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This article proposes an original approach aimed at modelling the noise density in sensors based on a single hot wire or pairs of
thermally coupled wires. The model consists in an original combination of a previous electrothermal model of the wire with
well-established assumptions on the thermal noise in conductors that carry moderate current densities. A simple method for
estimating the model parameters with simple impedance spectroscopy is suggested. The predicted power spectral densities of the
wire thermal noise differ from the result of previously presented analytical models, stimulating further experimental studies. The
effects of the electrothermal feedback of both hot wires and hot-wire pairs on flicker noise is also intrinsically covered by the
proposed approach.

1. Introduction

Hot wires are used in a large variety of sensing devices and
instruments. They consist of thin wires of an electrical con-
ductor that, once biased with a sufficiently large current,
reach a temperature that is significantly larger than ambient
temperature. Hot wires are generally suspended at the
extremities and immersed in a fluid. The category of hot-
wire devices includes hot films, which consist of a thin or
thick conducting stripe deposited over a thermally and elec-
trically insulating substrate. The temperature difference
between the wire and the fluid (overheating) is detected
exploiting the dependence of the electrical resistance on tem-
perature. Measuring the overheating, it is possible to detect
several quantities of interest. Sensors based on hot wires
gained significant importance since they can be easily fabri-
cated using MEMS (Microelectromechanical Systems) tech-
nologies that allowed extreme miniaturization leading to
reduction of the power consumption and response time of
up to three orders of magnitude with respect to traditional
macroscopic devices.

Among the sensors that exploit this principle are vacuum
sensors [1–3], gas concentration sensors [4], thermal con-
ductivity probes [5], and anemometers [6–8]. An evolution
of the single hot wire is represented by the pair of thermally

coupled wires. These devices are formed by two hot wires
placed at micrometric distances from each other, so that sub-
stantial thermal exchange occurs between them. Such an
arrangement allows detection of both the magnitude and
direction of airflows [9]. Recently, wire pairs with thermal
mass as small as to allow temperature variations with fre-
quencies up to several kHz have been used to detect the local
fluid displacement induced by an acoustic wave [10–13]. In
particular, this new class of sensors is capable of directly
detecting the acoustic particle velocity (APV), enabling inter-
esting applications that cannot be easily achieved with stan-
dard microphones [14]. In all the mentioned applications of
hot wires, it is of primary importance to model the electrical
noise produced by the wire, in order to estimate the actual
resolution of the sensors. This aspect is very critical for the
APV sensors, which are marked by relatively low sensitivities
resulting in low signal-to-noise ratios even in the presence of
large sound intensities.

Noise in electrical conductors supplied with a dc current
is due to two main phenomena, namely, thermal agitation of
the charge carriers (Johnson-Nyquist noise or thermal noise)
and resistance fluctuations, resulting in the well-known
flicker noise. Thermal noise is universal and is related only
to the wire resistance and temperature, while flicker noise
is strongly material-dependent. Both types of noise cause
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fluctuations of the current and voltage of the wire, result-
ing in small fluctuations of the heating power.

In hot wires, these power fluctuations have to be taken
into account because they generate nonnegligible tempera-
ture fluctuations, due to the high thermal isolation of the
conductor. The high TCR (temperature coefficient of resis-
tance) of the wire material transforms the temperature fluc-
tuations again into voltage and current variations, in a loop.
The effect of this thermoelectrical feedback on the noise den-
sity has not been studied extensively so far, maybe because
the thermal capacity of macroscopic hot wires allows devel-
opment of temperature fluctuations only in the range of
ultralow frequencies (typically sub-1Hz). This is no more
the case for MEMS sensors, where cut-off frequencies in the
kHz range are common. This electrothermal feedback was
described previously by Kohl et al. [15], highlighting its con-
sequences on the sensitivity and noise of metal film resistance
bolometers. The same phenomenon was observed earlier in
bolometers based on superconductor materials [16].

