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To detect terrestrial application-specific messages (ASM-TER) signals from a satellite, a novel detection method based on the fast
computation of the cross ambiguity function is proposed in this paper. The classic cross ambiguity function’s computational
burden is heavy, and we transform the classic cross ambiguity function to a frequency domain version to reduce the
computational complexity according to Parseval’s theorem. The computationally efficient sliding discrete Fourier transform
(SDFT) is utilized to calculate the frequency spectrum of the windowed received signal, from which the Doppler frequency
could be estimated coarsely. Those subbands around the Doppler frequency are selected to calculate the ambiguity function for
reducing the computational complexity. Furthermore, two local sequences with half length of the training sequence are utilized
to acquire a better Doppler frequency tolerance; thus, the frequency search step is increased and the computational complexity
could be further reduced. Once an ASM-TER signal is detected by the proposed algorithm, a fine Doppler frequency estimation
could be obtained easily from the correlation peaks of the two local sequences. Simulation results show that the proposed
algorithm shares almost the same performance with the classic cross ambiguity function-based method, and the computational
complexity is greatly reduced. Simulation results also show that the proposed algorithm is more resistant to cochannel
interference (CCI) than the differential correlation (DC) algorithm, and the performance of fine Doppler frequency estimation is
close to that of the Cramér–Rao lower bound (CRLB).

1. Introduction

The automatic identification system (AIS) [1] is well recog-
nized and accepted as an important tool for safety of naviga-
tion [2]. As the demand for maritime very high frequency
(VHF) data communications increases, AIS has become
heavily used for maritime safety, maritime situational aware-
ness, and port security [3]. Therefore, the VHF data exchange
system (VDES), which integrates the functions of VHF data
exchange (VDE), application-specific messages (ASM) [4],
and AIS, is developed to extend the existing AIS standard
by the International Telecommunication Union (ITU) [5,
6]. In general, VDES has three segments: terrestrial segment,
satellite segment for uplink, and satellite segment for down-
link. This paper is dedicated to detecting terrestrial ASM
(ASM-TER) signals from a satellite.

Generally, the key point of signal detection is to detect the
training sequence. The training sequence of ASM-TER is
mainly composed of a double Barker sequence [3]. The
Barker sequence is known for its excellent autocorrelation
property [7] which holds only for small Doppler frequency
[8]. Since the ASM-TER is designed for ship-to-ship and
ship-to-shore communications, the assumption of small
Doppler frequency is satisfied under such scenarios. How-
ever, when receiving ASM-TER signals from a satellite, two
main problems arise: nonnegligible Doppler frequency and
cochannel interference (CCI).

Although traditional energy detection methods are not
sensitive to Doppler frequency, it does not utilize Barker
sequence’s excellent autocorrelation property which provides
a significant signal-to-noise ratio (SNR) improvement.
Therefore, energy detection methods are not discussed in this
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paper. Considering the excellent autocorrelation property of
the Barker sequence, a traditional cross correlation method
is the best detection method when there is no Doppler fre-
quency. However, the performance degrades rapidly as the
Doppler frequency increases [8]. The differential correlation
(DC) [9] is a noncoherent method that is insensitive to
Doppler frequency, whereas it is susceptive to CCI. What is
more, the differential operation leads to a great performance
loss compared with coherent methods, and it also breaks the
excellent autocorrelation property of the Barker sequence. A
cross ambiguity function-based method is not susceptible to
Doppler frequency and CCI. It divides the frequency search
range (the interval where the possible Doppler frequency lies)
into several subbands, and each subband is shifted to the
baseband. Afterwards, the cross correlation method is uti-
lized in each subband, and a peak would occur where the
Doppler frequency is compensated within an acceptable
margin of error [10]. Due to the multiband frequency
compensation, the cross ambiguity function is not sensitive
to Doppler frequency. Similarly, it is not sensitive to CCI
since the desired signal and the CCI usually have different
Doppler frequencies and would be separated in different
subbands. Although the cross ambiguity function-based
method has so many advantages, its computational com-
plexity is quite intolerable for real-time processing due to
its two-dimensional search in both time and frequency
domains. Some fast algorithms [11–13] are developed to
reduce the computational complexity of the cross ambigu-
ity function. The method in [11] utilizes the fast Fourier
transform (FFT) to reduce the computational complexity,
and the preweighted zoom-FFT (ZFFT) method in [12,
13] utilizes ZFFT to further reduce the computational
complexity of an FFT-based method, but they only work
when the oversampling ratio is large.

