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Identifying overloaded vehicles on a highway is essential for the safety of vehicles on the road as well as for the performance
monitoring of highway infrastructure and planning. Traffic enforcement uses various weigh-in-motion (WIM) methods. Since
Vehicular Telematics (VT) is favoured in the transport industry, using it for building a new WIM system to infer the payload of
a vehicle at any road segment would be beneficial for the transport industry. This paper presents the effort taken to use VT data
from onboard diagnostics modules and smartphones to infer the payload of a vehicle. The experiment done to find the
correlation between VT data and the payload of a vehicle is discussed. Feature engineering was done; nine different settings were
tested to find the best regression model. A multiple nonlinear regression model produced significant a p value of 6.322e-08 and
an R-squared value of 0.8736. Results support the notion of using the VT data for nonintrusive measurement of the weight of a
vehicle in motion.

1. Introduction

Road safety is one of the most significant issues in the world
[1]. Driving an overloaded vehicle causes various kinds of
hazards such as mechanical failures and structural deforma-
tion of vehicles and roads, which lead to accidents, and it is
an illegal and punishable offence in most countries. Accord-
ing to the South African National Road Traffic Regulations,
driving an overloaded vehicle leads to prosecution for an
offence under regulations in the National Road Traffic Act,
1996 [2]. According to the U.S. Department of Transporta-
tion, vehicle condition and road/environment conditions
are the two factors which are collectively responsible for
5.2% of road accidents [3]. Vehicles carrying more than the
manufacturer’s specified and permitted payload are consid-
ered overloaded. In other words, a vehicle is overloaded if
the total weight of a vehicle when fully loaded is more than
the maximum allowed Gross Vehicle Weight (GVW), where
the GVW is the sum of kerb weight and payload [4].

Weighing the weight of a moving vehicle on the road is
known as weigh-in-motion (WIM). Fred Moses and George

Globe introduced Bridge WIM (B-WIM) in the USA in the
early 1970s. The successful B-WIM application took place
in Australia in the mid-1980s [5]. WIM has been used in
the transport industry for more than a decade and for many
reasons. Earlier, it was only used to plan and build the roads
and bridges. In recent years, the legislation has been changed,
and the WIM data is also used by traffic enforcement depart-
ments for the enforcement of overloading. Identifying an
overloaded vehicle driving on any road is still a tough task
for enforcement officials. In many countries, the high-speed
WIM (HS-WIM) is used to detect the overloaded vehicle
on the road; the selected vehicles are then screened on a static
WIM to obtain more accurate weight. The present HS-WIMs
have the accuracy of 5%-15% due to various internal and
external disturbing factors [6].

The vehicle industry has used Vehicular Telematics (VT)
for more than a decade for various reasons. Pay As You Drive
(PAYD) or User-Based Driving Insurance (UBI) is the most
popular insurance schemes used by vehicle insurance compa-
nies all over the world. On-board devices are installed on the
user vehicles to collect driving information as they drive.
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Installing such devices is becoming mandatory in some
countries [7]. These VT data are used to analyze the driv-
ing behaviour and road anomalies. The availability of such
data offers more paths for further research. Even various
kinds of WIM solutions are being used in practice, each of
which has its advantages and disadvantages. Machine
learning (ML) algorithms are widely used in Intelligent
Transportation Systems (ITS) and its applications. A new
WIM solution using VT and ML was proposed in [8]. This
paper illustrates the prototype design of the proposed WIM
system and discusses the results obtained from it. The next
section discusses the available WIM systems, ability of VT
data, and ML. The following section describes the prototype
design considerations and solutions used. Various features
were tested to find a better regression ML model. Finally,
the prototype system is compared with other WIM systems.

2. Background

In general, WIM systems are used to measure the GVW and
other parameters of vehicles [6]. Two main classifications of
WIM solution methods are static WIM and dynamic WIM.
There are two subcategories of dynamic WIM methods
which are (1) low-speed WIM (LS-WIM) and (2) high-
speed WIM (HS-WIM). Figure 1 shows the classification of
WIM by [9]. In LS-WIM, the vehicle is weighed while it
moves across the scale at low speed, typically less than
15 kmph, but HS-WIMs are capable of weighing the vehicle
weight at full highway speeds [5].

2.1. Static WIM. In a static WIM method, the vehicle is
weighed while it is stationary on the scale. Static WIM
methods are mostly accurate but cumbersome. Fixed
systems, semiportable systems, and portable systems are the
three types of static WIMs in general [5]. Fixed systems are
permanently mounted to the pavement, usually in a rein-
forced concrete frame or platform. Semiportable systems
use permanent grooves, and road installations with portable

scales which are only installed while weighing operations
are being carried out. Portable systems use either wheel or
axle scales, which are placed on the pavement surface [5].

2.2. Low-Speed WIM. According to [6], static scales and
LS-WIM devices are very accurate and are used for
enforcement in many US states and several European
countries. LS-WIM devices were introduced because of the
drawbacks of static WIMs. LS-WIM devices are typically
wheel or axle scales equipped with load cells and are usually
installed into reinforced concrete or asphalt platforms which
are at least 30-40m in length. The vehicle may be guided by
curbs to minimize variation in the transverse position of
the wheels. The data processing system analyzes the signal
from the load cells and takes the vehicle speed into account
in order to accurately calculate wheel or axle loads. LS-
WIMs significantly reduced the time required to weigh
vehicles, but it is not a feasible solution for highway deploy-
ments due to its cost for installation, maintenance, and the
significant delay in measuring the weight as the vehicles
need to drive at slow speed. Static and LS-WIM systems
require vehicles to exit the highway and wait in a queue.
It is reported that this would delay between 10 and 30
minutes [6].

2.3. High-Speed WIM.HS-WIM systems are built to measure
the weight of vehicles driving in highways. HS-WIMs calcu-
late axle weights at full highway speed. Most of the HS-WIMs
are unmanned. Therefore, it can collect data 24/7. These
devices are installed either in the pavement or on the under-
side of a highway bridge. Several types of pavement-based
HS-WIM devices exist, including bending plates, strip
sensors, and multiple strip sensors. Alternatively, HS-WIM
can be accomplished using bridge weigh-in-motion (B-
WIM) devices. Several factors influence the accuracy of
B-WIM systems, thus the HS-WIM as well [5].

The multisensor WIM (MS-WIM) was introduced in [6],
because of the low accuracy or correctness of HS-WIMs. The
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Figure 1: Classification of WIM [9].
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authors of [6] conclude that the measurement accuracy could
be increased by incorporating MS-WIM in HS-WIM. They
also pointed out that the cost of installing MS-WIM is a
major concern. In the report [10], researchers identified three
major factors that affect the accuracy of the WIM system,
which are site condition, weather condition, and vehicle
characteristics. They reported that temperature and humidity
could affect the accuracy of the sensors, which will impact the
overall efficiency of the system. Among the other factors, site
conditions and pavement roughness have the most
significant effect on the efficiency of the WIM system [10].
They also reported that vehicle characteristics, such as speed,
tyre type, inflation pressure, suspension system, and axle
configurations, affect the dynamic tyre force, thus affecting
WIM sensor accuracy. According to [6], the HS-WIMs are
still not as accurate as static WIMs. Currently, the HS-
WIMs are used to filter the overloaded vehicles from the traf-
fic with limited certainty. The filtered vehicles are then sent to
the static WIMs for further legislative actions as it needs
more accurate results [6]. Several other approaches such as
using the Tyre Pressure Monitoring Systems (TPMS), Ride-
Height (suspension displacement), and chassis mounted
scales have been proposed in addition to pavement-based
static and dynamic WIMs. In [11], a WIM by observing the
length of the shock absorber was developed in two-wheeler
vehicles. Reference [12] discusses an experiment to explore
the various possibilities for a passive WIM system.
Researchers in [12] investigated multiple vehicle indicators
including brake temperature, tyre temperature, engine
temperature, acceleration and deceleration rates, engine
acoustics, suspension response, tyre deformation, and
vibrational response. Their sensing system included infrared
video cameras, triaxial accelerometers, microphones, video
cameras, and thermocouples. They found that the weight of
a vehicle shows a strong correlation to tyre deflection, sus-
pension response, and some other features. The patent [13]
discusses a vehicle weight estimation device. The invention
is generally for estimating a vehicle’s weight used for deter-
mining a shift range of an automatic transmission vehicle.
It is based on the acceleration integration and driving force
integration. The driving force is calculated by the torque
value, and the acceleration is calculated by the speed value.
Present vehicles use Electronic/Engine Control Unit (ECU)
to compute the engine load and other values and adjust the
parameters such as air intake, fuel injection, and ignition
timing to increase the performance and efficiency [14].

