
Research Article
Evaluation of the Spatial Pattern of the Resolution-Enhanced
Thermal Data for Urban Area

Xiao Feng 1 and Jiyuan Li 2

1School of Highway, Chang’an University, Middle of South Er’huan Road, Xi’an, Shaanxi, China 710064
2Northwest Land and Resources Research Center, Shaanxi Normal University, No. 620 West Chang’an Street, Xi’an, Shaanxi, China
710119

Correspondence should be addressed to Jiyuan Li; vip@snnu.edu.cn

Received 31 October 2019; Accepted 14 December 2019; Published 28 January 2020

Guest Editor: Zhifeng Yu

Copyright © 2020 Xiao Feng and Jiyuan Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the development of urbanization, land surface temperature (LST), as a vital variable for the urban environment, is highly
demanded by urban-related studies, especially the LST with both fine temporal and spatial resolutions. Thermal sharpening
methods have been developed just under this demand. Until now, there are some thermal sharpening methods proposed
especially for urban surface. However, the evaluation of their accuracy still stopped at the level that only considers the statistical
aspect, but no spatial information has been included. It is widely acknowledged that the spatial pattern of the thermal
environment in an urban area is relatively critical for urban-related studies (e.g., urban heat island studies). Thus, this paper
chose three typical methods from the limited number of thermal sharpening methods designed for the urban area and made a
comparison between them, together with a newly proposed thermal sharpening method, superresolution-based thermal
sharpener (SRTS). These four methods are analyzed by data from different seasons to explore the seasoning impact. Also, the
accuracy for different land covers is explored as well. Furthermore, accuracy evaluation was not only taken by statistical
variables which are commonly used in other studies; evaluation of the spatial pattern, which is equally important for urban-
related studies, was also carried out. This time, the spatial pattern not only was analyzed qualitatively but also has been
quantified by some variables for the comparison of accuracy. It is found that all methods obtained lower accuracies for data in
winter than for data in other seasons. Linear water features and areas along it are difficult to be detected correctly for most methods.

1. Introduction

It is widely acknowledged that urban heat island (UHI) is
becoming a detrimental phenomenon, leading to several
social and environmental issues such as poor air quality, high
energy demand, and even human mortality [1, 2]. Land sur-
face temperature (LST), which can be derived from remote
sensing data, is an essential variable for UHI studies and
has been widely used in the literature [3]. Unfortunately, it
is still reported that the current satellite sensor data are of
inadequate detail for urban-related studies, which demands
data with fine resolution in both spatial and temporal dimen-
sions [4]. Sobrino et al. [5] carried out a study exploring the
suitable spatial and temporal resolutions for UHI studies
and finally suggested that spatial resolution finer than 50m

and a 1-2-day revisit frequency would be the desired resolu-
tions. According to the current satellite thermal data, it is
impossible to achieve this requirement because there is a
trade-off between the spatial and temporal resolutions of
the current remote sensing data. Moreover, this trade-off is
difficult to address through the advancement of hardware
due to the physical principles of remote sensing [6–8]. Thus,
thermal sharpening techniques have been proposed.

It is found that the accuracy of thermal sharpening usu-
ally relies much on the physical meaning behind the relation-
ship between LST and the sharpening predictors. This means
that if the relationship and sharpening predictors have a
strong physical meaning (e.g., the strong correlation between
vegetation and LST in summer), the accuracy of a thermal
sharpening method is usually acceptable. In light of this,
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researchers used more land cover information in thermal
sharpening, especially for areas with complicated surface
compositions such as urban areas [9, 10]. Studies based on
regression models for downscaling have often used spectral
indices (e.g., normalized difference water index (NDWI),
normalized difference built-up index (NDBI)) to represent
different land covers [8, 11, 12], while some others directly
made use of land cover data in the process of downscaling
[13, 14]. The accuracy assessment shows that methods con-
sidering more land covers gained a higher accuracy than
methods based on only NDVI-LST relationship for urban
areas. However, although the priority of bringing more land
cover information in thermal sharpening has been demon-
strated, as Sismanidis et al. [15] pointed out, the evaluation
system of current thermal sharpening methods for urban
areas may still need some improvements.

First, results of many studies are carried out by only
one image and hence may be of limited generalizability
[8, 16, 17], particularly when images acquired at different
times or under different conditions are used (e.g., summer
or winter) or used for different land cover mosaics. There-
fore, it is better to use more than one image as the testing
dataset to reduce the occurrence of bias. Furthermore, LST
is a highly changeable variable which changes hourly, daily,
and seasonally. Sismanidis et al. [15] pointed out that most
spatial-resolution-enhanced LST actually would be used for
UHI monitoring and analyzing which are the time series
applications. Thus, the evaluation should at least consider
the performance of a new method in different biomes, sea-
sons, topography, and climatic conditions which will impact
the relationship between LST and its predictors in time series
studies. Until now, though there were some studies that
reported the use of thermal sharpened LST for time series
application, they mainly used the images collected between
June and September [15, 18, 19]. This is because these studies
usually used the methods relying on NDVI-LST relationship,
and thus, they need to choose the months that have a reliable
NDVI-LST relationship to guarantee the accuracy. There-
fore, there is still a lack of research exploring the accuracy
of thermal sharpening methods for data in different seasons.