To detect ASM-TER signals from a satellite with excel-
lent performance and acceptable computational complexity,
this paper proposes a computational complexity reduced
algorithm based on the cross ambiguity function. The idea
behind it is to reduce the frequency search range and
increase the frequency search step for evaluating the cross
ambiguity function. To reduce the frequency search range,
the classic cross ambiguity function is transformed to a fre-
quency domain version, in which the frequency spectra of
the windowed received signal and the local sequence are
used. The frequency spectrum of the windowed received
signal is also used to coarsely estimate the Doppler fre-
quency, and the estimation formula is derived. To increase
the frequency search step, a short local sequence is required
since the shorter local sequence leads to the better Doppler
frequency tolerance. To this end, the training sequence is
divided into two local sequences with one half-length.
The two cross ambiguity functions are calculated sepa-
rately and then are averaged to overcome the performance
degradation. Furthermore, the fine Doppler frequency esti-
mation algorithm is developed from the correlation peaks
of the two local sequences; the performance of which is
close to that of the Cramér–Rao lower bound (CRLB). It
facilitates the carrier synchronization for the subsequent
data demodulation.

This paper is organized as follows. Section 2 introduces
the signal model. The classic cross ambiguity function and
its shortcomings are introduced in Section 3. The proposed
method in this paper is elaborated in Section 4. Section 5
shows the performance comparison and analysis. Some con-
clusions are drawn in Section 6.

2. Signal Model

According to the Recommendation ITU-R M.2092-0 [14],
the modulation scheme of ASM-TER is π/4 Quadrature
Phase Shift Keying (QPSK), so the received baseband ASM-
TER signal could be expressed as

x n½ � = A 〠
Ns−1

nt=0
g n − nt½ �s nt½ �

 !
ej 2πf dnTs+ϕ0ð Þ +w n½ �, ð1Þ

where A is the amplitude of the received signal, f d is the
Doppler frequency, Ts is the sampling interval, ϕ0 is the
phase shift during propagation, w½n� is a complex-valued
white Gaussian noise which is subject to Nð0, σ2Þ (σ2 is
the variance of the noise), g½n� is the root mean square
raised cosine roll-off filter defined in [14], Ns is the sample
length of s½n�, and s½n� is the zero-padded QPSK symbol
sequence:

s n½ � = ejϕ n½ �, n = ip,
0, n ≠ ip,

(
ð2Þ

where p is the oversampling ratio, ϕ½n� ðϕ½n� ∈ f0, π/4, 2π/
4,⋯,7π/4gÞ is the modulated phase, and i ∈ℕ.

The ASM-TER has a certain packet format as shown in
Figure 1. This paper is dedicated to detecting ASM-TER
signals, so other parts except the training sequence (sync-
word in Figure 1) are not introduced in detail. The training
sequence of ASM-TER is a 27-symbol sequence composed
of a 1 followed by a Barker13 sequence (1111100110101,
noted as +Barker13) and an inverted Barker13 sequence
(0000011001010, noted as -Barker13). In the training
sequence, bit 1 maps to π/4 QPSK symbol 3 ð11Þ, and 0
maps to π/4 QPSK symbol 0 ð00Þ. The π/4 QPSK bit map-
ping is shown in Figure 2.

It should be noted that the initial state of the alternating
π/4 QPSK bit mapping is defined such that the first symbol
of the training sequence is mapped to the constellation
defined by green points fð1 + jÞ/ ffiffiffi

2
p

, ð−1 + jÞ/ ffiffiffi
2

p
, ð−1 − jÞ/ffiffiffi

2
p

, ð1 − jÞ/ ffiffiffi
2

p g; the next symbol is mapped to the constella-
tion defined by purple points f1 + 0j, 0 + j,−1 + 0j, 0 − jg;
and so on [14].