In summary, using mass scales in weighbridges is a costly
and time-consuming solution. Chassis and seat-mounted
scales use mechanical devices which need frequent calibra-
tion. Further, the reading varies during the drive. Smart tyres
and measuring weight using tyre pressure is expensive since
it needs to be installed on every wheel.

2.4. Vehicular Telematics. VT is a system that comprises the
various sensory devices, communication methods and the
applications using the data. The VT data is also referred to
as flying car data. It has been used in the transport industry
for more than a decade. PAYD or UBI rely heavily on using
this data. Onboard diagnostic modules or a black box is used

to collect this data from Engine Control Units via a Control-
ler Area Network (CAN) Bus. In addition to that, an Inertial
Measurement Unit (IMU) is also used. Driving behaviour
detection and road anomaly detection is the primary applica-
tion of this data. From the literature studies, VT data collec-
tion devices are available at little or no cost in cases where it is
mandatory for insurance purposes and legislations in some
countries [15–17]. Table 1 summarizes some of the available
VT data collection devices, also known as black boxes as in
2017 adapted from [18].

Studies reveal that there are several methods and data
used in driving behaviour and road anomaly detection
[19]. IMUs such as Accelerometer and Gyroscope are
some of the most widely used sensory devices in research.
Accelerometers measure the 3-dimensional acceleration
force applied to the observing device. Gyroscope measures
the Pitch, Yaw and Roll (3-Dimensional Rotation) of an
observing device. Global Navigation Satellite Systems
(GNSS) are used to find the position of the device on
the globe (earth) using GPS and/or GLONASS positioning
satellites. The latitude, longitude and altitude at a point in
time are observed and captured from these GNSS devices.
The precision of the reading depends on the devices and
the connected number of satellites.

The introduction of Onboard Diagnostics (OBD) port on
modern vehicles manufactured after 1996 has enabled us to
read the CAN Bus data. The CAN bus data brings much
information from the ECU. Information such as revolution
per minute (RPM), throttle position, intake air temperature,
coolant temperature, oil pressure and many more other man-
ufacturer specific data can be obtained from the vehicle by
connecting the OBD Dongle. The data can be transmitted
via a wired or wireless (Bluetooth/Wi-Fi) medium.

2.5. Vehicle Electronic/Engine Control Unit (ECU). Modern
vehicles are equipped with several sensors and ECUs. The
main reasons for these sensors and ECUs are to obtain
performance with fuel efficiency and increased safety.

The ECU receives the values from the array of sensors
and interprets the values with a multidimensional perfor-
mance map and controls the actuators accordingly [20].
Adjusting the air-fuel mixture and ignition timing for better
combustion is one of the primary functions of the ECU. Con-
trolling the Antilock Brake Sensor (ABS) and Air Bag is one
of the safety functions with regard to safety. Numerous sen-
sors are being used in autonomous vehicles (see Figure 2).
Table 2 contains some of the control systems, sensors, and
actuators in automobile vehicles.

2.6. Controller Area Network (CAN) Bus Data. The sensor
data transmission happens via the CAN bus to the ECU.
With a large number of components that exchange data
through a technology invented in 1986 by Robert Bosch
[21], a serial broadcast bus allows near real-time manage-
ment of most sensors and electronic devices embedded in
the car [20]. The CAN bus transmits ECU data outside for
troubleshooting and performance logging using several stan-
dards, e.g., J1939.
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2.7. Onboard Diagnostics Module. Almost all of the newly
produced automobiles are required, by law, to provide
an interface for the connection of diagnostic test equip-
ment [22]. Cars manufactured after 1996 have an OBD
interface which enables users to read and write into cars’
ECU. The communication protocol and the data transfer
rate may differ from manufactures. ELM 327 is the
widely used microcontroller (chip) for the communication
with the ECU. ELM 327 acts a bridge between OBD
ports and a standard RS232 serial interface. The ELM
microchip has its interface to send and receive data from
external applications, and the ECUs are designed by var-
ious manufacturers.

Figure 3 shows the block diagram of the modules
involved in OBD data communication. The data from
sensors to the ECU are transferred via CAN bus; vehicle
manufacturers follow some standards on establishing
communication to the external world through the OBDII
interface. They allow some generic parameters to be accessed
by the OBD interface. Once the OBD adaptor has been
inserted to the vehicle’s OBD interface, ELM 327 tries to
establish a connection with the vehicle’s ECU. It tries to
establish the connection with several communication proto-
cols and baud rates. According to the ELM electronics report
[22], there are 12 different protocols supported by ELM,

Battery

Detonation/ignition
sensor

Idle air control valve

Ignition coil Spark plug

Injector Regulator Gas cleaner

Throttle position 
sensor

Air conditioning

Camshaft position
sensor

Crankshaft position
sensor

Exhaust gas oxygen
sensor

Coolant temperature
sensor

Diagnostic
module
(ECU) Solenoid

valve

CNG bottle
Air conditioning

control

Figure 2: Schematic diagram of ECU with some sensors and actuators.

Table 2: Example of some automotive control systems [20].

Control system
Indirectly

controlled variable
Directly

controlled variable
Manipulated
variable

Sensor Actuator

Fuel injection system Air-fuel ratio
Exhaust

oxygen content
Quality of

injection fuel

Zirconia and
Titania-based
electrochemical

Fuel injector

Knock control Knock
Knock sensor

output
Ignition timing

Piezoelectric
accelerometer

Ignition coil
switch transistor

Antilock braking system Wheel slip limit Wheel speed Brake time pressure Magnetic reluctance ABS solenoid valve

Vehicle

Computer/laptop/tablet/smartphone

OBD adaptor

USB/serial/ Bluetooth/ 
WiFi adaptor

ELM 327 chip

OBDII interface

ECU

Sensors and actuators

CAN 
BUS

Figure 3: Block diagram showing ECU data collection modules.
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including two user-defined protocols. After establishing the
connection, the ELM 327 reads the data from the ECU
and allows its connected applications to access the values
by translating the ECU data. The communication can be
made with several different modes (services). Table 3
describes the ten diagnostic services described in the latest
OBD-II standard Society of Automotive Engineers (SAE)
J1979. Before 2002, J1979 referred to these services as
“modes”.

The parameters are accessed using their Parameter Iden-
tifiers (PIDs); for example, Engine Revolutions Per Minute
(RPM) has PID number 12 under service number one.
OBD-II was made mandatory for cars and lightweight trucks
across the USA in 1996. OBD-II was required in the EU for
all gasoline cars after 2001, followed by diesel in 2003. In
2005, it was required in the USA for medium trucks. In
2008, the ISO 15765-4 CAN bus standard was required in
the USA. In 2010, OBD was required in the USA for all
heavy-duty vehicles [16].

