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Visual short-term memory (VSTM) is defined as the ability to remember a small amount of visual information, such as colors and
shapes, during a short period of time. VSTM is a part of short-term memory, which can hold information up to 30 seconds. In this
paper, we present the results of research where we classified the data gathered by using an electroencephalogram (EEG) during a
VSTM experiment. The experiment was performed with 12 participants that were required to remember as many details as
possible from the two images, displayed for 1 minute. The first assessment was done in an isolated environment, while the
second assessment was done in front of the other participants, in order to increase the stress of the examinee. The classification
of the EEG data was done by using four algorithms: Naive Bayes, support vector, KNN, and random forest. The results obtained
show that AI-based classification could be successfully used in the proposed way, since we were able to correctly classify the
order of the images presented 90.12% of the time and type of the displayed image 90.51% of the time.

1. Introduction

Visual short-term memory (VSTM) is defined as the ability
to remember a small amount of visual information, such as
colors and shapes, during a short period of time [1]. There
are many different tests designed to determine properties of
VSTM, such as the capacity of VSTM, the time the subject
is able to retain remembered information, and the influence
of different external factors. VSTM is a part of short-term
memory (STM). The information that is kept in VSTM can
be processed further through working memory, it can be con-
verted to long-term memory, or it can simply be forgotten.
Short-term memory has two main characteristics: limited
capacity and limited time.

The capacity of the short-term memory is limited to
seven elements (plus or minus two elements) [2]. Short-
termmemory capacity is almost constant in a way that differ-
ent people can remember more or less the same number of
elements. Element remembering skills also depend on other
factors, such as the length of the words, feeling associated
with the stimulus, and other personal factors. STM can hold

information up to 30 seconds. However, this information can
be remembered if it is repetitive or sense is given to it.

Working memory or operative memory is a set of pro-
cesses that allows us to keep and manipulate temporary data
and perform complex cognitive activities. Working memory
is a type of STM. Visual or audio material that is received
by the brain is stored temporarily, but it is actively manipu-
lated. Both processes, storing and manipulation, are inte-
grated through consciously directed attention [3].

The multicomponent model of working memory was
introduced by Baddeley and Hitch [4, 5]. The latest version
of the model [1] consists of three systems, which include
components for keeping and processing information. The
first system is a central executive system, which acts as a
monitoring system, and it is responsible for directing atten-
tion to relevant information. It is also responsible for the
coordination of other “slave” subsystems and organization
of activities needed to perform some action. The second sys-
tem is the phonological loop, which acts as a slave subsys-
tem. It is responsible for the management and storing of
verbal and written material in memory. The third system
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of interest is the visuospatial sketchpad, which is respon-
sible for the management and storing of visual and spatial
information. The visuospatial sketchpad is responsible
for VSTM.

VSTM enables storing of received visual information and
also later usage of remembered visual information. VSTM is
very important for normal functioning of cognitive abilities
and for performing everyday activities. Any damage to
VSTM may reduce the amount of information and time that
a person is able to retain it.

Neuropsychological assessment enables the testing and
assessment of VSTM. The most frequently used practices
include the classic direct and indirect numbers tests from
Wechsler’s scale; the NEPSY test by Korkman, Kirk, and
Kemp (from 1998); continuous performance test (CPT);
memory malingering test (TOMM); visual organization test
(VOT); test of variables of attention (TOVA); and Tower of
London test. These tests measure not only visual short-term
memory but also short-term memory, reaction speed, work-
ing memory, visual scanning, perception of the environment,
remembering of the context, naming, distinguishing, and
speed of data processing [6].

VISMEM is a very important and frequently used test,
and it was created using the classic TOMM [7]. The test con-
sists of showing an image to the subject for a limited period of
time, typically around 60–70 seconds. During this time, the
subject has a task to look at the image and memorize the con-
text and remember as many details from the image as possi-
ble. After the given time expires, the image is removed, and
the subject gives answers to different questions about the
image [8].