It should be recalled that the temperature of a body is
subjected to temperature fluctuation even when the cited
electrothermal cause is not present. This type of “natural”
temperature fluctuations is due to the so-called phonon
noise and has a total mean square value equal to <δT2> =
kBT

2/CTH , where T is the body temperature, kB the Boltz-
mann constant, and CTH the thermal capacity of the body.
Obviously, even these temperature fluctuations produce
resistance fluctuations, resulting in voltage noise when the
wire is biased with an electrical current. Furthermore, resis-
tance fluctuations modulate the heating power, so that, in
thermally insulated wires, the electrothermal feedback affects
also phonon noise. This work is focused on the changes pro-
duced by the electrothermal feedback on thermal noise and
flicker noise, with particular emphasis on the former. There-
fore, analysis of phonon noise is out of the scope of this
paper, although its contribution can be dominant in the case
of materials with particularly high TCRs [17].

In Kohl et al.’s work [15], a model that implicitly takes
into account the effects of the feedback on thermal noise
was proposed. The limit of the approach proposed in [15]
is, in our opinion, the use of an expression for the thermal
noise voltage density that is valid only for electrical networks
in perfect thermal equilibrium.

In this paper, we present an alternative noise model that
starts from well-established assumptions on the very basic
phenomena that generate current fluctuations in conductors
and then applies the electrothermal feedback in a direct and
rigorous way. Different noise expressions are found for both
single hot wires and pairs of thermally coupled wires.
Depending on the sign of the TCR and the type of biasing
used for the wire (e.g., constant voltage or constant current),
the model predicts significant modifications of the noise
spectra with respect to the case of standard conductors,
where the low thermal insulation prevents the development
of significant self-heating, disrupting the quoted feedback
mechanism. The main differences with respect to the previ-
ously proposed approach [15] are highlighted. This manu-
script does not include experimental results but, on the
other hand, intends to be a stimulus for the execution of

measurements that, if interpreted on the basis of the model
prediction, could add useful information for the design of
hot-wire sensors.

2. Electrothermal Model for
Suspended Microwires

2.1. Noise in Wires out of Thermal Equilibrium. In thermal
equilibrium, an electrical conductor will produce only ther-
mal noise. In a Thevenin equivalent, a noiseless resistor is
placed in series to a voltage noise source of PSD (Power Spec-
tral Density) equal to 4kBTRS, where kB is the Boltzmann
constant, T the absolute temperature, and RS the conductor
resistance. The Norton equivalent circuit consists of a
noiseless resistor in parallel with a noise current source of
PSD equal to 4kBTGS, where G = 1/RS. The two circuits are
recalled in Figures 1(a) and 1(b). The first theoretical deriva-
tion of these noise models, developed by H. Nyquist using
thermodynamic arguments, dates back to 1928.

Use of the above model to represent the noise in hot wires
is not rigorous for two reasons. First, the voltage vs. current
dependence (V‐I curve) is not linear, due to self-heating
and the relatively large TCR, so that defining the wire resis-
tance is not straightforward. Second, a hot wire in operating
conditions carries a nonzero electrical current and then is not
in thermal equilibrium.

Let us start from the nonlinearity problem and consider
Figure 2(a), where the V‐I characteristics of a wire subjected
to self-heating is sketched for the case of positive TCR.

For any given operating point, marked by current I and
voltage V , we can define two resistances, namely, a large
signal resistance, R, and a small-signal resistance, rDC:

R = V/I, ð1Þ

rDC =
dV
dI

����
I,V
: ð2Þ

As the current increases, so does the overheating and, due
to the assumption of positive TCR, also R increases, produc-
ing the nonlinear behaviour of the V‐I characteristic shown
in Figure 2(a). On the other hand, rDC is the small-signal
equivalent resistance. This resistance is applicable for varia-
tions around the operating point that are either constant
(dc components) or slow (low frequencies) so as to allow
the overheating to follow the heating power. At high frequen-
cies, the thermal mass of the wire dampens the temperature
variations and the equivalent small-signal resistance asymp-
totically tends to R. In between, the magnitude of the small-

Rs

vn

+
–
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Figure 1: Thevenin (a) and Norton (b) representations of the noise
in a resistor.
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signal (complex) impedance, indicated with r, should reason-
ably follow a bode plot like that depicted in Figure 2(b). The
exact expression of the small-signal impedance, which is
in agreement with this intuitive behaviour, was derived in a
previous study [15], which deals with thermistor-based
bolometers.

