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Source localization is one of the major research contents in the localization research of wireless sensor networks, which has
attracted considerable attention for a long period. In recent years, the wireless binary sensor network (WBSN) has been widely
used for source localization due to its high energy efficiency. A novel method which is based on WBSN for multiple source
localization is presented in this paper. Firstly, the Neyman-Pearson criterion-based sensing model which takes into account the
false alarms is utilized to identify the alarmed nodes. Secondly, the mean shift and hierarchical clustering method are performed
on the alarmed nodes to obtain the cluster centers as the initial locations of signal sources. Finally, some voting matrices which
can improve the localization accuracy are constructed to decide the location of each acoustic source. The simulation results
demonstrate that the proposed method can provide a desirable performance superior to some traditional methods in accuracy
and efficiency.

1. Introduction

Wireless sensor network (WSN) is a novel distribution self-
organization data acquisition network, which integrates
wireless communication, data capture, and information
processing [1]. WSN mainly consists of a large number of
stationary or mobile sensor nodes which are used to form a
network in a self-organized or multihop manner [2]. Due to
the flexible, inexpensive, and effective performance, it plays
a significant role in industrial applications and civil applica-
tions [3–6]. In the recent period, the WSN has become the
focus of academic researchers and industry circles. Location
information is of great significance in quantities of fields, such
as intelligent house system, mobile localization services, and
forest fire monitoring. The utilization of WSN for position
estimation has become an important application of WSN [7].

Recently, source localization has been studied extensively
and solved in various ways [8, 9]. According to different
measurement approaches, these methods can be mostly cate-
gorized into four types: angle of arrival- (AOA-) based ones
[10], time of arrival- (TOA-) based ones [11], time difference

of arrival- (TDOA-) based ones [12, 13], and energy-based
ones [14] [15]. In the AOA-basedmethods, the array antenna
is required to estimate the angles between the signal sources
and the nodes. Both TOA-based methods and TDOA-based
methods depend on the high precision clock to obtain the
accurate measurements. Thus, it can be seen that these three
types of methods are all regarded as the expensive approaches
with the disadvantages of high hardware configuration [16,
17]. The energy-based methods use the measurements of
received signal strength and the energy decay model to esti-
mate the source location. In contrast, this type of methods
only needs low hardware configuration which can be easily
realized in practical application. Therefore, they have been
considered as the attractive methods and received research’s
considerable attention. In this paper, we focus on the
energy-based source localization methods.

In order to solve the source localization problem, numerous
energy-based source localization methods have been proposed.
The source localization problems are usually formulated as
the maximum likelihood (ML) problems to be solved with
some optimization algorithms. In [18], Sheng and Hu firstly
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presented a model that the signal energy attenuation was
regarded as a function of source-to-sensor distances. Accord-
ing to themodel, the acoustic source localization problemwas
formulated as a maximum likelihood estimation problem.
The multiresolution search algorithm and expectation-
maximization (EM) iterative algorithm were employed to
solve such a nonlinear optimization problem. The Cramér–
Rao Bound (CRB) of location estimation was utilized to
analyze the influence of sensor placement on the accuracy of
the source location estimation. In [19], an optimization to
ML (OML) algorithm was proposed, which can provide
superior estimation performance compared with the tradi-
tional ML methods. In [20], an alternating projection (AP)
approach was presented to solve the ML estimation problem
with the advantage of lower computational complexity. In
[21], Dranka and Coelho designed an effective error estimate
model to estimate the source localization by taking into
account the relationship between the sources and noise sam-
ples. In [22], Lu et al. formulated the energy-based multiple-
source localization problem as a ML estimation problem.
Two algorithms, alternating projection and expectation-max-
imization, were introduced to solve such a localization
problem of multiple sources. However, these energy-based
methods rely on the precise measured information between
the signal sources and location-known nodes to estimate the
source location. All nodes are needed to carry out the com-
plex calculation to obtain the accurate distance measure-
ments. A large number of measured data from sensors
are transmitted to the fusion center to finish the final
source localization estimation. This process results in high
computational complexity and much energy cost. More-
over, when the communication is constrained in the
network, these operations are hardly to be realized [23].
In order to overcome this problem, the binary sensors
have been widely used in the WSN. They always make a
binary decision by sensing the presence of the signals or
not according to the different measurements. Unlike the
other sensors, the binary sensor only sent its ID to the
fusion center when the signal is sensed. They will remain
silent if there is no signal sensed. They have been a desir-
able solution under the condition of the communication
and energy constrained in the network.