In [23, 24], the speed and acceleration were calculated
only using GNSS data. They reported that the backward
difference method to find speed and acceleration using
GNSS data had shown more accuracy. A combination of
GNSS and IMU data was used in [3] to detect dangerous
cornering events. A study [25] solely used OBD-II data to
detect reckless driving behaviour and vehicle anomalies. A
similar study [26] used speed, acceleration, and engine
RPM as parameters for driving behaviour detection. Refer-
ence [23] reports that under controlled experiments, the
total accuracy of 99.5% was achieved when using smart-
phone sensors (IMU and GNSS) and 99.3% was achieved
when using the OBD-II device. Gyroscope, accelerometer,
GNSS, and microphone sensor data were used in [24]
for a turning and cornering detection system. The system
was deployed on smartphones. The microphone was used
to detect the signal relay sound. The study [27] used sev-
eral sensors to collect rich multimodal data. 12-channel
audio, four-channel video, GNSS information, gas and
brake pedal pressure, steering angle, following distance,
vehicle velocity, driver’s heart rate, skin conductance, and
emotion-based sweating on the palms and soles are some

of the data gathered in this research to study the driving
behaviour. A recent study [28] investigating several smart-
phone sensors and ML algorithms for driving behaviour
and road anomaly detection found that the accelerometer
and gyroscope are the best sensors to detect driving
behaviour. In studies [24, 29, 30], sensor fusion was found
more promising in driver behaviour and road anomaly
detection. Article [31] reported that OBD sensors have
been validated and have good accuracies to be used to cal-
culate instantaneous power and fuel consumption. This
encouraged us to use the OBD II data in this project.

2.8. Theoretical Background. According to Newtonian phys-
ics where space and time are absolute, we believe that
Newton’s theories of mechanics are still valid in this phys-
ical world. According to Newton’s second law of motion,
“The acceleration produced when a force acts is directly
proportional to the force and takes place in the direction
in which the force acts,” which is F =ma, in a formula,
where F is the force applied on a mass, m, and a is the
acceleration of the mass. This can also be interpreted that
the applied force, F, is proportional to the mass, m, for a
specific acceleration.

In vehicles powered with internal combustion engines,
the driving force, F, produced is proportional to the torque
(engine load) of the engine, whereas torque is a function of
engine RPM and intake air flow. According to [12], the
weight of a vehicle can be measured using several internal
and external features. In [13], the estimating means of vehicle
weight is based on the motion and is given by the following
equation:

ma = F − m × g × sin Θð Þð Þ − R, ð1Þ

where a is the acceleration in ms-2, m is the vehicle mass
in kg, F is the driving force in N , Θ is the slope of the
driving surface in degrees, g is the gravitational acceleration
in ms-2, and R is the running resistance in N .

From Equation (1), the mass is

m =
F − R

a + g × sin Θð Þð Þ : ð2Þ

Lin and Li [32] listed the following as some of the
conditions which affect a load of electric vehicles motor:
(1) travelling surface, (2) road gradient, (3) weight of
the vehicle, (4) rolling resistance, (5) type of tyre, (6)
air pressure of one or more tyres, (7) air resistance, (8)
size and shape of the vehicle, (9) alignment of wheels,
and (10) transmission system. The driving force of a
vehicle affects the acceleration of a vehicle. The load is
the amount of driving force needed to move a vehicle.
In electric motors, the load is calculated using the
ampere. According to SAE International SAE J1979/ISO
15031-5, in internal combustion engines, the calculated
engine load (EL) is a function of current airflow, ambient
air temperature, RPM, peak airflow, and barometric pres-
sure. According to SAE, EL is calculated using Equation
(3), which is typically an indication of the current airflow

Table 3: Diagnostic services/modes according to SAE J1979
standard.

Service/modes Description

01 Show current data

02 Show freeze frame data

03 Show stored Diagnostic Trouble Codes

04 Clear Diagnostic Trouble Codes and stored values

05 Test results, oxygen sensor monitoring

06 Test results, other components/systemmonitoring

07 Show pending Diagnostic Trouble Codes

08 Control operation of on-board component/system

09 Request vehicle information

10
Permanent Diagnostic Trouble Codes

(DTCs) (cleared DTCs)
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divided by the peak airflow at the wide open throttle as a
function of RPM, where airflow is corrected for altitude
and ambient temperature [33].

EL =
CAFR

PAFR × BARO/29:92ð Þ × ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
298/ AAT + 273ð Þp , ð3Þ

where CAFR is the current air flow rate, PAFR is the
peak air flow rate at fully open throttle at standard
temperature (25°C) and pressure (29.92 in Hg BARO),
and AAT is the ambient air temperature (in °C).

In summary, force (F) applied on an object with mass
(M) produces an acceleration (A) (Newtons’ Second Law
of Motion). This can also be viewed as the force needed
to obtain a specific acceleration is proportional to the
weight (mass) of an object. Internal combustion engine
vehicles use the torque produced by engines to move the
vehicle. The torque produced by the engine is proportional
to the calculated engine load (EL) given by Equation (3).
From these two factors, we could say that a vehicles’ EL
is proportional to the weight of it at a certain acceleration.
But EL is influenced by several internal (Equation (3)) and
external (Equation (2), [20, 21, 34]) factors. We assume
that the relation is multiple linear regression. It can be
viewed as

W = b + 〠
n

i=0
ai × xi, ð4Þ

where the weight of a vehicle W is the sum of a bias value
b and the accumulated sum of the products of coefficient
ai and feature xi of all the n number of features.

2.9. Machine Learning. ML is a form of Artificial Intelli-
gence (AI) that enables a system to learn from data rather
than through explicit programming. However, ML is not a
simple process. ML uses a variety of algorithms that itera-
tively learn from data to improve, describe data, and pre-
dict outcomes. As the algorithms ingest training data, it is
then possible to produce more precise models based on
that data.

In general, the prediction is the primary goal of ML. Sup-
pose T is a training set of N data:

T = yn, xnð Þ,  n = 1, ::,Nf g, ð5Þ

where yn are the response (dependent) vectors and xn are the
vectors of predictor (independent) variables. The goal is find-
ing a function (f ) operating on the space of prediction vec-
tors with values in the response space, such that

If ðyn, xnÞ are independent and identically distributed
variable vectors from the distribution ðY , XÞ and given loss
function Lðy, ŷÞ that measures the loss between y and the pre-
diction ŷ. The prediction error of using function f on training
data T is the following:

PE f , Tð Þ = EY ,X L Y , f X, Tð Þð Þ: ð6Þ

In the training process, we always try to choose f yielding
small PEð f , TÞ for a given data set T: Typically, y is one-
dimensional. If y is numerical, the problem is referred to as
regression (discussed below). If y is unordered labels or cate-
gorical values, the problem is called classification. The loss
function in regression is usually squared error (discussed
below). In classification, the loss is determined in binary
values. The loss is one if predicted category, or the label is
not equal to the true (given) label, zero otherwise.

2.10. ML Model. An ML model is the output generated
when the ML algorithm has trained with data. After train-
ing, when a model has provided with an input, an output
will be given [35].

2.11. Machine Learning Algorithms.ML algorithms are orga-
nised into taxonomy, based on the desired outcome of the
algorithm. Two primary classifications of ML algorithm
types were supervised learning and unsupervised learning.
In supervised learning, the algorithm generates a function
that maps inputs to desired outputs. One standard formula-
tion of the supervised learning task is the classification
problem: the learner is required to learn (to approximate
the behaviour of) a function which maps a vector into one
of several classes by looking at several input-output examples
of the function. Unsupervised learning creates models from a
set of inputs with no labelled examples. These kinds of algo-
rithms were commonly used in classification, clustering, and
anomaly detection problems. The algorithm will learn the
trends and variations in the input dataset and predicts the
output automatically.

Supervised ML comprises two main processes: classifica-
tion and regression. Classification is the process where
incoming data is labelled based on past data samples and
manually trains the algorithm to recognise certain types of
objects and categorise them accordingly. The system must
know how to differentiate types of information and perform
an optical character, image, or binary recognition.

Regression is the process of identifying patterns and cal-
culating the predictions of continuous outcomes. The system
must understand the numbers, their values, and grouping
(for example, heights and widths).