3. Classic Cross Ambiguity Function

As mentioned above, the cross ambiguity function is an
efficient method in detecting a deterministic local sequence
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with unknown Doppler frequency, and it can be expressed
as

C τ, γ½ � = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex τ½ �Ey

q 〠
τ+Ny−1

n=τ
x n½ �e−j2π fmin+γd fð ÞnTsy∗ n − τ½ �

������
������,
ð3Þ

in which τ is the delay (τ = 0, 1,⋯,Nx −Ny); Nx and Ny

are the sample length of x½n� and y½n�, respectively
(assuming Nx >Ny); x½n� is the received signal; y½n� is
the deterministic local sequence; df is the frequency search
step; fmin and fmax are the lower and upper limits of the
frequency search range, respectively; γ is the frequency
search index determined by the frequency search range
½ fmin, fmax� and frequency search step df (γ = 0, 1,⋯,M − 1,
M = dð fmax − fminÞ/df e + 1, d·e denotes ceiling operation);
ðÞ∗ denotes conjugation operation; ∣· ∣ denotes the absolute
value operator; and Ex½τ� and Ey are the energy of windowed
x½n� and y½n�, respectively, i.e.,

Ex τ½ � = 〠
τ+Ny−1

n=τ
x n½ �x∗ n½ �,

Ey = 〠
Ny−1

n=0
y n½ �y∗ n½ �:

ð4Þ

It can be seen in Equation (3) that, in subband γ, the fre-
quency fmin + γdf is shifted to 0Hz. If the Doppler frequency
is compensated within an acceptable margin of error in a
subband, a peak would occur. Therefore, the cross ambiguity
function is not sensitive to Doppler frequency. Similarly, if
the desired signal and a CCI collide, the cross ambiguity

function could separate them in different subbands when
their Doppler frequencies are different. Thus, the cross ambi-
guity function is insensitive to CCI.

Although the cross ambiguity function has so many
advantages, the computational complexity is quite high.
Unlike some other detection methods’ one-dimensional
search in the time domain, the two-dimensional search of
the cross ambiguity function in both time and frequency
domains results in a high computational complexity. There-
fore, the classic cross ambiguity function is not suitable for
real-time processing.

4. The Proposed Algorithm

It can be seen from Equation (3) that the computational com-
plexity of the cross ambiguity function mainly comes from
the search for Doppler frequency, and the frequency search
times depend on the frequency search range ½ fmin, fmax�
and the frequency search step df . Both reducing the fre-
quency search range and increasing the frequency search step
can reduce the frequency search times. In this section, the
proposed algorithm reduces the computational complexity
of the cross ambiguity function in two aspects: one is reduc-
ing the frequency search range by estimating the Doppler fre-
quency coarsely, and the other is increasing the frequency
search step by utilizing two local sequences with half-length
of the training sequence.

4.1. Computational Complexity Reduction by Reducing the
Frequency Search Range. To reduce the frequency search
range, we have to estimate the Doppler frequency of the
received signal first. There are many accurate frequency esti-
mation methods [15–17], but the computational burden is
heavy. In this paper, we choose a computationally efficient
method [18] to estimate the Doppler frequency coarsely.
The coarsely estimated Doppler frequency at time instant τ
could be expressed as

cf dc τ½ � = ∑
Ny−1
k=0 kPk τ½ �

∑
Ny−1
k=0 Pk τ½ �

df + fmin, ð5Þ

where Pk½τ� (k = 0, 1,⋯,Ny − 1) is the k-th sample of the
windowed received signal’s power spectrum at time instant
τ. To further reduce the influence of noise when SNR is
low, values of the power spectrum under a certain threshold

are set to zero before calculating cf dc ½τ�.
Pk½τ� could be simply calculated by

Pk τ½ � = Xk τ½ �X∗
k τ½ �, ð6Þ

Ramp up
0.41 ms

Ramp down
0.41 ms

Guard
0.83 ms

Syncword
27 symbols

Link config ID
16 symbols

Data symbols

Figure 1: Terrestrial application-specific messages (ASM-TER) packer format.
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Figure 2: ASM-TER bit mapping.

