sensed events, efficient data control
and forwarder selection are required more. In this paper,
we propose an effective routing scheme based on a smart
activation phase to handle data redundancy and an effi-
cient forwarder selection using a combined multicriteria
decision-making model. Among the available MCDM tech-
niques, we use the integrated AHP-TOPSIS. This hybrid
model exploits the advantages of both the AHP and TOPSIS
method. Table 1 illustrates the advantage of using the inte-
grated AHP-TOPSIS model over the individual MCDM
methods [15]. Hence, the AHP-TOPSIS model is selected as
a suitable model for making an effective forwarder selection
considering essential criteria. The next section describes the
combined model used.

4. Multicriteria Decision Analysis (MCDA)

In our daily and professional life, we are in front of making
the right decisions. MCDA [16, 17] represents an important
science that allows making decisions. It is exploited in differ-
ent fields such as economics, mathematics, and social science.
This leads to the appearance of several methods for finding
the most adapted solution to the situation studied. Lai et al.
in 1994 [18] have categorized the decision problems in four
categories: the choice problem that has the main goal of
selecting the best element among a subset of elements. The
second type is the sorting problem which focuses on sorting
options into ordered groups named categories. This regroup-
ing is done to reduce the options’ number. The third type is
the ranking problem consisting of ordering options from best
to worst. The fourth type is the description problem, which
has the main goal of describing options for understanding
the problem characteristics. Our problem is selecting the effi-
cient elements for routing data. Consequently, our case is the
selection or choice problem and the TOPSIS method is
adapted to our case and we use the AHP model for defining
the different criteria weights.

4.1. Description of the AHP Model. This model is designed by
Saaty [19] for resolving and structuring complex problems.
The first step is aimed at decomposing the decision problem
into various criteria. However, it is mandatory to determine
the criteria weights. Consequently, the AHP method is more
suitable for such a situation. It is exploited for defining the

weight of each criterion using the pair-wise comparison
[20]. The process of this model is mainly based on different
steps: The first step consists of structuring the decision hier-
archy considering the essential objective of the study and
determining the criteria and subcriteria. The second is estab-
lishing a set of all judgments in the comparison matrix where
we use the pair-wise comparison to compare the elements set
to itself. The scale of pair-wise comparison is depicted in
Table 2.

The third step is aimed at calculating the adequate eigen-
vectors to the maximal eigenvalues for defining the relative
importance of factors.

The fourth step consists of the verification of the judg-
ments’ consistency compared to the Consistency Index (CI)
and Consistency Ratio (CR) [21]:

CI = μmax − n
n − 1

, ð3Þ

where μmax represents the eigenvalue that corresponds to the
pair-wise comparison matrix and n represents the number of
different elements considered for the comparison. CR is
determined as follows [22]:

CR =
CI
RCI

, ð4Þ

where RCI represents random CI as shown in Table 3.
The values of CR are evaluated according to the value 0.1:

a CR value is acceptable only if it is less than 0.1, otherwise, it
is required to revise this pair-wise comparison.

Table 1: Comparison of proposed with individual AHP and
TOPSIS methods.

Criteria AHP TOPSIS AHP-TOPSIS

Use hierarchical structure X X

To provide objective criteria
weight

X X

Comparison of ideal solution X X

Ranking method X X X

Be easy to understand X X X

Table 2: Criteria importance meaning.

Relative importance Meaning

1 Equal

3 Weak

5 Strong

7 Demonstrated over the others

9 Absolute

Table 3: RCI values.

Criteria number RCI values

1 0

2 0

3 0.58

4 0.90

5 1.12

6 1.24

7 1.32

8 1.41

9 1.45

10 1.49
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4.2. Description of the TOPSIS Method. The TOPSIS [23, 24]
method was exploited in different applications. The main
idea of this method consists of selecting the most relevant
solution, which is characterized by its nearness to the ideal
solution and its farness from the nonideal solution. The
TOPSIS process is based on these steps: The first one is aimed
at gathering the actions’ performances to the criteria. The
second consists of normalizing the previous performances
and forming a normalized matrix.