2.12. Linear Regression. Linear regression is a simple model
which makes it easily interpretable. A linear regression
model assumes that the response or dependent variable
(y) is a linear combination of weights (β’s) multiplied by
a set of predictor or independent variables (x). The
complete formula contains an error term to account for
random sampling noise ε.

y = β0 + 〠
N

n=1
βnxnð Þ + ε, ð7Þ

where β0 is the intercept term and βn is the coefficient of
each predictor variable xn from the N number of variables.
The goal of learning a linear model from training data is
to find the coefficients (β) that best explain the data. In
linear regression, the best explanation is taken to the mean
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coefficients (β) that minimize the residual sum of squares
(RSS) also known as Sum of Squared Error (SSE).
RSS/SSE is the total of the squared differences between
the known values ( yn) and the predicted model outputs
(ŷn). The residual sum of squares is a function of the
model parameters

RSS βð Þ = 〠
N

n=1
yn − ŷnð Þ2: ð8Þ

The coefficients (β) which make the smallest RSS/SSE
value are obtained from the maximum likelihood estimate
of β. This way of fitting the model by minimizing the
RSS is called Ordinary Least Squares (OLS) [29].

Let Y = ðy1,⋯, yNÞT be the response vector and X be the
N × ðp + 1Þ matrix of covariates. Then the mean of Y is Xβ
and the OLS solution is

bβ = XTX
� �−1

XTY : ð9Þ

OLS fit methods work well for single independent vari-
able and single dependent variable regressions. If the
response variable is in a nonlinear relation with more than
one predictor variable, the relation is called multiple nonlin-
ear regression or, in some cases, multiple polynomial regres-
sion. It is simply achieved by introducing new variables by
applying nonlinear functions such as log, sin, and square
root, to the existing predictor variables. The gradient descent
method is commonly used to find the best coefficients (β) in
multiple regressions. Standard regression methods are not
very robust to outliers and nonlinearities and are prone to
overfitting when the feature space is high dimensional or
when there are little training data [30].

2.13. Problem Definition. VT data is becoming more abun-
dant and more accurate due to the technological improve-
ments in sensors and connectivity. ML approaches are
widely used in identifying driving behaviour and road anom-

aly detection [28] and also in other WIM solutions [36].
Building a new WIM system to infer the payload of a vehicle
on any road segment using VT data and ML would help the
transport industry. Exploring the feasibility of inferring the
payload using VT and ML needs to be done through design-
ing and testing the prototype.

3. Materials and Methods

An application (WIM application) was developed as a by-
product of this research. The primary purpose of the applica-
tion was to read VT data from several sources (VT modules)
and train and test the inference model from the data received.
The conceptual design framework of the WIM application
was proposed considering three modules: the back-end mod-
ule, the data collection module, and the ML module. The first
two modules were independent, and the later module was
dependent on the other two modules.

Figure 4 shows the order of the design and development
performed, considering their dependencies. The backend
was designed to receive weather data, simple and bulk (col-
lection of) VT data from the data collection module, and
store it into a database. The database was also designed to
log the inferred weight data from various driving events; this
includes the year, month, time, vehicle identifier, start loca-
tion, end location, and the inferred payload of each registered
vehicle. The data collection module was designed to receive
VT data from OBDII devices, geolocation data from GNSS
modules, IMU data, and weather data and send the received
data to the backend as stream or batch input. The ML
module was designed to infer the weight of a vehicle caring
(payload). ML models were chosen by training and testing
with the data present in the backend. The WIM application
was designed to use Application Programming Interfaces
(APIs) to receive from a wide range of sources using a Java-
Script Object Notation (JSON) format.

Figure 5 shows the architecture of the prototype to
handle fast data handling from multiple VT data devices,
depicted as the Internet of Vehicle (IoV) devices. The
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Vehicles(i)
(ii)
(iii)
(iv)
(v)

Road segments
Events
Drivers
Weather

Data collection

Data

ECU:(i)
(i)

(ii)
(iii)
(iv)
(v)

(i)

(i)
(ii)

(iii)

(ii)

(ii)

(iii)

RPM
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Engine load
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Lat/Long/Alt
Heading direction
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Temperature
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Wind speed & direction
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(i)
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Model:

Feature generation 
Feature selection
Algorithm selection 

Figure 4: Overview of the proposed WIM system components (data/functions).
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prototype system application is deployed on a Kubernetes
cluster of five physical nodes [34]. The system receives tons
of VT data from each IoV device. The incoming VT data will
be handled by a Kubernetes service. The Kubernetes service
will then send the VT data to the available node, pod running
the WIM application. The prototype WIM application can
handle fast streaming data by using Kafka Cluster and Akka
stream. The Kafka Cluster consumes and holds VT data to
be processed by goroutines. Akka stream is used to stream
each VT data (Kafka topics) for further processing. Kafka’s
“Exactly once” delivery semantics was used in streaming.
The goroutines will process the VT data routed from its
internal API endpoints. Persistence storage is used to store
processed data (models, logs, events, and results). This persis-
tence storage is easily scalable horizontally to servemore data.
The data overflow is handled internally without limiting
(or requesting) the IoV devices to reduce the transmission
rate (or resend). The generation of backpressure starts
from the goroutines in case of any delay in processing.
The backpressure is then propagated to the Akka streams
to the Kafka Cluster. This will trigger the streaming to
be flexible with the backpressure by reducing the stream-
ing data rate. But this could lead to the Kafka Cluster
overflowing by the fast-incoming VT data accumulation.
In such cases, the Kafka Cluster with the help of Zoo-
keeper could scale up horizontally.

3.1. Deployed Environment. Containerised applications are
becoming a trend in this cloud era. A container is an
application bundled with all its necessary components to
run. It allows developers to package and isolate applica-
tions with their runtime environment that is with all the
files required to run. Kubernetes is a container orchestra-

tion engine which runs and manages Linux containers.
Kubernetes is an open source platform for automating
deployment, scaling, and operations of application con-
tainers across clusters of hosts, providing container-
centric infrastructure [37]. The application was contain-
erised and deployed in Kubernetes cluster with five physi-
cal nodes. Persistence storage was provided by the three
Gluster [38] nodes, including one Kubernetes node.
Kubernetes container orchestration engine runs several
stateful sets, where the state of such applications is saved
frequently. If a node dies or stops due to an unexpected
event, then the Kubernetes will spin it off from the saved
states. There are several persistent storage volumes that
can be used in Kubernetes cluster to respawn and resume
any stateful sets. In this research, GlusterFS is used to
maintain the persistence volumes for the Kubernetes clus-
ter. GlusterFS is a distributed, software-defined file system,
where storage devices, called “bricks,” are selected on one
or more nodes to form logical storage volumes across a
Gluster cluster. It is easy to increase storage by simply
adding more nodes, which provides features like cross-
node and cross-site replication, usage balancing, and iSCSI
storage access [38]. Replicated GlusterFS volume architec-
ture was used in this Gluster cluster. This was done to
overcome the data loss problem faced in the distributed
volume. Exact copies of the data are maintained on all
bricks. The number of replicas in the volume can be
decided by the client while creating the volume. Three
bricks were used to create a volume of 3 replicas. One sig-
nificant advantage of such a volume is that even if one
brick fails, the data can still be accessed from its replicated
bricks. This volume is used for better reliability and data
redundancy.
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3.2. Languages. Golang (Go) was chosen as the programming
language to develop the MLmodule of theWIMApplication.
Scala was used to build the Akka streaming API endpoints
consumed by the ML module developed in Go. R language
was used to select the models; those models were then imple-
mented in the application using Golang. R is one of the most
popular and widely used for statistics, data mining, and
machine learning.

3.3. Database Management System. The Apache Cassandra is
a linear, scalable, fault-tolerant database management system
to run on a commodity of hardware or cloud infrastructure.
The Apache Cassandra NoSQL Database Management sys-
tem was also deployed in the same Kubernetes cluster. The
database is being used to store weather information from a
scheduled job (cron), to retrieve stored VT data and weather
data to train and test ML models, and to store the inferred
output.