In order to achieve the high localization accuracy, a large
number of source localization methods have been presented
for wireless binary sensor network (WBSN). The previous
relevant works mainly focus on the solution of a single source
localization problem. In [24], the authors employed the ML
method to estimate a source location in WBSN. In [25], a
subtract on negative add on positive (SNAP) algorithm is
presented which can achieve almost the same localization
performance as the ML estimator with lower computational
complexity. In [26], according to the spatial topology of
WBSN, the authors design an effective wake-up scheme
which can activate a series of nodes to collaborate on estimat-
ing the location of the source. In recent years, the multiple
source localization received the researcher’s considerable
attention and more and more methods for solving the multi-
source localization problem have been proposed. An
improved version of SNAP algorithm (ISNAP) [27] is

proposed for estimating the locations’ multiple sources. A
Fuzzy C-Mean- (FCM-) based multisource localization
approach [28] is presented. In this method, the FCM
algorithm is firstly utilized to estimate the initial locations
of multiple sources. And then, a likelihood matrix is con-
structed to improve the localization accuracy for each source.
In [29], the authors formulate the multisource localization
problem as the ML problem and employ a self-adaptive prac-
tical swarm optimization to solve. In [30], Wang et al. use the
affinity propagation (AP) algorithm to gain the cluster
centers of the alarmed nodes. Then, these centers are merged
as the final estimated locations of multiple sources. However,
the design of these methods appears downright ideal that the
false alarms are not fully considered, which may cause the
undesirable localization results.

In this paper, we investigate the multiple source localiza-
tion problem in WBSN based on the mean shift [31] cluster
analysis algorithm. Firstly, the Neyman-Pearson criterion-
based sensing model [32] is applied to make the judgement
if the node is alarmed or not. Then, we employed the mean
shift and hierarchical clustering algorithm to obtain the
cluster centers of these alarmed nodes as the initial locations
of signal sources. Finally, some voting matrices which can be
regarded as the decision schemes are conducted to estimate
the final location of each signal source. Simulation results
demonstrate that the proposed method can achieve the
desirable localization results.

The paper is structured as follows. In Section 2, the sys-
tem model, the sensing model, and the mean shift method
are introduced. Section 3 describes the proposed method.
Simulation results are given in Section 4. Finally, the paper
is concluded in Section 5.

2. Background

2.1. Energy Attenuation Model. In this part, we introduce the
acoustic energy attenuation model for the multiple source
localization in WBSN. This model is constructed based on
the following assumptions.

(1) There are N acoustic sensor nodes with known coor-
dinates ðxn, ynÞn = 1,⋯,N and K acoustic signal
sources with unknown coordinates ðxk, ykÞk = 1,⋯,
K in a region. These acoustic sensor nodes and acous-
tic signal sources are uniformly deployed. The acous-
tic signal is emitted by each source and received by
some sensor nodes with the known energy intensity
as the prior information

(2) The acoustic signal propagation from every acoustic
source is consistent in all directions

(3) The energy intensity from each acoustic source is
inversely proportional to the distance between this
signal source and sensor nodes

The strength of the k-th acoustic source measured at
1m away is expressed as IkðtÞ, ðk ∈ KÞ. The sensor node
n receives the signal from all acoustic sources, and the
relevant signal strength is denoted as Zn during time
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interval t. The acoustic signal attenuation model [28] [29]
can be formulated as