The main goal of this research is to determine the possi-
ble correlation between a participant’s emotional state while
doing the visual short-term working memory test and the test
results he/she achieved. In other words, we tried to determine
if it is possible to predict the result of the testing and to which
extent, based on the measured emotional states of the sub-
jects. The secondary objective is to determine the influence
of external factors, more precisely the audience that is present
during the testing on the participant’s emotional state and
achieved test results. We expected that stress would be
increased in the case where the audience is present and when
the actions and results of participants are transparent and
visible to the audience.

We developed a customWeb application, which was used
to perform the experiment. In the first step, the application
shows a certain image (Image A or Image B) for a limited
time of 60 seconds (during this interval, the subject is trying
to remember as many details as possible). After the given
time expires, the image is removed, and the application auto-
matically diverts subjects to the questions related to the
image content.

Every participant in the experiment was measured twice.
The first assessment (first image) was done in an isolated
environment, while the second assessment (second image)
was done in front of the other participants, in order to
increase the stress of the examinee. Data about the mental
state of the participant was gathered during the duration of
the experiment in both cases.

In order to get insight into the mental and emotional
states of the participants, we used an electroencephalography
(EEG) device, which recorded EEG states during the experi-
ment in a time synchronized manner. We developed an
EEG device application for processing raw signals called
MyEmotivator to extract six emotional states: interest, excite-
ment, engagement, stress, relaxation, and focus. Data about
actions of the subject from the Web application and mental
states of the subject recorded by the EEG device were syn-
chronized by using the Human-Computer Interaction Mon-
itoring and Analytics Platform (HCI-MAP) [9], with an
expected error rate of <0.001 s.

The data collected during the experiment (EEG data and
data about the actions within the application—image pre-
sented, image hidden, question presented, etc.) were analyzed
by using four classification algorithms: Naive Bayes, support
vector, K-nearest neighbors (KNN), and random forest. In
this paper, we classified data using three different classes:
(1) order of displaying the image (image displayed first or
second (i.e., with or without the audience)), (2) type of the
image (Image A or Image B), and (3) correctness of the
answer (image, correct, incorrect).

There were several conclusions that could be drawn from
the classification results. First, the classification results
showed that, by using the emotional states of the participants
and question duration interval, we could determine with the
best accuracy of 90.12% if the participant was in the presence
of the audience when answering the question. Second, results
obtained from quantitative analysis of the emotional states of
the participants enabled us to determine with the accuracy of
90.51% which image (Image A or Image B, regardless if it was
displayed first or second in a row) the participant was view-
ing before answering the question. However, we did not
achieve any significant classification results regarding the
correctness of the answer.

2. Related Work

The EMOTIV EPOC+ device was used in the study. The
device is capable of isolating a P300 low-voltage signal (2–
5μV), which is considered to be associated with a stimulus
evaluation or categorization [10, 11]. Its low power as com-
pared to an EEG means that the device can distinguish this
signal from the background noise that occurs during the
measurement. The overall conclusion is that this device can
be used as a reliable brain-computer interface (BCI).

In a previous study [12], the authors investigated the
emotional states of students, which was represented in
the form of frustration and excitement that occurred as a
result of feedback information gathered from intelligent
tutoring systems (ITSs). By analyzing the obtained data,
the authors developed a system that enabled student emo-
tions to be anticipated and the feedback information to be
modified accordingly.

Similarly, emotional reactions to different visual stimuli
were examined in two independent works [13, 14]. The first
of these studied the ability to recognize EEG patterns in a
state of relaxation and while imagining two different types
of pictures (faces and houses), and an accuracy of 48% was
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achieved. In the second work, the authors developed a
method of interpreting EEG values in order to discriminate
between mental patterns when participants observed pleas-
ant and unpleasant pictures as compared to neutral content.

The goal of the experiment described in the work by Esfa-
hani and Sundararajan [15] was the detection of the level of
pleasure. The authors also tested a method for correcting
the robot’s behavior in order to increase the pleasure level.
Although the experiment was carried out on a small number
of participants (four males), a correct classification was
achieved in an average of 79.2% of cases.

In one of our papers, we described some steps towards
applying artificial intelligence and EEG signals for the
improvement of electronic assessments [16]. The first analy-
sis pointed to the possibility of using certain question types in
electronic tests in order to influence the psychological states
of students during assessments. For example, by inserting
“funny” questions with one obvious correct answer, this sys-
tem can decrease the stress of the students. Furthermore, the
most interesting questions are the easy ones, while the focus
of the student can be increased by using “impossible” ques-
tions with no correct answers.