The next step is based on weighting the resulting matrix
in the previous step. After that, the TOPSIS process con-
tinues with finding the distances to the ideal and the nonideal
solutions. The last step consists of calculating the closeness
from the previously calculated distances. Collecting the per-
formances of m alternatives according to n criteria is done
by the decision matrix Mij where i = 1,⋯,m and j = 1,⋯, n.
For accomplishing the second step of normalization, we can
use the following equations: the distributive normalization
consists of dividing the performances by the square root of
the squared elements:

Mij′ =
Mijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j=1M
2
ij

q  for i = 1,⋯,m and j = 1,⋯, n: ð5Þ

The ideal normalization consists of dividing all perfor-
mances by the maximal score in case of criterion maximiza-
tion and by the minimal value in case of criterion
minimization.

The next step consists of constructing the weighted nor-
malized matrix from the previous normalized matrix and
the weights. This matrix can be expressed as follows:

M∗
ij =Wtj ⋅Mij′ : ð6Þ

In the following step, we will use the previously calculated
scores for comparing all actions to a positive (ideal) action
and a negative (anti-ideal) action. We can apply several
methods to define these actions: the first way is based on
grouping the most relevant and the worst performance on
all criteria in the second decision matrix. Hence, the ideal
action (A∗) can be expressed as follows:

A∗ = M∗
j , j = 1, 2,⋯n

� �
= M∗

1 ,M
∗
2 ,⋯,M∗

nð Þ,

M∗
j =max

i
Mij′

� �
,

A∗
− = miniM∗

ij, i = 1,⋯,m and j = 1,⋯, n
� �

:

ð7Þ

The negative virtual action A− is expressed as follows:

A− = min
i
M∗

ij, i = 1,⋯,m and j = 1,⋯:,n
� �

,

M∗
j =min

i
Mij′

� �
,

A− = M∗
j , j = 1, 2,⋯n

� �
= M∗

1 ,M
∗
2 ,⋯M∗

nð Þ:

ð8Þ

We can assume that the absolute points A∗ = ð1,⋯, 1Þ
and A− = ð0,⋯, 0Þ can be defined independently to the prob-
lem actions. The negative and positive points are determined
by the decision-maker with respect to the previous ideal
and anti-ideal points calculated by the precedent detailed
methods. The fourth step consists of calculating the distances

Initialize the constants α, β and threshold.
Initialize the list of avtive nodes ListSS⟵∅.
for k ∈ ½j1, #ListNodesj� do
if ROUND! = 0 then

Compute wk ⟵ adðk, sÞ + βEt
rðkÞ

end if
if sj = = nj + aj then

if wk > threshold then
ListSS⟵ fListSS, kg

end if
end if

end for
ListNodes⟵ ListSS

Algorithm 1: Network size control.

initialize lmax
C′ ⟵ ListSS
for lk ∈ ListSS do

Compute wijðlÞ⟵ Pcv + Er + dtosink
end for
for ij ∈ A do

Wij ⟵wij

end for
while C′! =∅ do

c⟵ c + 1
for l ∈ C′ do
dl ⟵∑j∈C′wlj

ClassðcÞ⟵fl ∈ C∣dmin =∑j∈C′wlj

C′ ⟵ C′ classðcÞ
end for
for k ∈ LðcÞ do
ClassnodeðkÞ⟵ c

end for
end while
lmax ⟵ l

Algorithm 2: CH election.

Table 4: Matrix of global importance criteria.

Criteria C1 C2 C3 Weights

C1 1 7 5 0.72

C2 0.14 1 0.33 0.08

C3 0.20 3 1 0.19
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(D∗
i and D−

i ) of all actions to the ideal and the anti-ideal
points using the following:

D∗
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

j=1
M∗

ij −M∗
j

� �2

vuut , i = 1,⋯,mð Þ, ð9Þ

D−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

j=1
M∗

ij −M∗
j

� �2
vuut , i = 1,⋯:,mð Þ: ð10Þ

The fifth step consists of calculating the closeness
coefficient using this formula which includes the previous
distances:

C∗
i =

D−
i

D−
i +D∗

i
, i = 1,⋯:,mð Þ: ð11Þ

The closeness value has to be in the interval ½0, 1�.
The closeness coefficient that approaches 1 means that
the action is closer to the positive point and farthest from
the negative point.