3Journal of Sensors



where Xk½τ� (k = 0, 1,⋯,Ny − 1) is the k-th sample of the
windowed received signal’s discrete Fourier transform
(DFT), and it can be realized by the sliding DFT (SDFT)
[19] which requires fewer computations than traditional
methods. The k-th sample of the DFT can be calculated by

Xk τ½ � = ej2πk/Ny Xk τ − 1½ � + x τ½ � − x τ −Ny

� �� �
: ð7Þ

Once the k-th DFT sample at any time instant has been
computed, the k-th DFT sample at all successive time
instants can be computed recursively. This requires only a
single complex multiplication for each sample [19].

Similar to the DFT, the energy of the windowed received
signal at time instant τ can also be calculated in a sliding way:

Ex τ½ � = Ex τ − 1½ � + x τ½ �x∗ τ½ � − x τ −Ny

� �
x∗ τ −Ny

� �
: ð8Þ

After coarsely estimating the Doppler frequency, the fre-
quency search range could be reduced to a range centered atcf dc ½τ�, and the width of the frequency search range is deter-
mined by the accuracy of the coarse Doppler frequency esti-
mation. To evaluate the accuracy of the coarse Doppler
frequency estimation, the simulated probability density func-
tion (PDF) of the coarse Doppler frequency estimation errorcf dc ½τ� − f d and an approximate Gaussian distribution are
shown in Figure 3. In this simulation, the energy per bit to
noise power spectral density ratio (Eb/N0) is set to 6 dB,

and the approximate Gaussian distribution subjects to NðE
fcf dc ½τ� − f dg, var fcf dc ½τ� − f dgÞ (where Ef·g denotes the
expectation operator implemented by calculating the average
value and var f·g is the variance operator).

As can be seen from Figure 3, the distribution of cf dc
½τ� − f d can be approximately regarded as a Gaussian distri-

bution. To notice that, the expectation of cf dc ½τ� − f d is not
0. The coarse Doppler frequency estimation method mea-

sures the mass center of the power spectrum, and the mass
center’s location in the frequency domain is considered the

coarse Doppler frequency estimation cf dc ½τ�. Theoretically,
the mass center of the source signal’s power spectrum with-
out noise indicates the Doppler frequency f d . However, the
practical power spectrum of the received signal is the combi-
nation of source signal’s power spectrum and noise’s power
spectrum. The practical power spectrum’s mass center can
be regarded as a weighted average of the noise power spec-
trum’s mass center (0Hz) and the source signal power spec-
trum’s mass center (f d), and the weight coefficients depend
on the “mass” (power) of noise and source signals, which

are all positive. As a result, Efcf dc ½τ�g ≠ f d , and this method
is not strictly an unbiased estimation. Hence, the reduced fre-
quency search range is defined by root mean square error

(RMSE) instead of variance, and it is set to ½cf dc ½τ� − 3δ, cf dc
½τ� + 3δ� (δ is the RMSE of cf dc ½τ�) to guarantee the detection
of the true peak with a probability of about 99.7%. Corre-
spondingly, such subbands with indexes within ½γmin, γmax�
(γmin =bðcf dc ½τ�−3δ− fminÞ/df c, γmax =dðcf dc ½τ� + 3δ − fminÞ/
df e, b·c denotes flooring operation) are calculated, and the
computational complexity is reduced.

4.2. Further Computational Complexity Reduction by
Increasing the Frequency Search Step. Another way to reduce
the computational complexity is increasing the frequency
search step. The frequency search step should be smaller than
the Doppler frequency tolerance of the local sequence, and
the Doppler frequency tolerance is inversely proportional to
the length of the local sequence. Therefore, a shorter local
sequence leads to fewer Doppler frequency search times.
The impact of the local sequence’s length on the Doppler fre-
quency tolerance is shown in Figure 4.