If a situation is a very important one for the person, there
is rarely just one sentiment or one tendency for action or
behavior. Usually, there are multiple emotions, either hap-
pening in parallel or sequentially one after another. There-
fore, it is possible that stress and relaxation, although
adverse feelings, reach the same or similar levels in one
moment. When the subject observes an image with multiple
details, it is required to engage both mentally and emotion-
ally in order to remember as many details as possible. As a
result, stress is increasing in this situation. This kind of stress
is useful, as it helps in achieving goals and increases efficiency
during the engagement; it is called eustress [17].

According to one study [18], emotional images with
complex scenes have a different effect on the visual short-
term memory as compared to neutral images with objects.
Stress is always present, but it has a higher level in the case
of complex emotional images. The difference in visual com-
plexity of the observed image also affects remembering effi-
ciency—complex emotional images are remembered better
and with more details than neutral images. Emotional excite-
ment increases the activity of the amygdala and hippocam-
pus, which in turn can increase remembering efficiency.

Another study [19] dealt with research on how visual
information presented in different time intervals affects the
precision and reliability of reproduction during VSTM eval-
uation. Results have shown that the best reproduction effi-
ciency is after the first evaluation of VSTM. The study has
also shown that, in the case of applying two or more VSTM
tests, reproduction efficiency is better if the evaluation is per-
formed in short time intervals as compared to longer time
intervals (several hours or more).

In one study [20], the authors measured two cognitive
skills, focused attention and working memory, using a wear-
able EEG device. By training several different classifiers to
predict three levels (low, medium, and high) of mentioned
skills, they were able to obtain an accuracy of 84% and 81%
for the focused attention and working memory, respectively.

3. Applications and Sensors

This research of human-computer interaction was based on
using an EEG device sensor. The EEG is a noninvasive
method of tracking changes in electrical voltage of brain neu-
rons during a defined time interval. Besides medical applica-
tions (e.g., epilepsy diagnostics), collected data can be used in
the research of human brain reactions to specific events that
occur during some defined time frame. The EMOTIV EPOC
+ device [21] was used for measuring the variability of emo-
tional characteristics of the subjects, depending on the
changes in the surrounding environment. The EMOTIV
EPOC+ is a wireless EEG device with 14 channels designed
for measuring the activities of the cerebral cortex. Access to
the raw EEG data makes this device applicable in developing
BCI applications. The manufacturer has developed the algo-
rithms for extracting values of six emotional states (interest,
engagement, excitement, stress, relaxation, and focus) from
raw EEG data that we used in this research [22].

Although there are some similar solutions (e.g., Lab
Streaming Layer https://github.com/sccn/labstreaminglayer)
for collecting and synchronizing data from different sensor
devices and client applications, in this research, we used the
HCI-MAP [9]. We developed a separate application for each
sensor with the possibility to send data to the platform over
the HTTP(S) protocol and the HCI-MAP API. Each applica-
tion was implemented as a Web application that uses the
same interface for sending data (Figure 1).

One of the main challenges when using multiple sensors
is an aggregation of collected data [23]. In the case of
complex experiments that are conducted in a distributed
environment, time synchronization of different sensors is
critical in order to have valid measurements and correct
fusion of collected data on the remote server. Some of the
reasons for shifting data processing to a remote server(s)
are not only the existence of more participants in experi-
ments but also the need for fast processing of collected data
and returning results to the main application in the form of
generated feedback.

3.1. VSTM Application. VSTM application has been imple-
mented as a modern interactive Web application. Technol-
ogies used include HTML5, CSS, and JavaScript. The
application contains three main sections: initialization
screen, a screen with the image to be memorized, and
questions. The initialization screen is displayed while the
VSTM application is loading, and during this process, time
synchronization with the HCI-MAP server takes place.
Time synchronization is crucial for aggregation of applica-
tion data with data gathered from sensors. The test’s main
screen with the image is given in Figure 2.