Figure 6 portrays the application architecture of the
developed conceptual framework focused on the VT data
ingestion. The WIM application has two main jobs, a sched-
uled weather data recorder and an ML Application. A sched-
uled job to read the current weather information for the
selected places from the OpenWeatherMap was deployed.
The read weather data was then written into the Cassandra
database for future use. This was done due to two reasons.
The first reason was that the VT data might not be streamed
in real time due to the unavailability of connectivity and
other reasons, so fetching the current weather data at the
time of receiving the VT data may not yield correct weather
data. The second reason was the limitation on API calls since
we have used a free account for OpenWeatherMap API
requests, the maximum API calls per minute was 60, and
the total threshold was 7200. The OpenWeatherMap pro-
vides weather information for some specific fixed locations;

for example, weather data were given for overall cities, not
for fine locations. Keeping that in mind, the data was col-
lected for known places where the vehicle was driven to col-
lect VT data. The cron job automatically collected current
weather data of the prior set locations from the Open-
WeatherMap and stored it into the Cassandra database.

TheWIM application can be accessed using the API end-
points on the ports exposed by the Kubernetes service. When
a JSON post request hits the Kubernetes cluster, the service
will map it to the specific node based on its availability. If
the request is for training, then the merger application will
store the incoming data into the database and triggers a gor-
outine to merge the existing weather data with the VT data
based on the time value. The result of the inference is stored
in the Casandra database. The stored inferred results could
then be served to any frontends upon request.

3.4. Prototype System. A prototype of the system was devel-
oped to validate the idea of the new WIM system approach.
The system comprises three components, which are

(i) an OBD-II Bluetooth/Wi-Fi module

(ii) an android mobile device

(iii) a WIM inference engine application running on a
Kubernetes cluster

The OBD-II module was used to collect the CAN bus
data. An android mobile device was used to fetch CAN bus
data from the OBD-II module via Bluetooth or Wi-Fi. The
android mobile device collected ECU data for each second
and stored it along with the data from the built-in GNNS
position data. The collected/stored data was then sent to
the WIM API server using the REST clients through the ser-
vice API endpoints. Figure 7 shows the schematic diagram of
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the developed prototype. An android phone collected the
data from the OBD-II module (1) via Bluetooth, its internal
IMU, and GNSS (2). The collected data was then transferred
from the phone to the back-end server WIM application (3).
The system was built to collect weather data from Open-
WeatherMap API. The system collected weather data,
including wind speed, wind direction, atmosphere tempera-
ture, atmosphere pressure, and humidity.

3.5. Data Collection. According [39], the implementation of
an artefact from Idea to Practice must start from small
laboratory conditions, i.e., start development and test on
the context of a specific group then move to the road credibil-
ity to test on many groups. The major goal of this research
was to verify the idea of using VT and ML for WIM. The ver-
ification of this idea was done considering the context of a
small car. The validation of these systems is yet to be done.
The fully internal combustion engine, hybrid (electric+inter-
nal combustion engine), and fully electric motor are the
available three different driving sources of the present-day
vehicles. Internal combustion engine vehicles on the current
market have the combination of properties listed in Table 4.
A car having a combination of the features was used to verify
the concept.

The data collection was done on a Ford Fiesta manufac-
tured in the year 2015, which is a 1.4 l four-cylinder gasoline
engine with the front-wheel-drive with five manual transmis-
sions and a curb weight of 1110 kg. Torque Lite Application
on an android mobile phone running Android OS 8 was used

to collect the data from the ELM 237 OBD Bluetooth Scan-
ning device. The car was driven in controlled and uncon-
trolled environments. The controlled data collection was
done on the premises of the Cape Peninsula University of

Weight inference

Time, elevation of the road, vehicle
speed and direction, RPM,

acceleration, engine load, etc  

GNSS

(2)

(1)
OBD 

Dongle

(3)

Geolocation
(Lat, Long, Alt)

Engine RPM,
Load, vehicle
speed, etc.

Figure 7: Representation of the developed system with its components.

Table 4: Some properties of internal combustion engine-powered
vehicles.

Properties Values

Body type Car (Sedan/Coupe, Hatchback, Wagon)

Utility type SUV, ATV, MPV

Engine

Capacity 600 cc–5,000 cc and greater

Number of cylinders 2, 3, 4, 6, 8, 12, 14, 16, 18

Valves per cylinder 2-8

Alignment Inline, V, boxer, rotary

Fuel type Gasoline, diesel, LPG

Air intake
Turbocharged

(exhaust/electric driven),
or no turbocharger

Transmission

Auto

Hydraulic auto transmission,
continuous variable transmission,

dual clutch transmission,
automated manual transmission

Manual Forward gears—4, 5, 6, 7

Drive 2 wheels (front/rear), 4 wheels
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Technology (CPUT). Volunteers weighing different weights
participated as passengers during data collection. The car
was driven only in the first and second gears. The landscape
of the University parking contains inclines (up to 40 degrees)
and low (0-degree elevation) roads. The controlled data col-
lection was done on sunny days with wind no more than
5 kmph. The uncontrolled data was collected from the daily
commuting of the car for four different days with a similar
weather condition. VT data was labelled with the total
carrying weight, also known as payload (i.e., the sum of the
masses of the passengers and the driver with the mass of
any bags carried). Since the density of the fuel is 0.7 kg/l
and the fuel tank capacity is 43 litres, it makes a significant
30 kg difference in total weight. The weight of the fuel was
also considered in four-quarter blocks by observing the fuel
gauge reading.

3.6. Data. Various data sets were collected from the OBD-II
dongle, smartphone, and the OpenWeatherMap’s weather
API. The data collection application logged the data for every
1-second interval (sample rate = 1Hz).

Table 5 shows the details of the data collected from
different sources during the initial data collection. ECU
data such as vehicle speed (VS), throttle position (TP),
engine RPM (RPM), calculated engine load (EL), and drive
distance (DD) were collected from the OBDII device. The
global position data such as latitude (LAT), longitude
(LON), and altitude (ALT) were collected from the smart-
phone’s GNSS unit. The combined data with the time-
stamp and the geolocation was then used to extract the
weather information from the stored weather database
since EL depends on airflow, standard temperature, and
pressure. To reduce multicollinearity, airflow, standard
temperature, and pressure readings were not recorded
nor included in the feature set.

3.7. Correctness of Data

3.7.1. Weather Data. Wind direction data from Open-
WeatherMap API consists of the wind speed and the wind
direction in meteorological degrees. The wind speed and
direction directly influence the driving force of a vehicle.
Thus, it is essential data for our inference system. Unfor-
tunately, our current ability to monitor the weather and
environmental conditions is still severely limited in both
time and space. The weather data available now are with
spatial granularity in the order of several square kilometres
and time resolution in the order of one hour [20]. The
direction of the wind and the speed may vary due to the
landscape and the objects. The resolution of our weather
data obtained was two hours. Most of the data recorded
have remained unchanged, or data with minimal variance.
The wind direction and wind speed data need to be
instantaneous at each location where we collect VT data.
The model errors were higher with the weather data incor-
porated. Thus, weather data was excluded while selecting
models in this research.

3.7.2. Vehicle Speed from ODB vs. GNSS. The VS collected
from the OBD vs. GNSS is shown in Figure 8. Pearson’s
product-moment correlation coefficient (PPMCC) [40]
was used to check the correlation between the two different
readings. PPMCC between two vectors: X = fx1, ::, xNg and
Y = fy1, ::, yNg, is

PPMCC =
Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p , ð10Þ

where Sxx =∑N
n=1ð�x − xnÞ2, Sxy =∑N

n=1ð�x − xnÞð�y − ynÞ.
The PPMCC of the VS readings from OBD and GNSS is

0.842. The zero readings for nonzero values of speed OBD

Table 5: Details of the variables collected during the data collection.