The second issue is the evaluation of the spatial pattern of
the thermal sharpened LST. Currently, most studies rely on
the statistical methods for the assessment (e.g., RMSE, mean
absolute error (MAE), and correlation coefficient) which
focus on the accuracy of the absolute LST value of each pixel
but do not consider any spatial information [9, 15, 20, 21].
However, spatial pattern information is equally critical for
UHI studies [15]. How to evaluate it quantitatively and ade-
quately is always a challengeable issue. Researchers tried to
measure the spatial extent and magnitude of the UHI or
use some variables (e.g., Local Moran I) to quantify the spa-
tial information from LST images [15, 22]. Unfortunately,
until now, there is no widely acknowledged method to define
the similarity of the spatial pattern between the predicted and
reference LSTs.

The third issue is the evaluation of accuracy for different
land cover types. Although it is acknowledged that more land
cover information can enhance the accuracy of thermal
sharpening for urban areas, it is rare to see the analyses for

the accuracy of the sharpened LST of different land covers.
Based on the definition of heat capacity, it is known that heat
capacity is a significant impacting factor for LST. Different
materials have different heat capacities. Thus, different land
covers have different LSTs. Furthermore, land covers may
have different changing features in different seasons. For
example, the LST of water will not decrease as many as that
of an impervious surface from summer to winter, because
the heat capacity of water is larger than that of the impervi-
ous surface. LST of land covers has a direct impact on the
spatial pattern of LST. Thus, this difference may further lead
to questions such as the following: Will the spatial pattern of
LST, which influenced significantly by land covers, in differ-
ent seasons change? Is the spatial pattern of LST in summer
the same as it is in winter? If it changes, how does it change?
There is a lack of answer to these questions because there
is little spatial analysis of LST for different land covers in
different seasons.

This research tried to provide a comprehensive compar-
ison both statistically and spatially in a quantitative way,
considering all the impacting factors to the accuracy of the
thermal sharpening methods, such as seasons and land
covers. It illustrated the advantage of a newly proposed ther-
mal sharpening method and analyzed the accuracy of differ-
ent thermal sharpening methods proposed for urban areas,
including the new method, by data in different seasons,
which corresponds to the aforementioned first issue. Not
only the statistical assessment of the accuracy was taken;
the evaluation of spatial pattern, which is equally important
for urban-related studies, was also carried out. This study
tried to use quantitative variables to compare the accuracy
of the spatial pattern of LST and not only qualitative
description for the spatial analyses of LST, which provided
a potential way to deal with the second issue. Further-
more, the spatial analysis was also conducted for different
land cover types, which refers to the third evaluation issue
discussed above.

2. Data and Methods

2.1. Data. Great London is chosen as the study area, since it
provides a complex surface composition. Testing data used
in this research includes Landsat ETM+ and MODIS, while
the validation data is ASTER images (Figure 1).

2.2. Experiment Design. The target of this study is to provide a
comprehensive comparison for different methods in both
statistical and spatial aspects and also to analyze the reli-
ability and accuracy of the newly proposed thermal sharp-
ening method SRTS. Thus, other three thermal sharpening
methods proposed for the urban surface, which are Emissivity
Modulation (EM) [14], Pixel Block Intensity Modulation
(PBIM) [23, 24], and adjusted stratified stepwise regression
method (Stepwise) [11], were chosen as the comparison of
SRTS. Those three methods were chosen because they con-
sider more than three land cover types which are essential
impacting factors in thermal sharpening. Another reason is
that their study areas are alsometropolitans that are compara-
ble with each other (i.e., Hong Kong, Athens, Shanghai, and
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London). All four methods were tested by data from different
seasons. Moreover, LSTs for different land cover types were
also compared and analyzed.

The evaluation of thermal sharpening methods was con-
ducted in two perspectives: evaluation by statistical variables,
including RMSE and correlation coefficient of result pro-
duced by each method, and evaluation of the spatial pattern
of thermal sharpened LST results. In this study, fuzzy similar-
ity, which considers the spatial characteristics in the neigh-
borhood of each pixel, was used for evaluation of the spatial
pattern of LST [25]. It calculated a similarity value for each
pixel of the predicted LST images based on the reference
image. In addition, visual comparison with vector boundaries
of some selected objects representing different land covers
was also taken for evaluation of the spatial pattern of LST.
Here, the impervious surface, water, and vegetation are con-
sidered as the main land cover types of the urban surface
[26]. The objects chosen for water or vegetation are relatively
easy, as lakes and parks can be used which usually have a
fairly clear closed boundary. The impervious surface, which
is usually built as open areas or connected to other impervi-
ous surfaces (e.g., roads), is difficult to define a closed bound-
ary. Therefore, in visual comparison, the analysis of the
impervious surface was focused on the relative comparison

between the LSTs of pixels in and outside the objects
representing the impervious surface, for instance, whether
the pixels in the impervious surface objects obtained, if in
summer, the higher LST than its surroundings that are not
impervious surface in the daytime. This can, though qualita-
tively, still support the accuracy assessment of the predicted
spatial pattern of the LST image to some extent and can
reflect the sensitivity of all methods to the LST variation
between different land covers.

2.3. Superresolution-Based Thermal Sharpener. Currently,
there are two main strategies to enhance the spatial resolu-
tion of LST. The first one is to process the coarse spatial res-
olution LST directly with its fine resolution impacting factors
by using their experience relationship extracted by statistical
algorithms, while the second strategy is to enhance the spatial
resolution of the retrieving elements of LST (e.g., thermal
radiance, atmospheric profiles). The newly proposed SRTS
actually proposed a framework within which enhances the
spatial resolution of the retrieving elements first by superre-
solution mapping (SRM) and superresolution reconstruction
(SRR) and then derives the LST based on the resolution-
enhanced elements. The framework has been shown in
Figure 2.