5. Proposed Work

Energy efficiency is influenced by different factors. It is,
therefore, more preferred to integrate various factors to
enhance network communication. To achieve this goal and

succeed in network communication, we propose an efficient
routing protocol. The new approach is aimed at taking into
account intercluster and intracluster factors during data
routing. Various routing methods have been explored for
performing such purposes. Among these approaches, we
use those based on MCDM. However, the majority of previ-
ous works focus on the efficient selection using multicriteria
analysis methods based on random weights. The main objec-
tive of this work is enhancing the network energy consumed.
The new approach is mainly divided into three phases. The
first phase consists of achieving the cluster size control to

Table 5: Pair-wise comparison matrix for subcriteria.

Subcriteria C11 C12 C13 C21 C22 C23 C31 C32 C33 Local weights

C11 1 5 9 0.74

C12 0.20 1 3 0.18

C13 0.11 0.33 1 0.07

C21 1 0.2 5 0.21

C22 5 1 9 0.72

C23 0.20 0.11 1 0.06

C31 1 0.14 0.33 0.08

C32 7 1 5 0.72

C33 3 0.20 1 0.2

Table 6: Global weights for criteria and subcriteria.

Criteria Level 1 Subcriteria Level 2

CH 0.72 Residual energy 0.53

Distance to sink 0.13

Coverage 0.06

Intracluster communication 0.08 Cluster energy 0.017

Active member number 0.057

Distance between active members and CH 0.005

Intercluster communication 0.19 Cluster energy 0.015

Distance to remaining CHs 0.136

Distance to sink 0.04

Table 7: Input values of the TOPSIS method.

Criteria Weights CH1 CH2 CH3 CH4 CH5

C11 0.53 5 5 9 3 7

C12 0.13 3 3 5 7 5

C13 0.06 3 5 3 5 9

C21 0.17 5 3 9 3 3

C22 0.057 3 7 3 7 9

C23 0.005 7 5 7 3 9

C31 0.015 9 3 5 5 3

C32 0.136 3 3 5 3 3

C33 0.04 5 5 7 3 7
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improve intercluster communication. This is done by activat-
ing only sensors that detected the strong-enough signals.
Also, active nodes are grouped in clusters taking into account
CH coverage. The second phase is aimed at selecting efficient
CHs using a weighted function where we consider the resid-
ual energy and the distance from the sink as essential param-
eters. The last phase is data routing, which is aimed at
making the efficient election of next hops using two efficient
multicriteria analysis methods. The first method is exploited
for calculating the different criteria weights. Then, the second
is aimed at ranking the set of alternatives for selecting the
best forwarder. In fact, we use the AHP model for calculating
criteria weights and the TOPSIS method for ranking alterna-
tives. Consequently, we can elect efficient CHs that will be
responsible for routing the detected signals. Moreover, we
select the most efficient hops for routing data, which
improves the efficiency of our proposed protocol.

5.1. Network Model. In this paper, we assume the following
assumptions:

(1) Sensor nodes are fixed and resourced by the same
initial energy and have similar capabilities in terms
of storage and processing

(2) Each node is identified by its ID

(3) BS is sufficiently resourced and has a huge storage
and computation capacity

(4) A sensor node is considered dead when its energy is
completely consumed

(5) Its battery cannot be rechargeable

(6) Sensors use a similar power level for communication
or interconnection tasks

(7) Each node can communicate its collected data to
its CH

(8) Sensor nodes are capable of switching from run to
sleep mode for responding to TDMA (Time Division
Multiple Access) orders

5.2. Energy Consumption Model. Several works have modeled
energy consumption [25]. The energy consumed by a sensor

for performing processing and transition states can be
expressed as follows:

Epr = Est + Etr, ð12Þ

where Est is the energy consumed by the state processing and
Etr is the energy drained while in state transition. However,
more sensor energy is consumed during data routing. There-
fore, we adopt the same model used in [26]. The energy
consumed by the wireless communication module combines
two propagation models: free space and two-ray ground
using a distance threshold.