Variable Description Source Range Units

ACC Acceleration = ΔVS ∗ 0:27ð Þ/Δt (-10)-10 ms-2

ALT Altitude (meters above sea level) GNSS 10000+ m

LAT Latitude GNSS 41.25–(-120.9762) —

LON Longitude GNSS -31.96–(-115.84) —

ELE Elevation = arctan ΔLAT/ΔDDð Þ (±)45 Degrees

VS Vehicle speed OBD/GNSS 0-220 kmph

DD Drive distance OBD 0-10,00,000 km

EL Calculated engine load OBD 0–100 %

RPM Revolutions per minute OBD 0-9000 r/min

TP Throttle position OBD 0–100 %

HUM Humidity OpenWeatherMap 0–100 %

TEM Temperature OpenWeatherMap 0-350+ K

PRE Atmospheric pressure OpenWeatherMap 1000+ hPa

WS Wind speed OpenWeatherMap 0-400+ kmph

WD Wind direction OpenWeatherMap 0–360 Degrees

Weight Payload User input 50-650 kg
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readings are due to the time taken to fix GNNS satellites for
positioning. Due to this reason, the speed in this research
was chosen from the OBD reading.

3.7.3. Altitude Form GNSS vs. Google Map API. Altitudes
from Google Map API for a list of latitude and longitude
positions bring a different value from GNSS sensor altitude,
as shown in Figure 9. The PPMCC between these two altitude
measurements is 0.976.

3.8. Road Gradient (Elevation Angle). The phone’s rotation
sensor was tested to be used to find the ELE of the road. In
order to obtain the ELE, the phone was rigidly placed parallel
to the chassis of the vehicle assuming the vehicle chassis will
always be parallel to the road surface. Due to the suspension
system of the vehicle, the nose lift and nose down happened
during the acceleration and braking. Similarly, the linear
acceleration calculated from IMU was not enough to capture

the lateral acceleration/deacceleration (ACC) of the vehicle
due to throttling and braking. Equations (11) and (12) were
used to calculate ACC and ELE, respectively.

ACC = ΔVS × 1000
Δt × 60 × 60

ms−2, ð11Þ

where ΔVS is the change of vehicle speed in kmph and Δt is
the change of time in seconds.

The following is the road gradient/elevation angle in
degrees:

ELE = tan−1
ΔALT

ΔDD × 1000

� �°
, ð12Þ

where ΔALT is the change of altitudem and ΔDD is the drive
distance in km.

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Time

Sp
ee

d 
(k

m
/h

)

OBD
GPS

(a)

0 5 10 15 20 25 30 35
0

2

4

6

8

OBD speed (km/h)

G
PS

 sp
ee

d 
(k

m
/h

)

(b)

Figure 8: Difference in speed reading from OBD and GPS. (a) Speed readings. (b) Correlation graph.
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3.9. Rate of Data Collection. Systematic measurement errors
such as lag time and hysteresis may be present while reading
the values from CAN bus data and GNSS. These errors are
very hard to detect and eliminate.

In Figure 10, the graph shows the response of the engine
RPM (denoted in red line) to the throttle input (denoted in
black line). When there is a change in the TP (i.e., ΔTP), that
change reflects in the engine RPM. The parts of the graph in
rounded rectangles show the delay in engine response during
the throttle change (ΔTP) in normal conditions, that is, when
either clutch is engaged (pedal released) and accelerating or
when the clutch is disengaged. The delay in engine response
in those regions is clearly visible. It was found that there is a
0.6-second delay in average between peaks on input and its
response. The area denoted by the oval shows the reverse
response (negative or irregular response) of the engine. This
was due to the engine braking, that is when we deaccelerate
by reducing throttle while the clutch is engaged. Such data
was considered inappropriate. The frequency of parameters
ranged from 1Hz to 100Hz but was collected at the rate of
1Hz. The reduced rate of data collection might have missed
some crucial facts from those data.

3.10. Data Preprocessing. The correctness of the data influ-
ences the model accuracy. The model needs to be trained
with carefully chosen data for better and robust accuracy.
The data from the start of a journey to the end was plotted
to observe the behaviour of independent variables. The graph
in Figure 11 shows the values of RPM, VS, EL, and ACC of a
journey for Point A to Point B within the 20s.

The first spike on the EL shows the gear change from the
first gear to the second gear. During this period, the clutch
will be released to separate the engine and transmission, TP
will be decreased. Thus, the RPM will also be reduced. This
speed difference (ΔVS) is very lean; therefore, the ACC
reaches zero, then shoots up when the gear is changed. The
graph segment between times greater than 15 depicts the
braking (deacceleration) event to bring the vehicle to be
stationary. ACC may occur due to two different reasons: (1)
vehicle on an inclined or flat surface (i.e., ELE ≥ 0) when
TP is high, RPM is high, and EL is high and (2) vehicle on
the declined surface (i.e., ELE < 0) when the TP, RPM, and

EL are low, where the vehicle starts moving due to the grav-
itational pulling force. Similarly, the deacceleration without
applying brake can occur due to two different conditions:
(1) on an inclined surface (i.e., ELE > 0), with low TP, low
RPM, and low EL and (2) on a flat or declined surface (i.e.,
ELE ≤ 0) with high RPM, low TP, and low EL (usually on
low gears) as explained by the oval shape in Figure 10. Train-
ing ML models with this complex and noise data did not
yield a good model accuracy. Consequently, the model is
trained with data points where ACC ≥ 0 and ELE ≥ 0 and
RPM >minimumRPM and TP >minimum TP.

Figure 12 shows the RPM vs. vehicle speed graph for the
uncontrolled data collected on different payloads (95, 110,
112, 180, 240, and 320 kg). This graph clearly shows the cor-
relation between VS and RPM for different gears. It is easy to
distinguish the five gears which are represented by five
slope lines in the graph. Decreased TP and RPM cause
(region A in this graph) during gear changes and braking.
Region B denotes our interested area in this graph, where
0 < VS < 20. Region B contains the data obtained when the
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vehicle changed its state from stationary to moving. The
VS gain during the first gear was captured for different
payload settings. The left corner of region B is denser than
other regions in this graph. This makes us focus on this
region as other gear settings do not show any significant
patterns for different payloads.

3.10.1. Data Transmission. The collected VT data must be
sent to the WIM system either in batch or in stream fash-
ion. Streams with short bursts would be more preferable
than a continuous stream of VT data. Assume a vehicle
data collection device (sender) collects the VT data at a
rate of 1Hz and starts sending or queuing its VT data
to the system from the start of the journey. In such situa-
tions, the volume of data throughout the journey depends
on the duration of the journey. The amount of data form
the VT devices should be minimized for a better reactive
system. Further, we have noticed that not all VT data is
useful for inferring the weight. The following steps explain
the data collection process deployed in the prototype sys-
tem. In here, speed is the current speed of the vehicle.
Vehicle identifier (VID) is a unique identifier assigned to
each vehicle. The route identifier (route ID) is a combina-
tion of VID and start time.

On the Sender side:

IF (0< speed)

THEN

routeID⟵VID+StartTime

IF (speed<20)

THEN

IF (connected)

THEN

Stream VT data

ELSE

Queue VT data

ELSE

Log Locatiodata, routeID

ELSE

Connect and Send VT data queue, Log

The VT data device has two main functions, namely,
streaming and logging. The size of the VT data stream is
reduced by limiting the VT stream data by only streaming
during 0-20 kmph speed. By doing this, we reduce the
streaming time as well as the accumulation of unnecessary
data. If the VT device is connected to the backend, then,
the data is streamed. Otherwise, the VT data is queued
for streaming. At the backend, inferencing is done by the
steamed data (during the drive from 0 to 20 kmph) for
each routeID. If the vehicle speed is greater than 20 kmph,
then the VT data collection device logs the geolocation

(GNSS data) with the generated routeID for every second.
The backend merges the inferred weight of a routeID with
the logged data to track the payload throughout the jour-
ney of a vehicle. When the vehicle stops and starts again,
then the new VT data is sent to infer the weight again.
Each stop and go triggers the inferencing. This allows
tracking any vehicles which overload at any point of their
journey.

Figure 13 describes the sample extracted data using the
data extraction process. This extracted data was used to
choose the ML model.

3.11. ML Model Selection. This research focused on regres-
sion models rather than classification models. No attempt
has been made to test a classification model classifying
overloaded and legally loaded vehicles. This was so as not
to violate laws or damage the testing vehicles. On the other
hand, an attempt has been made to test the weight inference
system using regression models.