(a) (b)

(c) (d)

Figure 1: Illustration of the study area by the main data sources obtained in April used in this study. (a, b) are the MODIS thermal band
images of Greater London with 1 km resolution. (c) is the true color image of Landsat ETM+ image with 30m resolution, which is
prepared for methods requiring fine resolution input. This image is obtained in June due to the unavailability of data in April 2000. (d) is
the reference LST obtained from ASTER with 90m resolution. The objects representing impervious surface (black boundary), vegetation
(green boundary), and water (purple boundary) are also presented in each image.
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2.3.1. Hopfield Neural Network-Based SRM. One of the
retrieving elements of the LST is the land surface emissivity
which can be derived by land cover map. SRM could enhance
the spatial resolution of the classification and thus can
enhance the resolution of the emissivity.

The HNN is a fully connected recurrent network and
thus can be used to represent the image in image process-
ing [27].

The energy function of HNN for SRM is defined as

E = −〠
N

k=1
〠
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〠
j
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where G1
kij and G0

kij are the goal functions at a neuron (i, j, k);
Pkij andMkij are the proportional information constraint and
the multiclass constraint, respectively; N is the number of
land cover types; and k1, k2, kP, and kM are the weight con-
stants for each element of the energy function. The rate of
change for the energy function for neuron (i, j) is defined as
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The two goal functions, G1
ij and G0

ij, in the energy func-
tion for SRM represent two forces pushing the output to 1
or 0. The aim of the increasing function G1

ij is to raise the
value of the neuron when the average of the eight neighbor-
ing subpixels is greater than a threshold and becomes 0 when
the average is less than the threshold.

The proportion constraint dPkij/dvkij is used to guarantee
that the proportional information derived from soft classifi-
cation is maintained while the goal functions and other con-
straints are satisfied, or this constraint will impact on the
output of the energy function.

The multiclass constraint dMkij/dvkij plays a similar role
as the proportional constraint which adds another limitation
that needs to be satisfied when goal functions achieve the
aim. The basic idea is to ensure that each subpixel has been
assigned with only one land cover type, which means that
no subpixel will be unclassified or overlaid by different types.

It can be seen that the rate of change of the neuron can be
obtained after the rate of change for the energy function is
derived. Then, HNN for SRM could be updated at each time
step, Δt, until ∑ijðuijðt + ΔtÞ − uijðtÞÞ < ε, where ε is a very
small value, or the number of iterations reaches a certain
amount using the Euler method.

2.3.2. Sparse Representation-Based SRR. SRR is to enhance
the coarse spatial resolution image through one or a series
of images by the experience relationship extracted by training
algorithms. The basic idea of this model is that a vector
(signal/image) can be represented by a sparse linear combi-
nation of some vectors (prototypes) contained in a dictionary
matrix (D) which contains all the possible arrangements of
the elements in a vector (signal/image) [28]:

x =Dα, subject to  Dα − xk k2 ≤ ε, ð3Þ

where x is the signal or image that needs to be represented by
the sparse representation model and α is a vector containing
a small number of nonzero elements, recording the coeffi-
cients of the sparse linear combination. To make the features,
which are also called the prototypes in a dictionary, to be as
typical as possible, the dictionary is usually trained by the
dictionary training methods in patches.

This model is primarily popular among data compres-
sion techniques, as it reduces the records for images/signals
to the minimum. However, researchers have found that
images covering the same area but with different spatial res-
olutions share the same sparse vector but use different dictio-
naries [28, 29]. This means that for each image patch pair
containing a coarse spatial resolution patch (xc) and its
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Figure 2: Framework of the proposed SRTS. SRR means superresolution reconstruction. SRM means superresolution mapping. LSE means
land surface emissivity. HNN means Hopfield neural network. CBEM means classification-based emissivity method.
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corresponding fine spatial resolution patch (xf ), they can be
represented as

xc =Dcα,
xf =Dfα,

ð4Þ

where α is the sparse vector they share.
This discovery provides the possibility for spatial resolu-

tion enhancement. If Dc and Df are known by training, they
can be used directly with a coarse spatial resolution image to
derive the corresponding fine spatial resolution image patch-
by-patch. However, this time, the dictionary training is actu-
ally for an image pair, which is different from the traditional
training process just for one single image. So, there are some
modifications made to train the dictionary.

Firstly, because Dc and Df share the same sparse vector α,
the training for Dc and Df cannot be taken separately as two
images. Or they may obtain the different vector α. The strat-
egy used for dictionary training in this condition is the joint
dictionary training [28].

The second modification is the extraction strategy for
training samples. It is known that for traditional SRR, the
training images actually should be the image pairs covering
the same area in different spatial resolutions. However, to
make the preparation of training data simple, the sparse rep-
resentation modelling-based SRR uses each training image
as the fine spatial resolution image and generates its corre-
sponding coarse spatial resolution image by blurring and
downsampling. Furthermore, the sparse representation
SRR does not use the whole training image for training but
just randomly extracted some sample patches from the
training images to save the training time and reduce the
training database.

Finally, the third modification is to add the feature
extraction for coarse spatial resolution patches. To make
the derived sparse coefficients fit the most relevant part of
the coarse spatial resolution signal, feature extraction is
adopted to highlight the features concerned. Generally, this
process could be some kind of high-pass filter [30].