Ewc = Etx

or Ew = Erx:
ð13Þ

The energy consumption of a message of L bits that
travels through a distance d is expressed by

ETX l, dð Þ =
lEelec + Efs ∗ d2, d ≤ d0,

lEelec + Efmp ∗ d4, d > d0,

(
ð14Þ

where Eelec is the energy consumed to electronically operate
the transmitter or receiver, Efs is free space fading, and Emp
is multipath fading.

Table 8: Weighted normalized matrix.

Criteria CH1 CH2 CH3 CH4 CH5 P A∗ A–

C11 0.192 0.192 0.346 0.115 0.269 + 0.34 0.011

C12 0.036 0.036 0.060 0.084 0.06 − 0.036 0.084

C13 0.014 0.024 0.014 0.024 0.044 + 0.044 0.014

C21 0.0073 0.0044 0.0132 0.0044 0.0044 + 0.0132 0.0044

C22 0.012 0.028 0.012 0.028 0.036 − 0.012 0.036

C23 0.002 0.001 0.002 0.001 0.003 − 0.001 0.003

C31 0.011 0.003 0.006 0.006 0.003 + 0.011 0.003

C32 0.052 0.052 0.087 0.052 0.05 − 0.052 0.087

C33 0.015 0.015 0.02 0.009 0.02 − 0.009 0.02

Table 9: Alternative ranking.

D∗ D− C∗
i Rank

CH1 0.157 0.1008 0.39 3

CH2 0.156 0.098 0.385 4

CH3 0.053 0.23 0.814 1

CH4 0.23 0.039 0.141 5

CH5 0.086 0.162 0.653 2
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In the reception stage, energy is expressed by

ERX = lEelec: ð15Þ

5.3. Algorithms

5.3.1. Network Size Control Phase. InWSNs, sensor nodes are
distributed on the sensing area to accomplish data sensing
tasks. However, a sensor may detect identical events. To con-
trol the network size and handle data redundancy, this work
consists of activating only sensors that have enough detected
signals. This allows reducing the energy consumed by sensors
that have weakly detected signals. However, they are in sleep
mode until a strong-enough signal will be detected. More-
over, this reduced the number of messages handled by each
CH and reduced significantly the energy consumed while
in intracluster communication. Hence, activating only
some sensors controls the network size and eases the rout-
ing phase. We assume that noisy signals at sensor node j
are identically and independently distributed (j · j · d) and
follows a Gaussian distribution njNð0, 1Þ. Hence, each node
can take a binary decision using the following equations:

H1 : Sj = aj + nj, ð16Þ

H0 : Sj = nj, ð17Þ
where Sj represents the measure of the signal at node nj and
aj is the signal amplitude associated with the event detected

Table 10: Sensitivity analysis cases.

Cases C11 C12 C13 C21 C22 C23 C31 C32 C33

1 (main case) 0.53 0.13 0.06 0.017 0.057 0.005 0.015 0.136 0.04

2 0.53 0.06 0.13 0.017 0.057 0.005 0.015 0.136 0.04

3 0.53 0.13 0.06 0.057 0.017 0.005 0.015 0.136 0.04

4 0.53 0.13 0.06 0.017 0.005 0.057 0.015 0.136 0.04

5 0.53 0.13 0.06 0.057 0.005 0.017 0.015 0.136 0.04

6 0.53 0.13 0.06 0.017 0.057 0.005 0.136 0.015 0.04

7 0.53 0.13 0.06 0.017 0.057 0.005 0.136 0.04 0.015

8 0.53 0.13 0.06 0.017 0.057 0.005 0.04 0.136 0.015

9 (equal) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Table 11: Results of sensitivity analysis.