As shown in Figure 4, the Doppler frequency tolerance of
the +Barker13 sequence is about twice that of the whole
training sequence. As a result, the frequency search step
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Figure 3: Simulated probability density function (PDF) of cf dc ½τ� − f d .
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could be doubled; hence, the computational complexity will
be approximately reduced by half.

Since the training sequence of ASM-TER is mainly
composed of a double Barker sequence, a single +Barker13
sequence could be used to detect the training sequence,
and there should be two peaks which indicate the location
of the two Barker13 sequences. However, due to the π/4
QPSK mapping in ASM-TER, the magnitude of the sec-
ond peak which indicates the location of the -Barker13
sequence will be only about 70% of the first one as shown
in Figure 5.

What is more, compared with a 27-symbol local sequence,
a single 13-symbol local sequence leads to a shorter window,
and a shorter window results in the accuracy degradation of
power spectrum estimation. In order to avoid such perfor-
mance loss, this paper utilizes two sets of correlators with
local sequences of the +Barker13 sequence and -Barker13
sequence, respectively. It should be noted that the -Barker13
set utilizes the windowed received signal at time instant τ,
and the +Barker13 set utilizes the windowed received signal
at time instant τ −NBK13 (NBK13 is the sample length of the
-Barker13 sequence). As a result, Equation (6) is replaced

by a smooth estimation, and the k-th sample of the smoothed
power spectrum can be expressed as

Pk′ τ½ � = Xk τ½ �X∗
k τ½ � + Xk τ −NBK13½ �X∗

k τ −NBK13½ �
2 , k

= 0, 1,⋯,NBK13 − 1:
ð9Þ

Equation (6) utilizes one 27-symbol sequence, and Equa-
tion (9) utilizes two 13-symbol sequences. Hence, theoreti-
cally, the accuracies of Equations (6) and (9) are almost the
same, as well as the search ranges. Although utilizing two
shorter local sequences does not reduce the computational
complexity directly, the shorter local sequences lead to larger
Doppler frequency tolerance which is beneficial to reducing
the Doppler frequency search times.

4.3. A Frequency Domain Version of the Cross Ambiguity
Function. Since the DFT of the windowed received signal is
obtained and the deterministic local sequence requires no
extra computation, it comes naturally to calculate the cross
ambiguity function in the frequency domain. According to
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Parseval’s theorem, the classic cross ambiguity function can
be transformed to a frequency domain version:

where Fð·Þ denotes the DFT, Fðx½n′ + τ�Þ is the frequency
spectrum of the windowed received signal at time instant τ,

and F∗ðy½n′�ej2πð fmin+γd f Þn′TsÞ is the conjugation of the

frequency-shifted DFT of local sequence y½n′�. F∗ðy½n′�
ej2πð fmin+γdf Þn′TsÞ can be calculated and stored in advance
and requires no computation during detection, as well as Ey.

The outputs of the two correlator sets in corresponding
subbands are averaged to obtain the final output; then, a peak
over a certain threshold indicates the existence of an ASM-
TER signal. A block diagram of the training sequence detec-
tion is shown in Figure 6.

4.4. Computational Complexity Analysis. Given the sample
length of the training sequence N ts, the comparison of com-
putational complexity is carried out among direct calculation
of the cross ambiguity function, preweighted ZFFT cross
ambiguity function [12], and the proposed algorithm.
Because complex multiplication is the major burden in digi-
tal signal processing, the number of complex multiplications
(NCM) is used to measure the computational complexity.
The computational complexities of these three algorithms
in each window are shown in Table 1.