3. Results and Analyses

3.1. Statistical Analyses. To compare with other studies,
which usually use statistical variables to assess their results,
statistical analyses were also taken firstly. Table 1 listed the
RMSE and correlation coefficient of each method to the ref-
erence LST derived by ASTER data.

Table 1 shows that the RMSEs of PBIM and Stepwise
seem to be unacceptable, which are much higher than what
is usually reported in previous studies. Even for EM and
SRTS, RMSE around 5°C seems not a good result either
(normally <5°C) [9, 11, 20]. However, previous studies used
degraded data but not the real data sources for all inputs
and reference data. Some studies claimed that using degraded
data could avoid the small crossscale georeferencing inaccu-
racies caused by the usage of data from different sources
[16, 31, 32]. However, it is almost unavoidable to use data
from different platforms in real applications of thermal

sharpened LST [15, 18]. Therefore, those accuracies reported
by degraded data, although ideal, may not be practical in real
applications. In contrary, accuracy assessment reported by
this study, though not as good as reported in the previous
studies, can be a more practical and reliable reference to those
who would like to use the thermal data in real applications
because all the experiments are based on real data from
different sources.

The reason for the large RMSEs of PBIM and Stepwise
might be explained by the correlation analyses (Figure 3).
The LST ranges of PBIM or Stepwise are much wider than
that of the reference LST. Given that the study area has a tem-
perate oceanic climate, it should be impossible to have some
extreme LSTs such as 160K or 430K. The reference LST also
suggested that the range of LST should not be that extreme.
Thus, the correlation plots indicate that PBIM and Stepwise
produced some extreme points which are not correct and
these points significantly increased the RMSEs.

However, the number of those extreme points is not very
large, as the correlation coefficients of PBIM and Stepwise are
generally similar to those of the others as shown in Table 2.
Differences of the correlation coefficient between compared
methods seem to be impacted mainly by seasons, because
almost all the results for winter (January) obtained the lowest
correlation coefficients among the three seasons. This may
mainly be due to the heat capacity of surface materials which
makes the characteristics of LST in winter relatively different
from those in other seasons. The temperature of a material
with a larger heat capacity changes slower than that of a
material with a smaller heat capacity along with the change
of the external temperature. Thus, LST contrast in winter
would be much smaller than that in other seasons because
LST of water will not change as much as others from summer
to winter. This phenomenon will be shown later in Visual
Comparison where the reference images of all three seasons
are presented. Therefore, the reason why the correlation
coefficients of PBIM and Stepwise are lower than those of
the other two is because they failed to predict the small LST
contrast in winter while EM and SRTS did better than them.

The only one minus value in Table 1 is produced by
Stepwise for data in October. From Figure 3, it shows that
the main body of its scatter points actually shows a relative
clear positive trend, which means that the regression line
should be from the bottom left corner to the upright corner
in the feature space. However, there is a small green cluster
of points (means a relatively large number of points) located

Table 1: Correlation coefficient and RMSE of results of all
compared methods in different seasons.

Correlation coefficient
between sharpened
and reference LST

RMSE of LST image
produced by each method

Jan Apr Oct Jan Apr Oct

EM 0.395 0.647 0.63 5.1706 4.05 5.0236

SRTS 0.361 0.632 0.554 5.1112 4.3352 5.1585

PBIM 0.285 0.585 0.493 79.0189 45.8235 45.1414

Stepwise 0.066 0.497 -0.015 54.0901 47.8465 39.1645
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at the top left corner, and this cluster impacted the trend of
the regression line significantly, making it even slightly nega-
tive. The small green cluster indicates that several points with
low LST in reference dataset are predicted to have a much
higher LST in the predicted dataset. If analyzed with the
images in Visual Comparison (Figure 4), it can be seen that
almost all the water pixels are predicted to have the highest

LST in the result of Stepwise for data in October which are
not consistent with the reference of October, leading to a
low correlation with the reference. This error is mainly
because Stepwise adopted an automatic mechanism of choos-
ing sharpening indices [11]. For the image in October 2001,
although the candidate indices include NDVI, MNDWI,
NDBI, and albedo, only MNDWI was chosen as the
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Figure 3: Scatter plot of the sharpened LST produced by each method in different seasons. Different colors represent different locating
frequencies of points. From blue to red, it means that the frequency is from the lowest to the highest. X-axis represents the reference LST
while Y-axis is the sharpened LST.

Table 2: Mean fuzzy similarity, standard error of the mean of results produced by EM, SRTS, PBIM, and Stepwise for data in different
seasons.

Jan Apr Oct All seasons
Mean SE Mean SE Mean SE Mean SE

EM 0.419 0.000571 0.688 0.000331 0.673 0.000377 0.623 0.000244

SRTS 0.668 0.000329 0.605 0.000414 0.686 0.000341 0.656 0.000208

PBIM 0.612 0.000566 0.652 0.00039 0.685 0.000383 0.654 0.000251

Stepwise 0.602 0.000559 0.625 0.000415 0.485 0.000468 0.568 0.000277

All methods 0.594 0.000243 0.645 0.000193 0.638 0.0002
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sharpening index for stepwise regression and this cannot be
controlled manually. Therefore, the water surface pixels were
all given a high, even higher than the impervious surface, LST
value in that LST image, though the shape of most water bod-
ies (e.g., lakes, rivers) is predicted relatively well (as shown in
Figure 4). This may reflect the limitation of the autoselection
mechanism for sharpening indices to some extent. Although
the autoselection may avoid the human interference in the
process, it causes the risk that the chosen indices might be
unsuitable but cannot be controlled manually.