Cases CH1 CH2 CH3 CH4 CH5 Rank

Case 1 (main) 0.39 0.385 0.814 0.141 0.653 CH3→CH5→CH1→CH2→CH4

Case 2 0.353 0.359 0.756 0.155 0.671 CH3→CH5→CH2→CH1→CH4

Case 3 0.383 0.381 0.814 0.138 0.649 CH3→CH5→CH1→CH2→CH4

Case 4 0.383 0.388 0.807 0.159 0.654 CH3→CH5→CH2→CH1→CH4

Case 5 0.3829 0.3822 0.814 0.14 0.649 CH3→CH5→CH1→CH2→CH4

Case 6 0.423 0.35 0.796 0.107 0.593 CH3→CH5→CH1→CH2→CH4

Case 7 0.424 0.351 0.797 0.104 0.595 CH3→CH5→CH1→CH2→CH4

Case 8 0.39 0.383 0.814 0.137 0.65 CH3→CH5→CH1→CH2→CH4

Case 9 (equal) 0.534 0.400 0.518 0.403 0.392 CH3→CH5→CH1→CH2→CH4

1
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3.5

4
4.5

5

0 2 4 6 8 10

Ra
nk

in
g

Cases

Sensitivity analysis results

CH1
CH2
CH3

CH4
CH5

Figure 1: Sensitivity analysis results.

Table 12: Parameters values.

Parameter Value

Initial target area 50 ∗ 50
Initial number of nodes 100

BS location (50, 50)

Packet size 500 bytes

Number of rounds 500
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(aj ∈ R + ). We assume that each sensor node uses the same
threshold to detect the event. Hence, it is authorized to report
its decision only if its measured signal is larger than ss.

The steps of this phase are described in Algorithm 1.

5.3.2. CH Election Phase.Most research works focus on min-
imizing network energy. However, data reachability is
required more for different monitoring applications. In some
cases, signals are sensed to impose their reachability due to
their importance level. Although the majority of clustered
approaches are characterized by their implementation
simplicity, forwarder routing did not consider the problem
of coverage. In this work, we present an effective routing

method that takes into account the forwarders’ coverage. In
general, the coverage concept is known as the coverage area.
Let Am represent active nodes’ set and Cl is the global set.
CðAmÞ expresses the coverage area of node set Cl.
Regional coverage can be expressed as Pcv = CðAmÞ/CðClÞ.
However, calculating CðClÞ is too complex. We, therefore,
model target area as a circle centered at the candidate CH
with radius R. The coverage function between CH and an
active node is defined as follows:

Pcv CH, að Þ =
1 if d CH, að Þ ≤ R,

0 else,

(
ð18Þ
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Figure 2: The residual energy for our approach (b), DCPVP, and LEACH protocols (a) for a network size of 50 ∗ 50.
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Figure 3: The residual energy for our approach (b), DCPVP, and LEACH protocols (a) for a network size of 100 ∗ 100.
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where dðCH, aÞ is the Euclidean distance between candidate
CH and the active node a.

As CHs have a vital role in wireless communication, we
use an effective scoring function that takes into account CH
residual energy and CH distance from sink and CH coverage.
The different steps of Algorithm 2 are described below:

5.3.3. Data Routing Phase. Several studies have proven that
network energy is consumed more while routing data. Hence,
saving energy while performing such tasks is required more
to improve network performances. Recent works have
exploited MCDA techniques; however, the majority of them

resolved routing selection using random weights. In this
work, we use the hybrid AHP-TOPSIS model for routing
data effectively. In fact, we use the AHP method to generate
criteria weights and the TOPSIS technique for ranking
available forwarders. Ranking takes into account the CH
election, intracluster communication criteria, and interclus-
ter communication criteria. Consequently, the CHs that will
be responsible for routing data are well elected using the
main important criteria and subcriteria. The following
numerical example presents more details about our
approach. Besides, we study the impact of criteria weights
to prove the efficiency of the proposed work.
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Figure 4: The residual energy for our approach (b), DCPVP, and LEACH protocols (a) for a network size of 150 ∗ 150.
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Figure 5: The residual energy for our approach (b), DCPVP, and LEACH protocols (a) for a network size of 200 ∗ 200.
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5.3.4. Numerical Illustration. The main purpose of this work
is ranking routing forwarders using the combined decision-
making AHP-TOPSIS model. In fact, the AHP method is
exploited for weight generation while TOPSIS is aimed at
ranking forwarders. In other words, the process of AHP
allows calculating the weight of each criterion instead of
attributing it randomly. The first step consists of the presen-
tation of the hierarchy model for forwarder ranking. In this
model, we consider three global criteria and three subcriteria
for each criterion. In this section, we present a numerical
example for the AHP-TOPSIS model in our case. In this
example, we aim to choose the most efficient CH forwarder