In Table 1, Nh is the sample length of segmented data in
the preweighted ZFFT method, and the segmentation is
based on the assumption that the data could be downsampled
without aliasing. If the assumption cannot be satisfied, Nh
equals Nts. Assuming that the oversampling ratio p is 4, the
number of subbands M without performance loss for the
direct calculation of the cross ambiguity function using the
whole training sequence is 64; then, Nh =N ts = 27 × p = 108
and NBK13 = 13 × p = 52. As can be seen from Figure 4, the
Doppler frequency tolerance of the +Barker13 sequence is
about half that of the whole training sequence, so the maxi-
mum number of subbands when using the proposed algo-

rithm is 32. In such conditions, the NCM of direct
calculation, preweighted ZFFT, and the proposed algorithm
are 13824, 7104, and 3537, respectively. If the number of sub-
bands in the proposed algorithm is reduced to 1/2 and 1/4 of
the maximum number, the NCM of the proposed algorithm
is reduced to 1873 and 1041, respectively. Obviously, the pro-
posed algorithm is more computationally efficient than direct
calculation and preweighted ZFFT even when the subband
number is not reduced, and the NCM of the proposed algo-
rithm keeps decreasing as the subband number decreases.

4.5. Fine Doppler Frequency Estimation for Subsequent Data
Demodulation. Apart from reducing the computational com-
plexity by increasing the frequency search step, there is
another advantage of utilizing two local sequences. After an
ASM-TER training sequence is detected using the proposed
algorithm, the two peaks of the two correlator sets could be
used to finely estimate the Doppler frequency easily. The fine
Doppler frequency estimation is based on the phase differ-
ence of the two correlator sets’ peak values. Assuming that
the peaks occur in subband γp, the compensated frequency
in subband γp is f dp, and the time instant at the beginning
of the +Barker13 sequence is 0; then, the peak value of the
+Barker13 correlator set’s output without noise is

Vp+ = 〠
NBK13−1

n=0
ej2πf dnTs 〠

NBK13−1

nt=0
g n − nt½ �s+ nt½ �

 !

× e−j2πf dpnTs 〠
NBK13−1

nt=0
g n − nt½ �s∗+ nt½ �

 !

= 〠
NBK13−1

n=0
〠

NBK13−1

nt=0
g n − nt½ �s+ nt½ �

�����
�����
2

ej 2πð f d−f dpð ÞnTs ,

ð11Þ

C τ, γ½ � =
∑

τ+Ny−1
n=τ x n½ �e−j2π fmin+γdfð ÞnTsy∗ n − τ½ �

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex τ½ �Ey

q

=n
′=n− τ

∑
Ny−1
n′=0 x n′ + τ

h i
y n′
h i

ej2π fmin+γd fð Þn′Ts

� 	∗��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex τ½ �Ey

q
=

∑
Ny−1
k=0 ∑

Ny−1
n′=0 x n′ + τ

h i
e−j2πn′k/Ny

� 	
∑

Ny−1
n′=0 y n′

h i
ej2π fmin+γdfð Þn′Tse−j2πn′k/Ny

� 	∗��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex τ½ �Ey

q
=

∑
Ny−1
k=0 F x n′ + τ

h i� 	
F∗ y n′

h i
ej2π fmin+γd fð Þn′Ts

� 	��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex τ½ �Ey

q , γ = γmin, γmin + 1,⋯, γmax,

ð10Þ
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in which s+½n� is the zero-padded symbol sequence of the
+Barker13 sequence, and the peak value of the -Barker13 cor-
relator set’s output without noise is

Vp− = 〠
2NBK13−1

n=NBK13

ej2πf dnTs 〠
NBK13−1

nt=0
g n − nt½ �s− nt½ �

 !"

× e−j2πf dp n−NBK13ð ÞTs 〠
NBK13−1

nt=0
g n − nt½ �s∗− nt½ �

 !#

=
n′=n−NBK13 ej2πf dNBK13Ts 〠

NBK13−1

n′=0
〠

NBK13−1

nt=0
g n′ − nt
h i

s− nt½ �
�����

�����
2

ej2π f d−f dpð Þn′Ts ,

ð12Þ

where s−½n� is the zero-padded symbol sequence of the
-Barker13 sequence. Due to the symmetry of g½n� and the
autocorrelation property of the +/-Barker13 sequence, it is
easy to prove that Equation (13) holds for any n ∈ f0, 1,⋯,
NBK13 − 1g:

〠
NBK13−1

nt=0
g n − nt½ �s+ nt½ �

�����
�����
2

= 〠
NBK13−1

nt=0
g n − nt½ �s− nt½ �

�����
�����
2

: ð13Þ

From Equations (11), (12), and (13), a certain relation-
ship between Vp+ and Vp− could be found:

Vp−

Vp+
= ej2πf dNBK13Ts , ð14Þ

and a fine estimation of the Doppler frequency could be
obtained according to Equation (14). However, to avoid
ambiguity, the fine Doppler frequency estimation is calcu-
lated by

cf df = f dp +
∠ Vp−/Vp+e

−j2πf dpNBK13Ts

� 	
2πNBK13Ts

, ð15Þ

where ∠ð·Þ denotes the phase.