Since noise consists in small current and voltage varia-
tions around the operating point, the equivalent circuits of
Figure 1 are applicable to the wire once Rs is replaced with
the small-signal impedance r. What is less obvious is the
expression of the spectral density to be assigned to vn or in
noise sources that appear in Figures 1(a) and 1(b), respec-
tively, due to the mentioned nonequilibrium condition. It
has been shown with either a semiclassical [18] or quantum
mechanics [19] approach that the current fluctuation due to
thermal agitation of the carriers has a spectral density that
does not change when the conductor is subjected to a moder-
ate dc current with respect to the case of thermal equilibrium.
The reason is that the carrier drift velocity is much smaller
than the thermal velocity in most practical cases of metallic
conductors, so that the random walks of the carriers, from
which the current fluctuation originates, are practically unal-
tered. These random walks depend on the same scattering
mechanism from which the resistance R originates. There-
fore, it is reasonable to consider that the current fluctuation
has a spectral density equal to 4kBT/R. However, using this
spectral density for the current source in the equivalent
model of Figure 1(b) means neglecting the mentioned feed-
back effect that occurs in the hot wire. If the wire is biased
with a constant voltage, a current change due to the random
agitation of the carriers produces a variation of the heating
power and, in turn, a change of the wire temperature and
resistance R. The resulting resistance variation produces an
additional current contribution that reinforces or diminishes
the original current change depending on the sign of the
TCR. Then, due to the wire self-heating, the actual current
fluctuations seen from the wire terminals are different from
those that would be predicted assigning the density 4kBT/R
to the current source in the circuit of Figure 1(b).

This electrothermal feedback effect was described in pre-
vious works on bolometers [15, 16], where the interest was
mainly to model the effects on the device sensitivity. The

feedback was also considered for its effect on thermal noise,
and the authors simply propose to calculate the voltage
noise power density as 4kBT Re ðrÞ, where “Re ðrÞ” indicates
the real part of impedance r. This approach was demon-
strated to be applicable to RLC (resistance, inductance, and
capacitance) networks in thermal equilibrium, but there is
no physical justification for use of it for out-of-equilibrium
systems in the presence of electrothermal feedback.

The alternative approach proposed in this work starts
from the following equation for the total current (I) through
a conductor subjected to a voltage V , valid also in the pres-
ence of self-heating:

I =
V
R

− ie ⟺V = IR + Rie, ð3Þ

where ie is the thermal noise component, marked by the
usual spectral density SIT = 4kBT/R, and R is simply defined
by the ratio V/Idrift, where Idrift is the current component
due only to the electric field in the conductor. Notice that
the temperature dependence of R is the cause of the electro-
thermal feedback. To complete the framework, we consider
also that R is subjected also to random fluctuations that
would be present also in the case of a perfectly constant tem-
perature. These fluctuations, indicated with δRe, are the cause
of flicker noise and can be boosted by the feedback as thermal
noise. These are the premises that will be used in the next
subsections to derive a model of the noise in single hot wires
and in thermally coupled pairs of hot wires. All the models
used in this work are of the lumped-element type. Therefore,
quantities such as the wire temperature will represent aver-
ages calculated along the wire length.

2.2. Electrothermal Model of a Single Hot Wire. Figure 3 sche-
matically shows the elements of the single wire model.

In the electrical domain, the wire is represented by volt-
age V across its terminals and current I flowing through it.
The two quantities are tied by the electrical resistance R, as
shown by Equations (1) and (2). In the thermal domain,
the wire is characterized by its absolute temperature T , by
its thermal capacity CTH, and by thermal conductivity θ from
the wire to the environment, which is considered to be at
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Figure 2: Sketched characteristics of a thermally insulated wire with positive TCR: (a) V‐I plots; (b) magnitude of the small-signal impedance
as a function of frequency.
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uniform temperature TA. Thermal conductivity θ includes (i)
heat conduction along the solid suspension elements, (ii)
conduction and convection through the surrounding fluid,
and (iii) radiation. We will consider that both R and θ are
temperature-dependent quantities, while CTH will be consid-
ered constant. Heat balance in the wire body will require that

CTH
dT
dt

=W − θ T − TAð Þ, ð4Þ

where W is the total heating power dissipated by the electri-
cal current, simply given by

W = V · I: ð5Þ

In order to calculate the effects of fluctuations ie and δRe,
it is convenient to use a small-signal analysis of the wire
around a static operating point (dc components). Then, we
can write