among available CHs. Table 4 represents the importance of
global criteria. The pair-wise comparison matrix for subcri-
teria is shown in Table 5. All matrices are consistent because
the consistency rates of the comparison criteria of the main
criteria and subcriteria are less than 0.1 with values of
0.047, 0.019, 0.09, and 0.047, respectively. Table 6 regroups
all global weights that are used as inputs for the next stage
of ranking. Global weights (level 2) are obtained by multiply-
ing the local weights by the weight of the relevant criteria
(level 1). For example, for subcriterion C11, the local weight
is 0.74, and for the CH criterion, the local weight is 0.72.
Therefore, the overall weight of C11 is 0:74 ∗ 0:72 = 0:53.
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After calculating all criteria weights using the AHP
model, we use these generated weights for ranking the avail-
able alternatives. We present the input values of the TOPSIS
method in Table 7.

This section is aimed at ranking CHs using the TOPSIS
technique, and we present in Table 8 the weighted normal-
ized matrix obtained by multiplying each column with its
associated weight using equations (5) and (6). For each crite-
rion, we calculate the positive and negative ideal solutions
(A∗, A−) using equations (7) and (8).

The ranking step is performed using equations (9), (10),
and (11). Table 9 depicts the final evaluation of alternatives,

and it can be visually seen that CH3 represents the best
forwarder.

5.3.5. Sensitivity Analysis. In this section, our objective is
analyzing the combined model: AHP-TOPSIS. We make,
therefore, an alternative evaluation under different weights
where two weights are permuted while the remaining
weights are constant. Table 10 represents the evaluation
cases considered.

In each case, we applied all model steps for ranking
alternatives. From sensitivity analysis results (Table 11 and
Figure 1), we conclude that the main case represents
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alternative ranking originally. Moreover, CH3 keeps its high-
est rank in all cases compared to the other CHs. CH3 has the
highest score, even if we attribute equal weights to criteria.

Consequently, we can conclude that our decision-making
process is insensitive to criteria weights.

6. Simulation Results

To evaluate our approach performances, we compare it with
DCPVP and LEACH protocols. To do so, we consider two dif-
ferent scenarios. The first one consists of varying the network

size, and the second focuses on varying the initial residual
energy. Table 12 describes the parameters’ values. In the stud-
ied scenarios, sensors are distributed in the target area with the
same initial energy. A sensor belongs to the list of dead nodes
if its energy level is null. It is, therefore, removed from the
active list and cluster construction and routing packet pro-
cesses. To prove experiment exactitude, all results represent
the average value of 20 runs.

6.1. Energy Efficiency. In this section, we present the exami-
nation of the energy efficiency of the proposed work using
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Figure 10: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for a network size 50 ∗ 50.
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Figure 11: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for a network size 100 ∗ 100.
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different levels of ss (strong signal threshold) for two dif-
ferent scenarios. The first one is based on the network size
evaluation and the second focuses on making the
approach examination using different initial energy levels.
Figures 2–9 depict the energy consumed by our novel
approach, DCPVP, and LEACH protocols for the first
and second scenarios, respectively. The x-axis represents
the number of rounds, while the y-axis shows the values
of energy consumed by the compared approaches. DCPVP
and LEACH protocols show much higher values than our

new protocol for various ss values. This is justified by their
CH selection process that neglects the leaders’ coverage. This
drained, therefore, more energy due to the transmission of
redundant data. Moreover, the LEACH protocol shows the
highest values compared to DCPVP and our approach. This
is justified by the use of a probabilistic method for selecting
the CH and the direct communication between CHs and the
sink node. However, the proposed protocol shows a signifi-
cant reduction of the energy consumed due to the effective
CH election process where an efficient weighted function is
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Figure 12: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for a network size 150 ∗ 150.
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Figure 13: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for a network size 200 ∗ 200.
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explored. CH selection considers three important parame-
ters: residual energy, distance from sink, and CH coverage.
Also, our approach follows a strategy of node activation in
the network for handling communication between CHs
and their members. Only nodes with strong-enough signals
could communicate their detected signals while the remain-
ing sensors are in sleep mode until an important event is
detected. This way of communication allows reducing the
number of nodes that interact and hence enhances the net-
work performances. The proposed scheme improved the