5. Simulation and Analysis

In this section, the coarse Doppler frequency estimation per-
formance is shown by simulation firstly, and the performance
of the DC, direct calculation of the cross ambiguity function
(noted as Ambg), and the proposed algorithm are compared
by simulations. The performance of fine Doppler frequency
estimation is shown at last. Since the preweighted ZFFT
method is a modified version of the cross ambiguity function

SDFT
and

sliding
energy

Sub-band
index

0

Avg

Avg

Avg

Avg

Avg

Avg

Avg denotes averaging

Detection
Decision

-Barker13
correlator

set

Doppler
frequency
estimator

+Barker13
correlator

set

Figure 6: Block diagram of the training sequence detection.

Table 1: Computational complexity comparison.

Algorithm NCM

Direct calculation 2NtsM

Preweighted ZFFT MNh + M/2ð Þ log2M
The proposed algorithm 2 γmax − γmin + 3ð ÞNBK13 + 1
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with less computational complexity, the detection perfor-
mance of the preweighted ZFFT should be exactly the same
as that of the Ambg, so the performance of the preweighted
ZFFT method is not compared.

5.1. Coarse Doppler Frequency Estimation Performance.
When receiving ASM-TER signals from a satellite, the maxi-
mum absolute value of Doppler frequency is about 4 kHz
(f max = 4 kHz, f min = −4 kHz), and the phase offset is uni-
formly distributed in ½−π, πÞ. The oversampling ratio p is
set to 4, and the Eb/N0 varies from 0 to 15 dB. The coarse
Doppler frequency estimation is simulated 1 × 105 times for
each Eb/N0. The RMSE performance of the coarse Doppler
frequency estimation is shown in Figure 7.

As can be seen from Figure 7, when Eb/N0 is 3 dB,
RMSE of the coarse Doppler frequency estimation δ reaches
650Hz and 3δ reaches 1950Hz. As shown in Figure 3, the

distribution of cf dc ½n� − f d can be approximately regarded
as a Gaussian distribution, so the existence of the true peak

in ½cf dc ½n� − 1950, cf dc ½n� + 1950�Hz can be guaranteed with
a probability of about 99.7%. Then, the reduced frequency
search range is half of the original, as well as the subband
number and computational complexity. When Eb/N0 is
7 dB, the computational complexity could be reduced to
about 1/4 of the original. As the Eb/N0 increases, the compu-
tational complexity could be further reduced.

5.2. Detection Performance of DC, Ambg, and the Proposed
Algorithm. In this simulation, Eb/N0 varies from -10 to
3 dB, false alarm probability Pfa is set to 1 × 10−4, and each
algorithm is simulated 1 × 106 times with different numbers
of subbands to evaluate the detection probability Pd. All
other parameters are the same as those in Section 5.1. Detec-
tion performance comparison of the three algorithms is
shown in Figure 8.

As shown in Figure 8, the Ambg algorithm with 64 sub-
bands has the best detection performance. As the subband
number decreases, the detection performance of the Ambg
algorithm deteriorates especially whenM equals 16. The pro-
posed algorithm with 64 and 32 subbands shares the same
detection performance which is a little worse than that of
the Ambg algorithm with 64 subbands. This is because the

local sequence in the Ambg algorithm is the whole 27-
symbol training sequence, and the local sequences in the pro-
posed algorithm are the +/-Barker13 sequences comprising
26 symbols in total. It can also be seen from Figure 8 that
the detection performance of the proposed algorithm with
16 subbands is almost the same as that of the Ambg algo-
rithm with 32 subbands, and it can be explained by the dou-
bled Doppler frequency tolerance as shown in Figure 4.
Figure 8 also shows that the detection performance of the
DC algorithm is about 4 dB worse than that of the other algo-
rithms with enough subbands. It can be explained by the
noncoherent differential operation in the DC algorithm. This
simulation proves that the proposed algorithm shares almost
the same detection performance with the Ambg algorithm
with only half subbands, and the detection performance of
the proposed algorithm is far better than that of the DC
algorithm.