V =V0 + v,

I = I0 + i,

T = T0 + δT ,

W =W0 +w,

ð6Þ

where V0, I0, T0, and W0 =V0I0 define the operating point
(OP) and v, i, δT , and w are the corresponding variations
around the OP. We use lower-case symbols for v, i, and w
since it is customary in small-circuit analysis of electrical cir-
cuits. For all other variations, we have used the prefix “δ.”
Taking into account the temperature dependence of R and
θ, their first-order approximations can be written as

R = R0 + αR0δT + δRe,

θ = θ0 + βθ0δT with α =
1
R
dR
dT

,

β =
1
θ

dθ
dT

,

ð7Þ

where we have included also possible temperature indepen-
dent fluctuations (δRe) of R. Note that α is the TCR of the
wire. Thermal equilibrium in the OP requires

W0 = I0V0 = θ0 T0 − TAð Þ: ð8Þ

With the above definitions, the following equation for
variations in the Laplace domain can be derived from
Equation (4):

sCTHδT =w − βθ0 T − TAð ÞδT − θ0δT , ð9Þ

from which we find

δT = γ sð Þw, ð10Þ

γ sð Þ = γ0
1 + s/ωg

, ð11Þ

γ0 =
1

θ0 1 + β T − TAð Þ½ � , ð12Þ

ωg =
1

CTHγ0
: ð13Þ

In terms of variations, Equations (3) and (5) become

v = iR0 + αR0δT + δReð ÞI0 + R0ie, ð14Þ

w = iV0 + vI0: ð15Þ
Combining Equations (10)–(15), we can find with ele-

mentary algebraic passages

v = iR0
1 + αV0I0γ sð Þ
1 − αR0I

2
0γ sð Þ +

R0

1 − αR0I
2
0γ sð Þ ie +

I0
1 − αR0I

2
0γ sð Þ δRe,

ð16Þ

which can be synthetically written in the following way:

v = i · r + ie · re + kRδRe, ð17Þ

where coefficients r, re, and kR depend on the complex fre-
quency s. This dependence can be made more explicit, by
substituting the expression of γðsÞ from Equation (11) into
Equation (16) obtaining

r = R0
1 + αV0I0γ0
1 − αV0I0γ0

·
1 + s/ωz

1 + s/ωp
, ð18Þ

re = R0
1

1 − αV0I0γ0
·
1 + s/ωg

1 + s/ωp
, ð19Þ

kR =
I0

1 − αV0I0γ0
·
1 + s/ωg

1 + s/ωp
, ð20Þ

where the following angular frequencies have been intro-
duced:

ωz = ωG 1 + αW0γ0ð Þ, ð21Þ

ωp = ωG 1 − αW0γ0ð Þ: ð22Þ
Equations (17)–(22) can be used to describe the small-

signal behaviour of the wire. As far as the small-signal ac
impedance of the wire is concerned, this is given by

V

I

R
T TA𝜃

CTH

Electrical
domain

Thermal
domain

+

–

Figure 3: Elements of the electrothermal model for a single wire.
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parameter r. It can be easily shown that for a positive
TCR, the magnitude of r depends on the frequency as in
Figure 2(b), with f p = ωp/2π and f z = ωz/2π. An equivalent
expression was found in [15].

Equation (17) can be used to find Thevenin and Norton
representations of the wire noise. Referring to Figures 1(a)
and 1(b), obviously, we have to replace resistor RS with the
complex impedance r in both the Thevenin and Norton cir-
cuits, in order to correctly model the ac behaviour of the wire.
In the case of the Thevenin equivalent circuit, the voltage of
the equivalent source (Vn in Figure 1(a)) can be calculated
by nulling the small-signal current through the wire termi-
nals (i.e., we set i = 0 in Equation (17)). This represents the
case of a wire biased with a constant current (zero variations).
Then, the PSD of the Thevenin equivalent noise source is
given by

Svn = 4kB
T0
R0

rej j2 + SδRe
fð Þ kRj j2, ð23Þ

where SδRe
is the PSD of resistance fluctuations δRe, while the

PSD of ie was assumed to be equal to 4kBT0/R0 as anticipated
in the previous subsection. At high frequency, re tends to R0,
so that the thermal noise voltage contribution is simply 4kB
T0R0. Since also the complex impedance of the wire tends
to R0, the high-frequency limit simply corresponds to
calculating the noise PSD using the usual Johnson-Nyquist
expression. At very low frequencies (f ≪ f p), the thermal
component of the voltage PSD becomes

Svn−th = 4kBT0R0
1

1 − αV0I0γ0

����
����
2
: ð24Þ

For a positive TCR (α > 0), the denominator can
approach zero when the static heating power W0 =V0I0 is
large enough. In that case, the voltage noise PSD can get
much larger than the high-frequency limit. It can be easily
verified that the low-frequency limit given by Equation
(24) does not coincide with the value obtained by applying
the Jonson-Nyquist expression with the low-frequency
limit of the wire resistance (rDC) given by Equation (18)
for s = 0.