3.2. Evaluation of Spatial Pattern. As Keramitsoglou et al.
[22] claimed, the spatial pattern information from LST
images is also important for the UHI studies. Sobrino et al.
[5] pointed out that to use the mean LST as the representa-
tion of an urban area or a rural surrounding area is not rea-
sonable, as, in their experiment, it is apparent that different

districts in the city have different LSTs. Thus, the description
on the details of the thermal structure of the UHI effect
should be considered. Unfortunately, there is a lack of in-
depth evaluation of the thermal spatial patterns [15]. Thus,
this research considers the spatial pattern as another essential
aspect in the evaluation of the compared methods. Fuzzy
similarity was employed as the assessment variables as it
can not only provide a mean value as the representation of
the entire image but also produce an image of which each
pixel has a similarity value for the spatially corresponding
pixel of the original result.

3.2.1. Evaluation by Mean Fuzzy Similarity and the Standard
Error of the Mean. Figure 5 illustrated the mean fuzzy simi-
larity of the result produced by each method in each season.
It shows that most result obtained a mean similarity above
0.6 except for the result of EM in January and result of

EM
(a)

PBIM
(b)

Stepwise
(c)

Reference
(d)

SRTS
(e)

Reference
(f)

1

0

1

0

288 K

279 K

288 K

279 K

Figure 4: Fuzzy similarity image for LST in January sharpened by each method. The coverage area in the figure is the east part of Great
London which is near the estuary of the River Thames. The corresponding references are provided. The red polygons in the reference
images illustrated the central urban area. The red boxes in sharpened LST images highlighted the area with distinctively low similarity.

0
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0.8

EM SRTS PBIM Stepwise

Jan
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Figure 5: The mean fuzzy similarity of each method based on data in all tested seasons.
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Stepwise in October. This may suggest that SRTS and PBIM
are better for detecting the correct spatial pattern than EM
and Stepwise.

Table 2 listed more details on the mean fuzzy similarity
and the standard error (SE) of the mean for every result. It
shows that the SEs of all the results are very small, which
means that almost all the mean values are significantly differ-
ent from each other. In addition, it is known that lower values
of SE indicate more precise estimates of the population mean.
In Table 2, SRTS obtained the lowest SEs of the mean among
results in January and October, while EM obtained the lowest
SE of the mean among results in April. In the comparison of
the mean values and the SE of the mean based on data in all
three seasons for each method, it also shows that SRTS
obtained the lowest SE of the mean and the highest mean
fuzzy similarity compared with other methods. This may
suggest that SRTS has a higher accuracy in the evaluation
of the spatial pattern than other three methods.

When compared for different seasons, it can be seen that
the mean similarity and SE of the mean based on results of all
methods in January obtained the lowest similarity and the
highest SE among the compared three seasons. Thus, even
though not shown apparently in Figure 5, the figures in
Table 2 may still suggest that the data in January tends to
be difficult for thermal sharpening methods to get a correct
spatial pattern of LST compared with data in other seasons.

3.2.2. Evaluation by Fuzzy Similarity Imagery. Figures 4–6
showed the fuzzy similarity image of the result produced by
each method for each season. Fuzzy similarity images can
reflect the spatial distribution of areas with high or low
similarity to the reference. In the fuzzy similarity image, the
brighter the pixel is, the higher the similarity value it has,
which indicates that it is more similar to the reference pixel.

Otherwise, through comparing the similarity image to the
reference image, the shortage of each method on predicting
different land covers might be found.

Figures 6 and 7 illustrated the fuzzy similarity images of
LST results not in winter. It might be found that the illus-
trated coverage area of the result produced by SRTS is differ-
ent from other methods. For EM, PBIM, and Stepwise, their
experiment data should be the common area among scenes
of three platforms (MODIS, ETM+, and ASTER), while
SRTS, which does not require fine spatial resolution input,
just needs two sources (MODIS and ASTER). This makes
the coverage area in experiment of SRTS different from, usu-
ally larger than, those of the other three methods.

Through comparison in Figures 6 and 7, which represent
the performance of each method on detecting the LST
spatially correct for data not in winter, it might be said
that Stepwise is not recommended among the compared
methods, as its accuracy is not stable due to the automechan-
ism of predictor choice of the algorithm. Its result in Figure 7
obtained apparently more dark pixels than in Figure 6, indi-
cating a lower spatial similarity. Although there are the
advantages of this mechanism such as to reduce the human
interference and to make the process more automatic, it still
lacks the mechanism to guarantee that the most optimal
predictors can be selected. For EM, PBIM, and SRTS, their
performances in evaluation by fuzzy similarity images seem
to be similar. Dark pixels tend to gather in or around the river
area, indicating that the narrow linear water bodies are diffi-
cult to be detected correctly. This is mainly because the linear
features tend to be in the mixed pixels in the coarse spatial
resolution images. Thus, in thermal sharpening, even the fine
spatial resolution information has been brought in or gen-
erated by algorithms; the accuracy of the spatial distribution
of those fine resolution details is easily impacted by the

SRTS Reference for (e) 
(e) (f)

EM PBIM Stepwise Reference for (a-c)
(a) (b) (c) (d)

1

0

310 K

276 K

Figure 6: Fuzzy similarity image of LST in April sharpened by each method. The references for the similarity image covering the same area
are also provided. The coverage area in the figure is the west part of Great London which includes the lakes near Heathrow Airport.
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original coarse resolution mixed pixels. Otherwise, vegeta-
tion in rural areas tends to be predicted wrongly as well
for all compared methods.