5.3. Detection Performance with CCI. This simulation is con-
ducted to evaluate the detection performance with CCI of the
DC, Ambg (64 subbands), and the proposed algorithm (32
subbands). The signal-to-interference ratio (SIR) varies from
0 to 6 dB, and the CCI is td bits later than the desired signal
(the maximum possible delay for a satellite operating at a
600 km surround orbit with a field of view (FOV) of 49° is
19 bits, so td is uniformly distributed in ½0, 19�). All other
parameters are the same as those in Section 5.2. Detection
performance comparison of the three algorithms with CCI
is shown in Figure 9.

It can be seen from Figure 9 that the detection perfor-
mance of the proposed algorithm with CCI is slightly worse
than that of the Ambg algorithm, and this can be explained
by the shorter total sample length of the local sequences as
explained in Section 5.2. Besides this, the performance loss
caused by CCI of the proposed algorithm is almost the same
as that of the Ambg algorithm. As shown in Figure 9, for the
proposed algorithm and the fact that Pd equals 0.8, the case
SIR = 0 dB is about 2 dB worse than the case of no interfer-
ence. Meanwhile, for the DC algorithm and the fact that Pd
equals 0.8, the case SIR = 0 dB is more than 4dB worse than
the case of no interference. This simulation shows that the
proposed algorithm is less sensitive to CCI than the DC
algorithm.
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Figure 7: Root mean square error (RMSE) performance of the coarse Doppler frequency estimation.
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Figure 9: Detection probability with cochannel interference (CCI) when Pfa = 1 × 10−4.
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Figure 8: Detection probability when Pfa = 1 × 10−4.
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5.4. Fine Doppler Frequency Estimation Performance. In this
section, all parameters are the same as those in Section 5.1,
and the performance of the fine Doppler frequency estima-
tion is compared with that of the CRLB. The CRLB in this
paper is

σCR =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3R2
s

4Eb/N0π2N3
e

s
, ð16Þ

where Rs is the symbol rate which equals 9600 symbols per
second and Ne is the number of symbols used in estimation.
The RMSE performance of the fine Doppler frequency esti-
mation is shown in Figure 10.

Figure 10 shows that the performance of the fine Doppler
frequency estimation is close to that of the CRLB. When Eb
/N0 is 5 dB and 10 dB, RMSE of the fine Doppler frequency
estimation reaches 13Hz and 7.5Hz, respectively. In consid-
eration of the low computational complexity, the perfor-
mance of the fine Doppler frequency estimation is quite
satisfactory.

6. Conclusions

This paper proposes a fast computation of the cross ambigu-
ity function to detect an ASM-TER training sequence from a
satellite. According to Parseval’s theorem, the proposed algo-
rithm transforms the classic cross ambiguity function to a
frequency domain version, in which the frequency spectrum
of the windowed received signal could be calculated using the
computationally efficient SDFT. To reduce the computa-
tional complexity, the frequency search range is reduced
according to the Doppler frequency coarsely estimated from
the frequency spectrum. To further reduce the computational
complexity, the frequency search step is increased by utilizing
two local sequences with half-length of the training sequence.
What is more, a fine Doppler frequency estimation could be
realized according to the correlation peaks of the two local
sequences. Simulation results show that the proposed algo-
rithm inherits the performance of the classic cross ambiguity
function-based method and the computational complexity is

greatly reduced. Simulation results also show that the pro-
posed algorithm is less sensitive to CCI than the DC algo-
rithm, and the performance of the fine Doppler frequency
estimation is close to that of the CRLB.
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