A similar boosting effect can be observed for the
flicker component, represented by the resistance fluctua-
tion component. At high frequency, kR tends to I0, so that
the voltage noise is simply given by the product of the
resistance fluctuations and the bias current I0. At low fre-
quency, this term is boosted by the same factor as the
thermal noise.

The noise voltage density of the Thevenin model repre-
sents the actual noise that should be expected when the wire
is biased at constant current. It is interesting to observe that
the boosting factor tends to infinity when αV0I0γ0 tends to
one. If αV0I0γ0 gets larger than one, the pole sp = ‐ωp in the
denominator of both re and kR becomes positive, denoting
instability. In these conditions, a small variation due to noise

triggers a catastrophic increase of the voltage, leading to fail-
ure. This phenomenon is the well-known thermal runaway.
It is possible to find a notable expression for αV0I0γ0 when
thermal conductance θ is assumed to be independent of
temperature (β = 0). In that case, γ0 = 1/θ0 and αV0I0γ0 =
αðT0 − TAÞ. As a result, the noise-boosting factor
ð1 − αV0I0γ0Þ−1 tends to infinity when the product of the
wire overheating ðT0 − TAÞ by the TCR tends to one. Ther-
mal runaway occurs when this product is equal to or greater
than one. For a negative TCR, Equation (24) predicts a noise
reduction at low frequencies with respect to the 4kBT0R0
limit and no thermal runaway.

The situation is reversed for the Norton equivalent
model. The noise current source of the Norton model gives
the current fluctuations when the wire is biased at constant
voltage. Its value can be found setting v = 0 in Equation
(17) and solving for current variations i, finding

in = −i =
re
r
ie +

kR
r
δRe: ð25Þ

Ratios re/r and kR/r are now marked by a pole equal
to −ωz. Instability, i.e., thermal runaway, occurs when the
TCR is negative. This is a well-known difference between
constant-current and constant-voltage biasing. Similarly,
current noise boosting at low frequency occurs only for
α < 0. In particular, the thermal component of the noise
current PSD in the low-frequency limit that can be found
from Equation (25) is

Sin−th = 4kB
T0
R0

1
1 + αV0I0γ0

����
����
2
, ð26Þ

where 4kBðT0/R0Þ is the high-frequency limit which coin-
cides with the PSD of the current fluctuation ie that
appears in Equation (1).

2.3. Electrothermal Model of Two Thermally Coupled Wires.
The elements of the model used for the pair of thermally
coupled wires are illustrated in Figure 4.

The thermal and electrical quantities (V , I, R, T , and θ)
are duplicated and an additional coupling thermal conduc-
tance θ12 is present. In this study, we assume that the system
is symmetrical (the two wires are symmetrical) and are biased

V1

I1

R1

T2

CTH CTH

I2

T1

TA TA

R2

V2

+

–

+

–

𝜃12

𝜃1 𝜃2

Figure 4: Elements of the electrothermal model for a thermally
coupled wire pair.
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in such a way that they reach a symmetrical OP, which is
defined by the following values for the quantities of interest:

V1 =V2 = V0,

I1 = I2 = I0,

T1 = T2 = T0,

R1 = R2 = R0,

θ1 = θ2 = θ0:

ð27Þ

In the majority of applications, thermally coupled wires
are biased with a symmetrical operating point. On the other
hand, variations are different between the two wires, so that
the total values (OP plus variations) of the key quantities will
be different from one wire to the other.