Zn,k tð Þ = Sn,k tð Þ + νn tð Þ,

Sn,k tð Þ = Ik
dξn,k tð Þ

, ð1Þ

where Sn is the signal strength received by the n-th sensor
node from all acoustic sources. dn,kðtÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxn − xkðtÞÞ2 + ðyn − ykðtÞÞ2
q

is the distance between the

sensor node n and the acoustic source k. νnðtÞ denotes
the measurement noise which is modeled as additive white
Gaussian noise with zero mean, i.e., νnðtÞ~ð0, φ2

nÞ. The
parameter ξ ∈ R+ is the environment factor which can be
determined according to the practical environment.

In practice, the expected measurement can be achieved
by calculating the mean of all energy measurements in a
fixed time interval T =M/f s. The average energy ynðtÞ mea-
sured during the fixed time interval ½t − T/2, t + T/2� can be
modeled as

yn tð Þ = 1
f sT

〠
t+T/2ð Þf s

t= t−T/2ð Þf s
z2n,k tð Þ

= 1
f sT

〠 t+T/2ð Þf s
t= t−T/2ð Þf s

s2n,k tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
received energy ysn tð Þ

+ 1
f sT

〠 t+T/2ð Þf s
t= t−T/2ð Þf s

ν2n tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise,εn tð Þ

,
ð2Þ

whereM stands for the number of sample points utilized for
estimating the acoustic energy intensity and f s stands for the
sample frequency.

Generally, in small-scale applications, the intensity of
the acoustic signal and energy emitted from every source
are assumed to be stable during a short time interval.
Therefore, the signal propagation delay does not need to
be considered. A more concise acoustic energy model is
in the following form:

yn tð Þ =
ysn tð Þ + εn tð Þ
εn tð Þ

(
=

gn 〠
K

k=1

Sn,k tð Þ
d2n,k tð Þ + εn tð Þ, H1,

εn tð Þ, H0,

8><
>:

ð3Þ

where H1 indicates that the sensor node can receive signal
from sources, H0 indicates that there is no signal. gn is the
gain factor of the n-th sensor node. In this paper, we set
gn = 1. εnðtÞ is the measurement noise that obeys Gaussian
distribution with zero mean and variance σ2n, εnðtÞ~ð0, σ2nÞ.
2.2. Neyman-Pearson Model. When the sensor senses the
acoustic signal, the sensor will alarm with a high probability
if the signal source is within the sensing region of the sensor
node. Similarly, if the signal source is outside the sensing
region of the sensor node, such a sensor node will remain
silent. Therefore, the sensing model which reflects the

sensing characteristics of the sensors plays a significant
role in WBSN. Many sensing models have been proposed,
among which the disk model is one of the most com-
monly used models with the advantages of analytical sim-
plicity. The disk model is a binary sensing model which
assumes the sensing region of a sensor is a circular area
centered at it. The signal within the sensing radius of a
sensor is sensed with probability 1 while the signal outside
this circle of influence is not sensed with probability 0.
The sensing probability of a signal source i by sensor n
can be defined by

pi,n =
1, di,n ≤ Rn,
0, di,n > Rn,

(
ð4Þ

where R denotes a sensor’s sensing radius.
However, the disk model has certain limitations in the

practical application due to its unrealistic assumption. Com-
pared with the disk model, the Elfes model can represent the
relationship between the signal attenuation and the sensor’s
sensing capability. The sensing probability of a signal source
i by sensor n can be expressed as

pi,n =

1, di,n ≤ dT1,

e−λ di,n−dT1ð Þβ , dT1 < di,n < dT2,
0 dT2 ≤ di,n,

8>><
>>: ð5Þ

where dT1, dT2, λ, and β are the parameters associated with
physical properties of the sensor. di,n is the Euclidean dis-
tance between signal source i and sensor n.