When it comes to Figure 4 which represents the perfor-
mance of each method for data in winter, there are two
apparent findings. The first is that EM obtained much more
dark areas than other methods, which is consistent with its
low mean fuzzy similarity in the previous evaluation. The
second is that almost all the water pixels in the result of
Stepwise are predicted incorrectly.

Based on the reference data, the LST contrast of the entire
study area in winter is much smaller than that in other sea-
sons because of the heat capacities of different land covers.
From the reference image for LST in winter (Figures 4(d)
and 4(f)), it can be seen that the LST difference for the whole
image is only 9K, including water, which is much smaller
than those in other seasons. The incorrections that happened
for vegetation and impervious surface in the result of EM are
mainly because the LST for the impervious surface was pre-
dicted to be higher and LST for vegetation was predicted to
be lower than their reference LSTs for winter. For the incor-
rections that occurred for water or areas along it (as the red
boxes shown in Figures 4(c) and 4(e)), similarly, it is because
of the large heat capacity of water and the original coarse res-
olution mixed pixels. In winter, the LST of water in winter is
not significantly lower than most other materials according
to the reference. However, in the sharpened LST, water still
gets the lowest LST in the result of Stepwise, leading to a
low similarity for the water surface.

In Figure 4, it seems like PBIM and SRTS obtained less
dark areas than the other two methods. The dark pixels in
the result of PBIM are evenly distributed in the study area
while the dark pixels in the result of SRTS tend to be
gathered mainly near the edge of the river and vegetated
areas in the upper and lower parts of the image. Accord-
ing to the reference, there are much less dark pixels that
occurred in the central urban area in the result of SRTS
(as illustrated by the red polygon in the reference image).

Even for the part of the river in the urban area, dark
pixels in or at the edge of the river are reduced signifi-
cantly compared to those of the river edge in the rural
area (as shown in the red box in Figure 7(e)). This may
suggest that SRTS is more suitable to be used for urban
studies than others in winter as it tends to produce less
unsimilar pixels for the impervious surface which is the
main land cover type of the urban surface.

Through analyses of Figures 4–6, the following conclu-
sions can be derived:

(1) Vegetated area, water, and areas near water tend to be
wrongly predicted for all compared methods as more
dark pixels in the fuzzy similarity image tend to occur
in these areas

(2) Among all the compared methods, PBIM and SRTS
tend to obtain less dark pixels than other methods,
which indicates a higher accuracy for the predicted
spatial pattern generated by PBIM and SRTS than
those of others

(3) Result of SRTS for data in winter obtained much less
dark pixels for the impervious surface area in the
fuzzy similarity image. This may indicate that SRTS
is suitable for urban studies as the main land cover
type of the urban area is the impervious surface

(4) Stepwise tends to have a lower accuracy for water
than other land cover types. In the experiments,
results of Stepwise for LST in October and January
obviously obtained the incorrect LST for the water
surface (as shown in Figures 6 and 7). This may sug-
gest that Stepwise is not suitable to be used for the
area containing a large amount of water

3.3. Visual Comparison. The general spatial pattern of the
entire study area processed by each method in different
seasons will be compared visually, to let the readers get a

EM
(a)

PBIM Stepwise Reference for (a-c)
(b) (c) (d)

1

0

SRTS Reference for (e)
(e) (f)

307 K

290 K

Figure 7: Fuzzy similarity image for LST in October sharpened by each method. The coverage area in the figure included the most proportion
of the central London and the north-east part of the surrounding areas. The red polygons in references highlighted the central urban area of
London. The red boxes in sharpened results highlighted the area with distinctively low similarity.
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straightforward view about the accuracy of the spatial pattern
of each sharpened LST. It is assumed to be used as a support
to the evaluation of the spatial pattern, especially to see the
accuracy performance of each method for the main land
cover types of urban areas, including vegetation, water, and
impervious surface.

To understand the thermal response of each land cover
type is also valuable for a district level study, as the LST can
vary significantly between different land covers [33]. Particu-
larly, land cover composition in urban areas is highly compli-
cated and variable in the spatial dimension, which makes the
thermal environment more complex. Anniballe et al. [19]
also pointed out that the intraurban UHI spatial variability
is closely related to the distribution of buildings, surface
materials, and density of green areas. Therefore, some objects
are chosen in this research for three land cover types.

Those highly built-up areas might be the airport, com-
mercial areas with intensive roof-related impervious surface,
and so forth.

Figure 8 illustrated the results of all compared methods
for data not in winter (i.e., April and October). It can be seen
that the general spatial pattern of LST produced by EM is
consistent with the reference, yet blocky effect exists in both
results of EM, which actually is impacted by the original
coarse resolution data. One apparent evidence for the rough
description of the spatial pattern is that the shape of the river
and the lakes is not well described, which almost maintained
the characteristics of the original coarse pixels.

For results of SRTS, blocky effect is eliminated, and the
general spatial pattern of LST is consistent with the reference
as well. However, it seems like the pattern has been smoothed
too much, resulting in several small round hot spots in the
edging area of the central urban area. This is mainly due to
the SRM algorithm used by SRTS. If SRM is overdone, it is
common to produce this sparsely distributed round shapes.
Nevertheless, variations of LST between different land covers
are still distinguishable in results of SRTS. Most impervious
surface objects obtained the highest LST, while parks are allo-
cated to the lower LST. Water bodies are generally located in
the blue or yellow areas.