Equation (4), pertinent to a single wire, is replaced by the
following set:

CTH
dT1
dt

=W1 − θ1 T1 − TAð Þ − θ12 T1 − T2ð Þ,

CTH
dT2
dt

=W2 − θ2 T2 − TAð Þ + θ12 T1 − T2ð Þ:

8>><
>>: ð28Þ

In Equation (28), a heat exchange term due to conduc-
tance θ12 is clearly present. In terms of variations and Laplace
transforms, we obtain

sCTHδT1 =w1 − θ0 + βθ0 T0 − TAð Þ½ �δT1 − θ12 δT1 − δT2ð Þ,
sCTHδT2 =w2 − θ0 + βθ0 T0 − TAð Þ½ �δT2 + θ12 δT1 − δT2ð Þ:

(

ð29Þ

Heat generation in the wires is described by the
following set:

w1 = v1I0 + i1V0,

w2 = v2I0 + i2V0,

(
ð30Þ

while Equation (14) (Ohm’s law plus Jonson-Nyquist
current fluctuations) for the two wires is replaced by the
following set:

I1 =
V1
R1

− ie1,

I2 =
V2
R2

− ie2,

8>>><
>>>:

⟺
V1 = I1R1 + R1ie1,

V2 = I2R2 + R2ie2,

(
ð31Þ

which, in terms of variations, becomes

v1 = i1R0 + αR0I0δT1 + I0δRe1 + R0ie1,

v2 = i2R0 + αR0I0δT2 + I0δRe2 + R0ie2:

(
ð32Þ

At this point, it is convenient to separate all varia-
tions into a differential mode and common mode compo-
nent. For example, we will replace v1 and v2 by vd = v1‐v2

and vc = ðv1 + v2Þ/2, respectively, where vd is the differen-
tial component and vc the common mode one. In the
remainder of this document, differential mode and com-
mon mode quantities will be indicated with the “d” and
“c” subscript, respectively. In this way, we can easily find
decoupled equations for the differential mode and common
mode variables. For the common mode components, the
resulting equations are identical to those of the single wire.
This is reasonable, since common mode components do
not break the symmetry, and with no temperature differ-
ence, the two wires do not interact and behave as a single
wire. Equations for the differential components are only
slightly different, due to the presence of θ12, so that from
the Equation set (29), we can derive the following differen-
tial mode equation:

sCTHδTd =wd − θ0 + βθ0 T0 − TAð Þ½ �δTd − 2θ12δTd, ð33Þ

while from the Equation sets (30) and (32), we find differ-
ential mode equations that are identical to Equations (14)
and (15), respectively:

vd = idR0 + αR0I0δTd + I0δRed + R0ied,

wd = vdI0 + idV0:

(
ð34Þ

From Equation (33), we can find the expression of δTd,
analogous to Equation (10):

δTd = γd sð Þwd, ð35Þ

γd sð Þ = γ0d
1 + s/ωgd

, ð36Þ

γ0d =
1

θ0 1 + β T0 − TAð Þ½ � + 2θ12
, ð37Þ

ωgd =
1

CTHγ0d
: ð38Þ

Since Equations (34)–(38) are formally equivalent to the
equations of the single wire, with the sole difference of the
expression of γ0d (that replaces γ0), the solution has the same
form as Equation (17):

vd = id · rd + ied · red + kRdδRed, ð39Þ

where

rd = R0
1 + αV0I0γ0d
1 − αV0I0γ0d

·
1 + s/ωzd
1 + s/ωpd

,

red = R0
1

1 − αV0I0γ0d
·
1 + s/ωgd

1 + s/ωpd
,

kRd =
I0

1 − αV0I0γ0d
·
1 + s/ωgd

1 + s/ωpd
,

8>>>>>>>>><
>>>>>>>>>:
ωzd = ωgd 1 + αW0γ0dð Þ,
ωpd = ωgd 1 − αW0γ0dð Þ:

ð40Þ
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In order to explain the way to use Equation (39) in a prac-
tical case, we can consider the very common situation in
which the wires are biased with identical constant currents
and the output signal is the voltage difference vd = v1‐v2. In
the next subsection, we will analyse the more complex case
of a full Wheatstone bridge. With constant-current bias, both
i1 and i2 are forced to be zero and then also id is zero. The
forcing terms, i.e., Jonson-Nyquist current fluctuations ie1
and ie2 and resistance fluctuations δRe1 and δRe2, are split
into their common mode and differential mode components.
Thanks to linearity of the small-signal equations and the fact
that the equations are decoupled, we can calculate the effects
of the two modes separately and then add them up. Common
mode forcing terms produce only common mode variations,
thus the effect on vout = vd is null. Therefore, we can focus
only on the differential mode terms. From Equation (39) with
id = 0 and considering that ie1, ie2, δRe1, and δRe2 are
independent stochastic processes, we can find the PSD of
the output voltage:

Svd fð Þ = 2Sie fð Þ redj j2 + 2SδRe kRdj j2, ð41Þ

where Sieð f Þ = 4kBðT0/R0Þ and SδReð f Þ are the PSD of the
Johnson-Nyquist (thermal) current fluctuations and resis-
tance fluctuations, respectively, of each single wire. Again,
as in the case of the single wire, a boosting effect of both ther-
mal and flicker noise at low frequencies is predicted if the
TCR is positive. For the same heating power (V0I0) and then
the same overheating, we can expect a smaller noise increase
with respect to the case of the single wire, due to the presence
of the additional coupling term θ12 in γ0d, compared to γ0 of
the single wire.

2.4. Noise in Wheatstone Bridges of Thermally Coupled Wire
Pairs. Often, thermally coupled wire pairs are connected to
form Wheatstone bridges as shown in Figure 5(a), where
the two wire pairs are represented by resistors pairs R1 and
R2 and R3 and R4. Since the aim is generally to sense a phys-
ical quantity, connection should be made in such a way that
the effect of the quantity of interest contributes to the output
voltage in a constructive way. The bridge can be biased with
different approaches, which are all equivalent in terms of the
effect of noise on the output voltage. In the example of
Figure 5, the bridge is biased by a dc voltage source VA
(e.g., a battery) and a resistor RB, which forms a voltage

divider with the bridge resistance setting the operating volt-
age of the bridge to VB.

The equivalent circuit for differential mode variations is
represented in Figure 5(b), where the differential currents
of the two wire pairs are indicated. Equation (39) for the
two wire pairs becomes

vd = id · rd + ied · red + kRdδRed,

vd ′ = id ′ · rd + ied ′ · red + kRdδRed ′,

(
ð42Þ

where variables with a prime character vd ′, id ′, ied ′, and
δRed ′ belong to the upper wire pair of the bridge (R3, R4).
By elementary analysis of the circuit in Figure 5(b), it is pos-
sible to find that vd ′ = vd and id ′ = ‐id . Solving Equation set
(42) with these relationships gives

2vd = ied − ied ′
� �

· red + kRd δRed − δRed ′
� �

: ð43Þ

Considering that ied, ied ′, δRed, and δRed ′ can be reason-
ably considered independent stochastic processes, and recal-
ling the dependence of each one of these quantities with
current fluctuations (ie) and resistance fluctuations (δRe) of
the single wires of the bridge, we can finally find

Svd fð Þ = Sie fð Þ redj j2 + SδRe kRdj j2, ð44Þ

where, again, Sieð f Þ = 4kBT/R0. Equation (44) indicates that
the output noise PSD of a Wheatstone bridge is subjected
to noise-boosting effects caused by overheating and that this
effect is characterized by the differential mode parameters red
and kRd.

2.5. Determination of the Main Parameters. In order to utilize
the proposed model to predict the output noise of single hot
wires or arrangements of thermally coupled wires, it is neces-
sary to find the system parameters. Referring to Equation set
(18), it is possible to estimate all required parameters of a sin-
gle wire by measuring the small-signal impedance (r) as a
function of frequency. Fitting the response by means of a
bilinear (one pole, one zero) function, it is possible to find
ωp and ωz . From these two singularities, we can find ωg

and the αV0I0γ0 term. By these four quantities, it is possible
to calculate coefficients r, re, and kR as a function of

RB

VA

VB

vout Thermal
coupling

R1 R2

R3 R4

+ + –

(a)

R1 R2

R3 R4

vd
id

2
–id

2

i′d
2

–i′d
2

+ –

(b)

Figure 5: (a) Wheatstone bridge formed by two thermally coupled wire pairs; (b) equivalent circuit for differential mode variations.
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frequency (see Equation (18)). Measurements have to be per-
formed by biasing the wire in the desired OP. To complete
determination of the quantities present in Equation (17), it
is also necessary to measure the spectrum of the resistance
fluctuations (SδRe) at different temperatures, by placing the
wire in an oven to set the desired temperature without resort-
ing to self-heating in order to avoid the mentioned noise-
boosting effect.