In this paper, we utilize a sensing model based on the
Neyman-Pearson criterion [29] to determine whether the
sensor node is alarm or not. This sensing model takes into
account the false alarm rate and signal characteristics which
is more realistic than the disk model and the Elfes model.
According equation (3), the received intensity of the acoustic
signal yn at n-th sensor node is as follows:

yn =
gn 〠

K

k=1

Sn,k
d2n,k

+ εn, H1,

εn, H0:

8><
>: ð6Þ

The probability density functions of yn under these two
conditions H1 and H0 are defined as follows:

L1 yn H1jð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

n

p exp −
1
2σ2

n
yn − gn 〠

k

k=1

Sn,k
d2n,k

 !2
8<
:

9=
;,

L0 yn H0jð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

n

p exp −
y2n
2σ2

n

� �
:

ð7Þ

According to the Neyman-Pearson criterion, the likeli-
hood ratio can be given by
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Λ ynð Þ = L yn H1jð Þ
L yn H1jð Þ = exp 1

2σ2n
2yn 〠

K

k=1

Sn,k
d2n,k

− 〠
K

k=1

Sn,k
d2n,k

 !2 !( )
:

ð8Þ

We set the parameter η as a threshold. If the likelihood
ratio ΛðynÞ ≥ η, the condition H1 is accepted. Otherwise,
the condition is H0. Therefore, according to equation (8),
we can obtain

1
2σ2n

2yn 〠
K

k=1

Sn,k
d2n,k

− 〠
K

k=1

Sn,k
d2n,k

 !2 !
>
H1

<
H0

ln η: ð9Þ

The above formulas can be summarized in the following
form:

⎵yn〠
K

k=1
Sn,k
d2n,k

Y

>
H1

<
H0

⎵σ2n ln η + 1
2 〠K

k=1
Sn,k
d2n,k

 !2

T

: ð10Þ

Hence, the following equations can be obtained:

H0 : Y ∼N 0, σ2
n 〠

K

k=1

Sn,k
d2n,k

 !2 !
,

H1 : Y ∼N 〠
K

k=1

Sn,k
d2n,k

 !2

, σ2n 〠
K

k=1

Sn,k
d2n,k

 !2 !
:

ð11Þ

Let σ21 = σ2
nð∑K

k=1Sn,k/d2n,kÞ
2
. The false alarm rate can be

defined by

PF = P Y > T H0jð Þ = 1 −Φ
T
σ1

� �
, ð12Þ

whereΦð•Þ stands for the cumulative distribution function of
the standard normal distribution.

The sensing probability PD is expressed as

PD = P Y > T H1jð Þ = 1 −Φ
T − u1
σ1

� �
: ð13Þ

It is assumed that the false alarm rate PF is equal to α.
Therefore, we can obtain the following equations:

T
σ1

=Φ−1 1 − αð Þ,

u1
σ1

= 1
σn

〠
K

k=1

Sn,k
d2n,k

:

ð14Þ

Finally, the joint sensing probability can be defined by

PD = 1 −Φ Φ−1 1 − αð Þ − 1
σn

〠
K

k=1

Sn,k
d2n,k

 !
: ð15Þ

Figure 1 illustrates the variation of sensing probability of
the sensor node PD with the distance for different false alarm
rate α. It is obvious that the sensing probability PD varies
between 0 and 1. When the value of PD approximates to 1, it
means this sensor node is nearby the sources. The degradation
of a sensor’s sensing probability gradually occurs as the distance
between the sensor and the source increases. Given a fixed
value of distance, it can be seen that the higher the false alarm
rate, the higher the detection probability of the sensor node.