Even though the general pattern that the central urban
areas are red and the surrounding areas are blue can be dis-
tinguished in the result of PBIM, it seems like a large amount
of blue fragments exist in the central area while several red
fragments appear in the rural areas as well. This might be
because the regression method it used tries to bring the fine
spatial resolution information extracted from predictors into
the result, while the residual extracted from the original
coarse resolution pixels is still used to correct the final sharp-
ened LST. These residual data brought back the impact of
coarse resolution pixels. In the results of PBIM, the shape
of the river and some lakes is described fairly well. However,
the relationship between LSTs of vegetation and impervious
surface, where LST of vegetation should be lower than that
of impervious surface, was not described well.

Results of Stepwise for data in October are apparently
inconsistent with the reference, where the LST of water
should not be that high. This is due to the automechanism
of predictor choice. And here again confirmed that the

accuracy of Stepwise is not stable when used for different
applications.

Figure 9 illustrated the result of each method for data in
winter (January). Due to the limited common area between
ASTER and ETM+ imagery for this date, not all the objects
have the reference background LSTs here. However, from
the reference, it can be seen that the LST contrast of the entire
area is much smaller than in other seasons.

In Figure 9, the spatial pattern of LST produced by EM
and SRTS showed the consistency with the reference, where
the LST contrast is generally small. In contrast, the result of
PBIM obtained a fragmented LST spatial pattern and even
shows a trend that the central area is cooler than the sur-
rounding rural area. Stepwise still predicted the water pixels
to have the lowest LSTs, which actually should have the
similar LST to other land covers.

Through comparison in Figure 9, the priority of using the
classification information, instead of a limited number of
spectral indices, to provide fine spatial resolution details in
thermal sharpening is highlighted. As introduced in Data
and Methods, EM extracted fine spatial resolution details
from emissivity data which actually are produced by classifi-
cation information, and SRTS uses the SRM to sharpen the
land cover information first and then bring it into LST esti-
mation. In this section, the results produced by EM and SRTS
do not have extreme points like in results of PBIM and
Stepwise and are more sensitive to the changes of the spatial
pattern in different seasons than those of PBIM and Stepwise.

4. Discussions

4.1. The Evaluation of Spatial Pattern. As Sismanidis et al.
[15] mentioned, most current studies on thermal sharpening
methods lack the evaluation of spatial patterns which is
equally significant for UHI studies. Instead, they prefer to
use statistical variables to do the evaluation. This might be
because these variables are easy to be calculated from the
absolute LST values and can be a quantitative way to describe
the accuracy performance. However, they consider little spa-
tial information of the entire LSTmap. Quan et al. [21] found
that the conclusion derived from the evaluation based on the
absolute LST values might be inconsistent with that derived
from the evaluation of LST spatial distribution. In their
experiment, they found the result with the most similar spa-
tial pattern and texture to the reference image obtained the
highest RMSE. Therefore, they suggested that to use which
evaluation or both of them should depend on the application
of the sharpened LST. If the sharpened LST is used as input to
a quantified model, the accuracy of the absolute LST values
should be emphasized. If the application focuses on the
description of the spatial pattern of the entire thermal envi-
ronment, evaluation of LST distribution and texture might
be preferred. Therefore, for a comprehensive evaluation of a
method, it is better to evaluate both aspects.

The lack of evaluation of the LST spatial pattern might be
partly due to the difficulty of defining the spatial pattern of
LST. What usually derived from thermal remote sensing data
is the raster LST images which consist of pixels. On the con-
trary, the spatial pattern is a relatively “vectorial” concept

10 Journal of Sensors



which may need to define a boundary of an area. As Keramit-
soglou et al. [22] reported, they extracted the hot spot pixels
and then treat them as objects. However, in their study, the
extracted objects were more like the LST classification but
lost the gradual change of the entire LST pattern. Voogt
and Oke [34] have already criticized that the slow develop-
ment of thermal remote sensing of urban areas is due largely

to the qualitative description of thermal patterns. It is com-
mon to find in literature that, for comparison of LST spatial
patterns or texture, people usually present a number of
results in an illustration and then use a limited number of
words for the description [35–37]. This revealed the lack of
a widely acknowledged quantifying method for evaluation
of the LST spatial pattern. Currently, three indices have been
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Figure 8: (a–h) are the sharpened LST images for data acquired not in winter by all compared methods. Reference LST images ((i, j)) are
provided to show the general spatial pattern of part of the study area for the visual comparison. Vector boundaries in each image
represent the chosen objects for different land cover types. The objects with black, green, and purple lines represent the impervious
surface, vegetated areas, and water bodies, respectively.
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tried in the relative evaluations. The Local Moran Index
(LMI) has been tried in studies of Sismanidis et al. [15]
because this is a classic statistical tool for detection of the spa-
tial cluster [38]. To evaluate the spatial pattern, CO-RMSE,
which is based on the comparison between the LST cooccur-
rence matrix of sharpened LST and the reference, was
proposed and used in studies of Quan et al. [21]. Fuzzy sim-
ilarity allocated a similarity value to each pixel based on the
information of its neighborhood pixels around the central
pixel. The reason we adopted fuzzy similarity in this research
is that it not only provides a value representing for the entire
study area (e.g., mean fuzzy similarity of an image) but also
provides a similarity image which can further provide spatial
information on the location of error occurrence and its rela-
tionship to the land cover or other spatial factors. This type of
information did help the analyses in our study, making us
understand the impact of different land cover types to the
accuracy performance of each method. Also, it is found in
our study that the accuracies of PBIM and Stepwise in evalu-
ation of the spatial pattern were not affected by the extreme
points too much like in the statistical evaluation. This might
be because those extreme values are smoothed by their neigh-
borhoods in calculation of fuzzy similarity and thus do not
show a significant reduction in the accuracy of PBIM and
Stepwise in evaluation of the spatial pattern. This reflected
the priority of fuzzy similarity and the necessity to do evalu-
ation of the spatial pattern for a method as it may reveal

accuracy performance from a different aspect. The evaluation
and analyses of the spatial pattern in this study may provide
some ideas for the further related researches.