3.12. Feature Creation. Feature engineering is the most diffi-
cult and time-consuming part of ML projects [41]. The raw
data we gathered was not in a form amenable to learning.
This part of the research has consumed a considerable
amount of time. After performing data preprocessing, the
preprocessed data was then filtered using the data extraction
process. The chosen data was then used to build learning
models. The correlation matrix was then used to check the
correlation between variables. Table 6 shows the correlation
matrix between the collected features. The correlation matrix
does not reveal any direct correlation between the base fea-
tures and the dependent variable.

The correlation between the independent variables is
also known as multicollinearity. In here, the vehicle speed
and RPM are highly correlated with the value 0.76. RPM
was removed in some settings to check the effect of
removing multicollinearity. The reason for choosing RPM
instead of vehicle speed is because RPM is less correlated
to weight (0.05) than vehicle speed (0.12). Some new fea-
tures were added by multiplying existing features and find-
ing the powers of selected features. ACC, VS, RPM, EL,
ELE, and TP are used to create new features using nonlin-
ear functions such as LogðxÞ, SqrtðxÞ, and Powerðx, ‐1Þ,
and Powerðx, 2Þ, where Powerða, bÞ = ab. Feature crossing
is also done to obtain new features by multiplying and
dividing existing features. n feature crossing is the combi-
nation of the multiplication of n features. Since we got the
negative powers of features, the feature crossing results in
inverse multiplication.

3.13. Feature Selection. Selecting the best set of features is
essential for the better performance of the ML model. Keep-
ing a higher number of features may lead to many hazardous
situations. The higher number of feature space makes the
model harder to interpret. Space and time complexity are
also affected by the number of features. It could also lead to
model overfitting in some cases. Handling higher dimen-
sional data is an issue with a higher feature space.

15Journal of Sensors



There are several methods available for feature selection.
Stepwise regression, penalised regression (ridge, lasso, and
elastic), and principal component based regression [42] are
some of the feature selection methods available. According
to [42], stepwise regression is ideal for high-dimensional data
with multiple features. Stepwise regression was done to find
the best number of features. The feature selection of stepwise
regression uses Root Mean Squared Errors (RMSE) [43],
showing that using the four-variable model results in the best
RMSE value of the inferred weight. A stepwise feature
selection based on Akaike Information Criterion (AIC)
[43] was also performed. The results obtained using
the stepwise regression are discussed under Results and
Discussion. Nine different settings were made, and the
performance was measured based on their standard
residual error, degree of freedom, a p value of the model,
R-squared, and adjusted R-squared.

The following settings were done to choose the model:

(1) Simple regression with all base features

(2) Simple regression with all base features excluding
RPM (due to multicollinearity)

(3) Setting 1 with single feature crossing (i.e., each base
feature is multiplied with another)

(4) Setting 2 with single feature crossing

(5) Introducing new features by adding nonlinear func-
tions such as SqrtðxiÞ, Powerðxi, ‐1Þ, Powerðxi, 2Þ,
and LogðxiÞ to setting 1

(6) Introducing new features by adding nonlinear func-
tions such as SqrtðxiÞ, Powerðxi, ‐1Þ, Powerðxi, 2Þ,
and LogðxiÞ to setting 3

(7) Setting 6 with two feature crossing

(8) Selecting the best features picked from 7 based on a
significance value

(9) Feature selection on setting 6 using stepwise AIC
with 3 feature crossing

4. Results and Discussion

Table 7 summarizes the model performance results obtained
from the previously mentioned nine settings.

Corr:
−0.0343

Corr:
0.305

Corr:
0.0462

Corr:
0.765

Corr:
−0.0302

Corr:
0.173

Corr:
0.181

Corr:
−0.0116

Corr:
0.545

Corr:
−0.0439

Corr:
0.12

Corr:
0.086

Corr:
0.655

Corr:
−0.0276

Corr:
0.644

RPM ELE TP SPEED ACC EL

RP
M

EL
E

TP
SP

EE
D

A
CC

EL

1000 2000 3000 −20 0 2 0 25 50 75 0 1 0 2 0 3 0 0 5 10 15 25 50 75 100

0e+00
2e−04
4e−04
6e−04

−20
0

20

25

50

75

0
10
20
30

0
5

10
15

25
50
75

100

Figure 13: Scatter plot and correlation matrix of the primary features from the dataset.

Table 6: Correlation matrix of base features and dependent variable
(weight).

RPM ELE TP VS ACC EL Weight

RPM 1.00

ELE -0.03 1.00

TP 0.30 0.04 1.00

VS 0.76 -0.03 0.17 1.00

ACC 0.18 -0.01 0.54 -0.04 1.00

EL 0.11 0.08 0.65 -0.02 0.64 1.00

Weight 0.05 0.09 -0.07 0.12 0.09 -0.03 1.00
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Setting 1 shows that the model is significant, but the
R-squared and adjusted R-squared values are significantly
low. The degree of freedom is high due to the lesser
number of features. Setting 2 shows a better result than set-
ting 1 with a smaller p value and an adjusted R-squared; this
is due to the removal of one feature from the previous setting.
However, the residual plots (see Figure 14) show the nonlin-
ear relationship between the independent variables and
dependent variables. The new features were introduced by
applying nonlinear functions to the base features. This was
tested with setting 5 and above.

Settings 3 and 4 did not yield any better performance
values than settings 1 and 2. However, setting 5 showed a
significant improvement in performance with a lesser p value
and higher R-squared and adjusted R-squared values; this
again confirms that the features (independent variables) are
nonlinearly correlated to the dependent variable. Even
though setting 6 showed higher costs than previous settings,
it is still weak due to the higher p value.

Setting 7 yields a greater R-squared (mostly overfitted)
with a more significant p value and a small degree of freedom.
The negative value of adjusted R-squared reveals that the

model suffers from too many surplus features. It seems the
number of features is higher than the number of observations
in setting 7.

Setting 8 is made by only choosing the significant fea-
tures from setting 7. This resulted in a decent result with
significance, better R-squared, and adjusted R-squared.
The model is complex to interpret but performs better
than the simpler models. Above all the other settings, set-
ting 9 with the triple feature crossing using stepwise AIC
resulted in better results.

Stepwise linear regression feature selection based on
setting 6 resulted in graphs; as shown in the figure,
Figure 15(a) shows 10-fold crossvalidation results and
Figure 15(b) shows leave-one-out (i.e., k = n) crossvalidation.
Both graphs show that the best tune based on RMSE is when
using 4 variables. Since the result is purely based on RMSE, it
was not considered the best model.

The regression model on setting 8 is more prominent
than the other seven models with a smaller p value and
decent R-squared.

The model from setting 9 can be considered a proof of
concept even though the model is complex to interpret

Table 7: Results of the 9 settings.

Setting Std residual error Degrees of freedom p value R-squared Adjusted R-squared

1 34.46 298 0.0232 0.047 0.0284

2 34.44 299 0.0161 0.045 0.0293

3 34.88 283 0.3899 0.073 0.0042

4 34.76 289 0.2503 0.059 0.0110

5 33.53 281 0.0021 0.149 0.0800

6 32.07 54 0.1839 0.850 0.1582

7 41.24 2 0.7507 0.990 -0.391

8 28.37 54 0.0165 0.883 0.3412

9 23.1 88 6.322e-08 0.8736 0.5633

80 100 120 140

Re
sid

ua
ls

Residuals vs fitted
49

−3 −1 1 3

49241

94

80 100
Fitted valuesFitted values

140
St

an
da

rd
iz

ed
 re

sid
ua

ls Scale−location
49 241 94

0.0 0.2

24149

−60

−20

20

60 1.2

0.8

0.4

0.0

Normal Q−Q Residuals vs leverage

1.0

0.0

–1.5

1.5

0.0

–1.5

St
an

da
rd

iz
ed

 re
sid

ua
ls

St
an

da
rd

iz
ed

 re
sid

ua
ls

Theoretical quantiles Leverage

Figure 14: Setting 2 residual plots.
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and has the adjusted R-squared below 0.8. The model on
setting 9 showed a better result with a very small p value,
an elevated adjusted R-squared value, and a smaller stan-
dard residual error.