2.3. Mean Shift Method. The mean shift method is one of the
most classical clustering techniques, which has wide applica-
tions due to its advantages of effectiveness and practicability.
In this paper, it is utilized to cluster these alarmed nodes and
the obtained cluster centers are regarded as the initial loca-
tions of signal sources. It is assumed that there are S alarmed
nodes with the known coordinates γn = ðxn, ynÞT , n = ð1,⋯,
SÞ. For a random initial position γ, the weighted mean of the
positions γn can be obtained as follows:

V γð Þ = ∑γn∈N γð ÞK
M γn − γð Þγn

∑γn∈N γð ÞK
M γn − γð Þ , ð16Þ

whereNðγÞdenotes the neighborhood of the initial position γ.
KMðxÞ denotes the kernel function which is nonnegative in
the following forms:

KM
G xð Þ = c ⋅ exp −

1
2 xk k2

� �
,

KM
E xð Þ = c 1 − xk k2� 	

, xk k ≤ 1,
0, otherwise,

(

KM
U xð Þ =

c, xk k ≤ 1,
0, otherwise:

(
ð17Þ

The kernel function plays a significant role in the process
of reestimating the mean by assigning the weights of the
neighborhood data. The final weighted mean estimations
can be obtained through carrying out the iterative computa-
tions of VðγÞ until it meets the convergence condition. In
addition, the random initial estimates need to be set appropri-
ated according to the practical application in order to gain the
desirable results.

3. Proposed Method

InWBSN, the number of the sensor nodes and signal sources,
the coordinates of the sensor nodes, and the received energy
intensity for each sensor node are the important prior infor-
mation. Each sensor node can be influenced by one or more
signal sources at the same time. Generally, it has a higher
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alarm probability when it is close to the signal sources.
Figure 2 shows the relationship between the alarm nodes
and the signal sources. In this figure, S1 and S2 stand for the
signal sources, the solid and hollow circles stand for the
alarmed and nonalarmed nodes, respectively. Obviously, the
alarmed nodesN1 andN3 are strongly influenced by the signal
sources S1 and S2, respectively. Both sources have strong influ-
ence on the alarmed node N2 simultaneously. The node N4 is
wrongly alarmed by the effect of some factors such as themea-
surement noise and the hardware problem. The false alarms
have been a serious challenge for multiple source localization.

In order to realize the accurate source location, the crite-
rion is needed to be constructed to determine if a node is
alarmed or not. In some previous works, such a binary deci-
sion depends on the received energy intensity of each sensor
node. If the received energy intensity is above a threshold,
this sensor node is regarded as an alarmed node. Otherwise,
it belongs to the nonalarmed node. However, the false alarms
cannot be effectively restraint based on this criterion [27]. In
this paper, we utilize a Neyman-Pearson criterion-based
sensing model which takes into account the false alarm rate
to design the criterion. It can be defined by

In =
0, PD < ϕ,
1, PD ≥ ϕ,

(
ð18Þ

where ϕ stands for a constant threshold. A sensor node can
be seen as an alarmed node when its sensing probability PD
is above the threshold ϕ. The false alarm rate α needs be
tuned to restrain the false alarms according to the practical
environment.

The alarm nodes transmit their IDs and location infor-
mation to the fusion center through communication. Then,

the fusion center uses this information to calculate the
source location. Though the alarm nodes have been
decided, it is unknown which source the alarmed nodes
belong to. In this paper, we employ the mean shift method
to cluster these alarmed nodes to describe the relationship
between them. The mean shift method decides the cluster
centers according to the density of the alarmed nodes.
The false alarmed nodes are usually far away from the areas
in which there are numerous normal alarmed nodes. There-
fore, the mean shift method can overcome the influence of
the false alarms effectively. We assumed that the number of
the alarmed nodes is S and the coordinates of these alarmed
nodes are γn = ðxn, ynÞT , n = ð1,⋯, SÞ. The weighted means
of the positions γn with the corresponding l initial estimates

γs = ðxs, ysÞT , s = ð1,⋯, lÞ, can be obtained as follows:

V γsð Þ = ∑γn∈N γsð ÞK
M
G γn − γsð Þγn

∑γn∈N γsð ÞK
M
G γn − γsð Þ : ð19Þ

Finally, there are q cluster centersVðγsÞ obtained through
an iterative process. Since the number of cluster centers is
uncertain for the mean shift method, we adjust some param-
eters appropriately to ensure that the number of the cluster
centers q is larger than or equal to the known number of
sources K . If q is larger than K , we employ the hierarchical
clustering algorithm [23] to merge the cluster centers until
they have the same number. Otherwise, there is no operation
carried out. The new cluster centersV ′ðγsÞ are regarded as the
initial locations of signal sources for subsequent processing.
The subordination degree between the n-th alarmed node
and the k-th cluster can be obtained as follows:

μ n, kð Þ =
1/ γn − Vk′


 

2� �

∑K
k=1 1/ γn −Vk′



 

2� � , n = 1,⋯, S, k = 1,⋯, K ,

ð20Þ
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Figure 1: The sensing probability of nodes for different false alarm
rates.
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where kγn − Vk′k
2
stands for the distance between the n

-th alarmed node to the k-th cluster center. Hence, there
is ∑K

k=1μðn, kÞ = 1 for the n-th alarmed node.
In order to further reduce the influence of the false alarms

on localization accuracy, we construct a voting scheme to
improve the initial location results for each signal source.
This voting scheme consists of the following steps.

Step 1. The sensing area is divided into a grid ψ with G ×G
cells and the grid resolution τ. For example, a 200 × 200
square area with G = 20 and a grid resolution τ is 10. The
resolution is needed to be set properly to avoid the high com-
putational complexity. Each cell can be regarded as a point.
We define Cði, jÞi, j = 1,⋯,W , as the centers of these cells
in a matrix form. Based on these definitions, theG ×G voting
matrices Vm

k k = 1,⋯, K for each signal source can be
designed in the following step.

Step 2. All K voting matrices are all initialized to the zero
matrices. For the k-th signal source, its voting matrix can
be defined by

Vm
k i, jð Þ = 〠

N

n=1
bn i, jð Þ, i, j = 1,⋯,W, ð21Þ

where bnði, jÞ is used to measure the probability that the sig-
nal source locates in the cell’s center Cði, jÞ . It is defined in
the following form.

bn i, jð Þ =
μ n, kð Þ, PD ≥ ϕ and C i, jð Þ − γnk k ≤ Rn,
0, otherwise,

(

ð22Þ

where kCði, jÞ − γnk stands for the distance between the n-th
sensor node and the centers of the cells Cði, jÞ. Rn stands for
the sensor’s sensing radius. If the center Cði, jÞ locates
within the sensing range of many alarmed nodes, it will be
the location of the signal source with a high probability.
Figure 3 shows an example of the voting matrix. There are
three alarmed nodes with the same square sensing radius.
It is obvious that when the condition PD ≥ ϕ and kCði, jÞ −
γnk ≤ Rn is met, the μðn, kÞ values of the alarm nodes are
added the corresponding elements of the voting matrix Vm

k
for the k-th signal source.

Step 3. We can obtain one or more centers Cði max, y maxÞ
corresponding to the elements of the voting matrix Vm

k which
have the maximum values. Let φðx, yÞ denote the positions of
centers Cðikmax, ykmaxÞ. The average of φðx, yÞ and the cluster
centerVk′ is regarded as the final estimated location of the k-th
signal source.

Step 4. The same strategy is carried out until all K source
localization results are obtained.