4.2. Application of Thermal Sharpening for Urban Area. In
early years of development of thermal sharpening technol-
ogy, most studies emphasize on the sharpening for the large
area covered mainly by vegetation [17, 37, 39]. Also, the pre-
dictors commonly used in thermal sharpening algorithms are
vegetation indices. Thermal sharpening was found to be
especially suitable for urban thermal environment studies
because there is an urgent requirement of both fine spatial
and temporal resolution data [5, 26, 40]. However, it was
found that those methods proposed for large vegetated areas
were not suitable for urban areas because the main impacting
factor of LST in urban is not the vegetation [12, 41]. There-
fore, more impacting factors, including impervious surface
fractions, water indices, and albedo, were considered. Until
years after 2010, more proposal studies and application
reports of thermal sharpening methods were found in litera-
ture [8, 11, 15, 35, 42, 43]. However, it is found that for most
of them, the scale factor (or zoom factor) of downscaling is
still limited (<10) and the aiming sharpening resolutions,
especially for applications of thermal sharpening data, are
1 km [15, 44], 90m [35], or 30m [42], which are the spatial
resolutions of MODIS, ASTER, and TM/ETM+, respectively.
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Figure 9: LST images for MODIS image acquired in January 2001 sharpened by (a) EM, (b) PBIM, (c) SRTS, and (d) Stepwise. Reference LST
image (e) is provided to show the general spatial pattern of part of the study area for the visual comparison. Vector boundaries in each image
represent the chosen objects for different land covers. The objects with black, green, and purple lines represent the impervious surface,
vegetated areas, and water bodies, respectively.
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This might be due to the limited data sources for fine spa-
tial resolution input. Also, it might be the strategy to guaran-
tee the accuracy of the sharpened data, because studies
usually reported that a larger scaling factor corresponds to
a lower accuracy of the sharpened data [5, 8, 31]. Another
possible reason might be the processing time. For applica-
tions which would like to dynamically monitor the thermal
environment of several urban areas, they need data with very
fine temporal resolution which usually are acquired from
geostationary platforms (e.g., SEVERI with 15min resolu-
tion). If the spatial resolution is also required to be relatively
fine, there might be a burden for the processing system.

Although the applications of sharpened LST seem to be
limited, that does not mean that the efforts made on expand-
ing the diversity of the thermal sharpening methods are
insignificant. On the contrary, the limited applications may
reflect that the current methods are still insufficient or
unsuitable for various real applications. Efforts may still be
needed to ease the data preparation, optimize the algorithm
to reduce the processing time and burden, and make the
whole process be as automatic as possible. These requirements
of practical applications are still challenging the research
world, and some of the researchers have started to try to deal
with the above issues. SRTS tried to simplify the data prepara-
tion by moving out the requirement of fine spatial resolution
input [13]. Weng et al. [42] and Yang et al. [35] are advancing
some models which try to generate TM-like and ASTER-like
daily LST automatically based on a number of inputs. The
above attempts are still in the beginning and have some limi-
tations. However, they showed the effortsmade on diversity of
thermal sharpening development and on filling the gap
between the research and the real applications.

5. Conclusions

This study compared four thermal sharpening methods pro-
posed especially for urban areas through evaluation of two
aspects. Particularly, not only statistical evaluation, which is
commonly used by most thermal sharpening methods, but
also evaluation of the LST spatial pattern is carried out.

In both evaluations, it is found that the accuracy perfor-
mances of all methods are worse in winter than in other sea-
sons. This is mainly because the LST contrast in winter
decreased significantly compared to that in other seasons.
Most thermal sharpening methods cannot detect this change
very well, leading to a decreased accuracy. For comparison of
different methods, Stepwise is not recommended for areas
with a large amount of water, and EM and SRTS performed
better than the other two methods. However, SRTS removed
the requirement of fine spatial resolution input data which
eased the data preparation and thus is considered to be more
useful than EM. It is also found that linear water features and
areas along it are commonly detected wrongly by most ther-
mal sharpening methods. Vegetation in rural areas is also
easy to be detected incorrectly.

In this study, we focused on the evaluation of the spatial
pattern in accuracy assessment to make the evaluation of
each method be comprehensive. Though the accuracy of
the spatial pattern has been recognized as an essential factor

for LST map, it is difficult to be quantified for a long time.
This research may provide an idea on how to evaluate the
spatial pattern for the further relative studies. Also, other
assessing variables, such as LMA and CO-RMSE, are the
good alternatives. It is urgent to develop a variable which
can be widely accepted to quantitatively evaluate the spatial
pattern and texture of an image. In addition, it is also encour-
aged to develop more thermal sharpening methods that
could be used in real applications especially for urban areas
in the future.
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