Figures 16 and 17 show the four plots of the model
obtained from setting 8 and setting 9, respectively. Since
there is no parabolic pattern visible in residual vs. fitted plots,
we can assure that the model has captured the nonlinear rela-
tionships between independent variables. The normal Q-Q
plot shows that the residuals are normally distributed. The
scale-location plot shows that the residuals usually appear
even though it is not horizontal to the x-axis; this is due to
the limited number of observed values. The residual vs. lever-
age graph shows that there are few rows in the dataset, which
are influential observations.

Figure 18 shows the error distribution of the inference
testing using regression on setting 9, and it is safe to say that

the regression inference predicts ±21 kg for 65% of the data,
which is of ±19% accuracy in average for 65% cases, ±38%
accurate with 95% confidence.

4.1. Model Performance. These models were trained with
two distinct observed dependent values with 305 observa-
tions. The model performance could be increased with
more training data. However, in the real world, it would
be impossible to train each vehicle with a vast dataset.
Finding the optimal data points is still a researchable ques-
tion. We chose two random weight data, each with a
nearly equal number of observations. In this paper, we
have discussed the multiple nonlinear regression models,
which have shown better performance for a smaller data-
set. The result of this research shows strong evidence of
the ability to infer the vehicle weight using VT data.
Results reveal that a significant level of prediction could
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Figure 15: Stepwise regression feature selection using (a) 10-fold crossvalidation and (b) leave-one-out crossvalidation.
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be made using the selected features. The selected model
has performed well, even with a small dataset. This is
encouraging because in the real world, we cannot ask the
vehicle owners to drive the vehicle several times with sev-
eral different weights.

4.2. WIM System Performance. The performance of a WIM
system is discussed by looking at many different factors. In
here, we compare the proposed WIM system with other
WIM systems using categorical values.

Table 8 discusses the performance comparison of the
prototype WIM system with the existing WIN systems based
on [6, 44–48]. The cost column in Table 8 compares the
WIM systems based on installation, maintenance expenses,
and labour cost. In comparison with other WIM solutions,
the systems built using our approach would not have any
maintenance cost or labour cost. Additionally, the installa-
tion cost could be negligible if the existing VT devices were
used. The main cost in this system will be maintaining the
cloud server. This is way cheaper than the existing WIM sys-
tems, thus labelled low.

The accuracy of a WIM system is not homogenous
throughout the entire range. WIM scale measuring the
weight in several thousand kilograms (larger-scale interval)
may not accurately measure the smaller weights in tens of
kilograms (small-scale interval). The current WIMs focus
on bigger vehicles such as trucks and hauling vehicles, weigh-
ing several tons. Such systems’ weighting accuracy is limited
to specific weight range. The range of the current WIMs
excludes smaller vehicles such as cars [49]. But our proposed
WIM system approach could be simply deployed on any
compatible vehicles with an OBD port. The weight inference
from this new proposed WIM system approach does not
have any specific weighing limit (unrestricted). The static
weighbridges are the most accurate in the list. But the read-
ability (scale interval) of such static WIMs is usually
~100 kg. This is the common case for most of the WIM sys-
tems since they are used to measure the loads (weights) of
heavy vehicles. This limitation in the WIM systems made
us label them with restricted accuracy. The maximum read-
ing capacity of these WIMs is up to several metric tons. But
because the power produced by the engine is one of the
features used to infer the weight, VT data from vehicles with
a big engine might have poor readability, i.e., greater scale
interval. This needs to be researched further.
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The calibration frequency is reported higher in HS-
WIMs than in static and LS-WIMs. With the proposed sys-
tem approach, once a vehicle is trained with VT data, the
retraining can be done at any time. This retraining process
can be considered a calibration in other WIMs. This can be
done in case of repeated false inference. Availability is the
presence of WIM systems. Static WIM systems are usually
located in a separate place away from the road. The LS-
WIMs and HS-WIMs are placed in several road segments.
But they are deployed in specific locations. WIM systems
built using the proposed approach will virtually be available
everywhere on any road segment.

According to the literature, the sensor material used in
HS-WIM is more fragile and prone to failure. Since the
proposed WIM system approach does not need any such
sensors and relies on robust ECU data, it has a lesser
chance of failure. Once the data is available on the back-
end server, the inference speed is nearly instantaneous.
This makes the prototype system much faster in measur-
ing speed. The other most important advantage of our
approach is that it is scalable. Tests on the prototype
WIM system built using the proposed approach shows
±19% inference accuracy on average for 65% cases, ±38%
accurate with 95% confidence. This is near to the most
HS-WIM systems. But compared to other WIM solutions,
systems built using our approach can be scalable and cost-
effective. We can use the existing data collection devices
by insurance (UBI or PAYD) schemes. This would reduce
the cost of implementation on a large scale. Communica-
tion technologies such as LoRaWAN (long range wide
area network) [50] allow us to build fast, reliable, cheaper
communication systems.

4.3. Assumptions and Limitations. This research was done
based on several assumptions and limitations. According to
Mckay et al. [12], tyre pressure influences the detection accu-
racy. The recommended tyre pressure was maintained, and
the pressure fluctuation due to the atmospheric temperature
change was neglected. The influence of the size and the shape
of tyres (tyre profile) was not considered in this research.

This research was done excluding external weather fac-
tors such as extreme wind, snow, and rain. The datasets used
in this research only contain data collected during calm
sunny days. Friction quotient is a significant factor for mov-
ing a vehicle without slipping. Road conditions and types of
roads play the primary role in friction. This factor was not
considered in this research as all the data were collected from
urban paved roads.

The gear shifting pattern and clutch releasing pattern
may differ from person to person. This could influence the
transmission function on manual transmission vehicles.
The ML model in this prototype system was built using a
single driver driving data. Turbocharged and hybrid vehicles
may produce different results as the EL formula does not
apply to those vehicles. This research did not focus on such
types of vehicles.

5. Conclusions

In this paper, we discussed the prototype design and develop-
ment of a new WIM system using VT and ML. A prototype
WIM system was developed and used as a proof of concept.
Design considerations and the solutions used were discussed.
The prototype is tested using a small car’s VT data sample.
The results show that it is possible to infer a weight of a vehi-
cle using its telematics data. Multiple linear regression with
setting 9 performed better than the other settings with the
smaller standard residuals of 23.1, degrees of freedom of 88,
significant p value of 6.322e-08, better R-squared of 0.87,
and a decent adjusted R-squared of 0.56. The result shows
that, in the context of a small car, it is possible to infer the
payload using the instantaneous VT data such as RPM, road
gradient (elevation), vehicle speed, acceleration, and calcu-
lated engine load. This research has shown the possibility of
using VT data to infer the vehicle weight. This could be
adopted by the transport industry to perform shallow screen-
ing on overloading vehicles. The comparison of the prototype
WIM system with the other existing systems showed that the
proposed system approach can produce a cheaper, scalable,
omnipresent, online (24/7) solution.

The performance of the prototype system on different
vehicle types and different road and weather conditions
needs to be researched. Other ML approaches such as deci-
sion trees, Bayesian inferencing, and neural networks need
to be applied, and their performance comparisons are to be
done in future research in this area.
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The VT data used to support the findings of this study are
available from the corresponding author upon request.
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Table 8: Other WIM systems vs. the proposed system.

WIM system Type Cost Accuracy
Calibration
frequency

Availability
Chances of
failures

Measuring speed

Static WIM Stress sensors/coils High High (restricted) Medium Low Low Stationary/low

LS-WIM Stress sensors High Moderate (restricted) Moderate (annual) Moderate Moderate Moderate

HS-WIM
Piezoelectric cable High Low (restricted) High Moderate High High

Lines quarts High Low (restricted) High Moderate High High

Proposed WIM Telematics Low Low (unrestricted) Moderate High Low High
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