4. Performance Evaluation

In this section, we evaluate the proposed algorithm through
simulation experiments. The proposed mean shift-based
multiple source localization (MS-MSL) algorithm is com-
pared with the self-adaptive particle swarm optimization
method (SAPSO) algorithm [26] and the AP-based multiple
source localization (AP-MSL) algorithm [27] to test its per-
formance. We assume that there is a WBSN monitoring area
with 100m × 100m. N sensor nodes and K signal sources are
randomly deployed in this area. All default parameters in the
following simulation are shown in Table 1. The simulation
results of these three algorithms are all obtained through
Monte Carlo experiments. The average location error is con-
sidered to evaluate the performance of localization of these
algorithms, which is defined as follows:

ALE = 1
NmK

〠
Nm

i=1
〠
K

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂ki − xkð Þ − ŷki − ykð Þ

p
, ð23Þ

where ðx̂ki, ŷkiÞ indicates the estimated position of the k-th
signal source. ðxk, ykÞ denotes the real location of the k-th
source.

Figure 4 shows the impact of the false alarm rate α on
the average location error. As shown in Figure 4, the local-
ization accuracy of the SAPSO algorithm and the AP-MSL
algorithm is both similar to the proposed algorithm when
the α is low but drops sharply with the increase of α. The
SAPSO algorithm and the AP-MSL algorithm are sensitive
to the false alarms. Likewise, the average location error of
all the three localization algorithms will rise sharply when
α increases. In our localization algorithm, the false alarms
are sufficiently considered. Hence, the proposed MS-MSL
algorithm performs better than the other algorithms in
terms of location accuracy.

The average location error varies with standard devia-
tions of measure noise as shown in Figure 5. The average
location errors rise sharply as the standard deviation of
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Figure 3: An example of the voting matrix.
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measure noise σn increases. Compared with the other two
algorithms, our proposed MS-MSL algorithm has the lowest
localization error under the same standard deviation.

We discuss the relationship between signal source energy
Sk and average location error. Results shown in Figure 6 dem-
onstrate that Sk has a great impact on the average location
error. The average location errors of these three algorithms
all raise sharply when the parameter Sk increases. The reason
is that more and more false alarms occur by the energy
sources as Sk increases, which leads to the high average
location error. The proposed algorithm always has the best
performance than the other two algorithms.

Figure 7 shows the performance of the localization algo-
rithm as the number of sensor nodes increases in the area.
In this figure, we can observe obviously that the number of
nodes has an important impact on these three positioning
algorithms. These three algorithms achieve higher location
accuracy as the number of nodes increases. The SAPSO algo-
rithm has the worst performance. The localization accuracy
of these three algorithms can be greatly increased as the
number of nodes increases. The MS-MSL algorithm and the
AP-MSL algorithm have similar location performance when
a large number of nodes are deployed. By contrast, the

proposed MS-MSL algorithm outperforms the other two
algorithms which always have the highest location accuracy.

5. Conclusions

In this paper, we presented a novel method for multiple
source localization in wireless binary sensor network. Firstly,
we utilize a Neyman-Pearson criterion-based sensing model
which takes into account the false alarm to decide the
alarmed nodes. Secondly, mean shift algorithm is adopted
to estimate the cluster centers of the alarmed nodes. Thirdly,
the hierarchical clustering algorithm is employed to merge

Table 1: The parameter values.

Parameters Symbol Values

Total sensor node number N 300

Number of sources K 3

Energy at 1m from k-th source Sk 3000

Measurement noise variance σ2n 1

Threshold ϕ 0.3

Grid resolution τ 1
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Figure 4: False alarm rate α versus ALE.
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2000 2500 3000 3500 4000 4500
5

5.5

6

6.5

7

7.5

8

8.5

A
ve

ra
ge

 lo
ca

tio
n 

er
ro

r (
m

)

AP-MSL
SAPSO

MS-MSL

Source energy Sk

Figure 6: The source energy Sk versus ALE.

7Journal of Sensors



the cluster centers as the initial locations of signal sources.
Finally, we construct a voting matrix to decide the final loca-
tion of each signal source. Simulation results demonstrated
that the proposed method could provide the better location
performance in terms of robustness and accuracy.
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