routing phase using the multihop communication between
clusters and the sink node. The communication process
is controlled using the MCDM technique where two
methods are combined for selecting efficient CHs responsi-
ble for routing data. In this phase, various criteria are
considered which are grouped in three contexts where each
one includes the important subcriteria for achieving this
phase effectively. The use of the hybrid multicriteria model
improved well data routing compared to the DCPVP
protocol.
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Figure 14: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for E0 = 0:2.
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Figure 15: The number of dead nodes our approach (b), DCPVP, and LEACH protocols (a) for E0 = 0:4.
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6.2. Number of Alive Nodes. Our approach is evaluated using
the network lifetime parameter. Figures 10–17 depict the
number of alive nodes of the novel approach, LEACH, and
DCPVP protocols for the first and second scenario, respec-
tively. It is shown from curves that our scheme prolongs
the network lifetime for different ss values. This is justified
by the use of a strong weighted function for electing the
most effective CHs among available nodes. Moreover, an
activation technique is used for controlling the number
of nodes that interact inside clusters. On the other hand,

our approach exploits an efficient MCDA-combined method
for controlling the distance between clusters and the sink.
Taking into account all these requirements improved signif-
icantly the network life of CHs compared to the LEACH
and DCPVP schemes. Consequently, the network lifetime
is well increased compared to the DCPVP approach. How-
ever, LEACH and DCPVP have low values due to the
energy consumed during the intercluster communication
because there is no control of the number of sensors that
communicate inside each cluster and redundant signals
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Figure 16: The number of dead nodes for our approach (b), DCPVP, and LEACH protocols (a) for E0 = 0:6.
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Figure 17: The number of dead nodes for our approach (b), DCPVP, and LEAsCH protocols (a) for E0 = 0:8.
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are routed. The LEACH protocol has shown the lowest
values because it uses direct communication between CHs
and the sink. This consumed more energy and hence
increased the number of dead nodes. However, the data
routing phase of our scheme is performed according to
the hybrid AHP-TOPSIS model where three global contexts
are considered. Forwarder selection is based on different
vital factors that influence the network’s lifetime. The com-
bination of these factors improved significantly the network
lifetime.

7. Conclusion

WSNs are widely used for various applications such as envi-
ronmental applications, home automation, and patient mon-
itoring. However, sensors are energy-constrained devices due
to their tiny architecture. Indeed, they are responsible for
performing several tasks such as self-distribution, data collec-
tion, and routing cooperation. Data routing consumed more
energy compared to event sensing or other communication
tasks. Hence, enhancing the rate of energy drained while
routing represents a critical challenge for the research com-
munity. The clustering mechanism has shown its efficiency
for performing the network organization and represents an
effective solution compared to classical routing methods.
However, existing routing schemes have rarely focused on
forwarder selection. In this work, an efficient routing scheme
is proposed as the solution of both CH and forwarder selec-
tion problems. A strong weighted function is exploited to
pick CHs effectively and an activation algorithm is proposed
for handling sensed signals’ redundancy. Various researchers
have improved clustered approaches using MCDMmethods.
However, the majority of research works consisted of the CH
selection problem and the use of random criteria weights. In
this work, we use a combined AHP-TOPSIS model for mak-
ing forwarder selection. We use the AHP method for weight
generation and TOPSIS for forwarder ranking. Moreover,
sensitivity analysis results are discussed for analyzing the
AHP-TOPSIS model in our case and proving the originality
of forwarder ranking. In all cases, results illustrate the prior-
itizing stability where CH3 is ranked as the most relevant for-
warder. Simulation results indicate that this model improved
network performances significantly compared to the related
scheme. We conclude that the AHP-TOPSIS tool may
become a promising model for prioritizing data forwarders
in WSN. As future work, we intend to use the integrated
AHP-TOPSIS tool with other routing approaches consider-
ing real applications.
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