The same parameters of a set of thermally coupled wires
connected to form a Wheatstone bridge can be measured
again from a single frequency sweep, using a current source
ip as in Figure 6(a).

Source ip should have zero dc value and a sinusoidal ac
component small enough to induce only a small displace-
ment of the current and voltage of the bridge around the
OP. Since we have demonstrated that only differential mode
components contribute to the output PSD of the bridge, we
can analyse only the differential mode equivalent circuit of
Figure 6(b) where we can easily find that id + id ′ = ip. Solving
Equation set (42) with this condition and neglecting the noise
components, we get

rd =
2vd
ip

: ð45Þ

Sweeping the frequency of the source ip and measuring
voltage vd, it is possible to use Equation (45) to calculate
the frequency response of rd from which the main parame-
ters of the differential mode model can be determined.

3. Results and Discussion

In this section, we compare the predictions of our model with
respect to those that can be obtained from the approach pro-
posed in [15]. The comparison will be limited to the boosting
factor of the thermal noise, since no effects of the electrother-
mal feedback on the flicker noise were proposed in the
previous work.

Figure 7 shows the noise voltage PSD of the thermal
noise, normalized with respect to the high-frequency limit.
Note that this limit is the same for the two models and is

equal to 4kBT0R0, where R0 is the wire resistance (V/I) ratio
at the operating temperature. Both curves have been calcu-
lated for a value of parameter αV0I0γ0 equal to 0.75. We
recall here that in [15], the noise density is simply assumed
to be 4kBT0 Re ðrÞ, while in the proposed model, the PSD is
given by 4kBðT0/R0Þjrej2 (see the thermal component in
Equation (23)). Figure 7 clearly shows that the two models
predict a similar frequency behaviour but with noise boosting
occurring at low frequencies which is significantly larger for
the proposed model.

The dependence of the noise-boosting factor, Svð0Þ/Sv
ð∞Þ on the parameter αV0I0γ0 is shown in Figure 8 for
the two models. Negative values of αV0I0γ0 occur for neg-
ative values of the TCR. In both models, thermal noise is
boosted at low frequencies for α > 0 and reduced for α < 0,
but the extent of this effect is different in the two cases. The
proposed model predicts more noise boosting for α > 0 and
less noise reduction for α < 0 than themodel in [15], for which
the noise PSD tends to zero when αV0I0γ0 approaches -1.

ip

RB

VA

VB

vout

R1 R2

R3
R4

+ + –

(a)

vd

R1 R2

R3
R4

+ –

–ip

2
ip

2

(b)

Figure 6: (a) Simulation of a Wheatstone bridge to calculate the differential mode parameters; (b) equivalent circuit for differential mode
variations.
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Figure 7: Calculated thermal noise PSD as a function of frequency,
normalized to the high-frequency limit, for the proposed model and
for the expression given in reference [15].
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Figures 7 and 8 demonstrate that the proposed model
gives results that are significantly different from the previous
model, and this enables discrimination between the two by
means of noise measurements.

4. Conclusions

The analysis presented in this paper predicts in a quantitative
way that the electrothermal feedback, resulting from the
combination of self-heating with a nonzero TCR, changes
the noise spectral density of a conducting wire. Both thermal
noise and flicker noise are affected by a filtering effect that,
depending on the sign of the TCR, boosts or dampens the
noise density at low frequencies. This effect was already
suggested in a previous work [15], where, however, an
arbitrary assumption was made on the expression of the
thermal noise PSD. The proposed model derives the ther-
mal noise PSD with straightforward passages, starting
from well-established properties of the thermal current
fluctuations, and, in addition, is capable of predicting the
effect also on the flicker noise spectrum. The approach is
extended to pairs of thermally coupled wires, which con-
stitute the core of thermal flow sensors and, more recently,
have been proven capable of detecting acoustic particle
velocity. In the proposed model, the filtering effect is char-
acterized by parameters that can be easily determined by
means of small-signal impedance measurements as a func-
tion of frequency.

Calculations of the thermal PSD performed using the
proposed model and the previous approach revealed that
the two models yield significantly different predictions of
the noise modification occurring at low frequency. This
should facilitate discriminating the two models through
noise measurements, considering also that in both cases,
the model parameters can be easily determined by means of
small-signal impedance measurements as a function of fre-
quency. These experiments should contribute to widen the
knowledge of noise in out-of-equilibrium electrical systems.
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