The subject had limited time to remember as many
details from the image as possible. After the available time
expired, the image was removed and questions were shown.
The screen with an example question is shown in Figure 3.

Questions had been selected to exercise VSTM and to
verify how many details the subject had remembered from
the image. The subject had limited time to answer the ques-
tions, which is shown at the top of the screen. It was required
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that the subject had to answer the question before moving to
the next one (by clicking on the “Next Question” button),
and it was not possible to go back to the previous question.

The initial test results were displayed immediately after
the test was finished, in one of two possible ways. After the
subject answered all the questions, or if the timer expired,
results were calculated and the number of correct answers
was shown to the user. The whole session was recorded on
the HCI-MAP and could be exported as a CSV file for a more
detailed quantitative/qualitative analysis. Each session had
several types of events that were triggered by the Web appli-
cation and recorded the session onto the HCI-MAP. These
events include the following:

(i) image_presented: event is triggered when the image
is shown to the subject

(ii) image_timeout: event is triggered if the available
time expires

(iii) image_removed: event is triggered when the image is
not visible to the subject anymore

(iv) quiz_started: event is triggered when the quiz has
been started

(v) question_shown: event is triggered when a new ques-
tion is shown to the subject. Since there is no option
to go back to the previous question, this event means
that the user has answered the question and went to
the next one

(vi) quiz_completed: event is triggered when the subject
answers all available questions

After the quiz_completed event, the complete list of the
subject’s answers was sent to the HCI-MAP. With the data
received from sensors, it was possible to do further analysis.
For example, by collecting eye tracking data, it was possible
to create a heat map, which showed regions of the image
where the user spent most of the time looking in red color.
It is possible to further analyze the heat map and to see the
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Figure 1: The basic architecture of HCI-MAP application.

Start quiz

Observe the image below and try to remember as much details as possible
Available time 00:56 minutes!

(a)

Observe the image below and try to remember as much details as possible
Available time 00:56 minutes!

Start quiz

(b)

Figure 2: The main screen of VSTM application, with Image A and Image B.

Next question

Answer the questions
Available time 01:34

What is the colour of the fence around the house?
a : white
b : green
c : grey
d : brown

Figure 3: Screen with a question in VSTM application.
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correlation between where the user was looking and correct/-
wrong answer ratio.

3.2. MyEmotivator. MyEmotivator application was developed
with a goal to record and display six emotional states
(interest, engagement, excitement, stress, relaxation, and
focus) in real time by using the EMOTIV EPOC+ interface
(Figure 4.). The application was used to measure the vari-
ability of emotional characteristics in subjects, depending
on the changes in the environment. Our goal was to obtain
experimental data to get insight and perform later analysis
of the impact that different external factors had on the
emotional states of subjects.

The application supports two methods for saving data:
locally on a measuring device and remotely by sending col-
lected data to the server (Figure 4, Section 4). Selection of
the desired EPOC+ device would initiate connecting the
device with the application, which usually takes between 1
and 2 seconds in regular conditions. Three levels of signal
quality are defined: no signal, bad signal, and good signal.
Based on the signal levels, connectors would be marked with
different colors (red, orange, or green) on the main screen
(Figure 4, Section 2).

The default sampling frequency of each signal was two
times in a second (500ms). Each of the six sampled values
(interest, engagement, excitement, stress, relaxation, and
focus) was in the range 0–100, where 100 is a maximum level
of emotion for a given user and 0 is the theoretical minimum.

3.3. HCI-MAP. The HCI-MAP was used for synchronization
of gathered data from client applications and various sensors,
data aggregation and processing in real time, and returning
of obtained results in suitable formats for further analysis
by computer or interpretation by humans (Figure 5). Cur-
rently, the supported sensors are EEG, eye tracking, facial
emotion recognition, and mouse tracking sensors. However,
connections to other sensors can be easily implemented
through the open platform interface. Besides the sensors,
using the same interface, a platform can receive information
from user applications. Data can be exported not only from
the platform as a time series (in CVS format) but also as more
complex reports (e.g., recording of the user interface with eye
position visualization in the form of a heat map).

One of the main challenges is the time synchronization of
collected data. For this purpose, a network time protocol
(NTP) was developed [24], which enables time synchroniza-
tion of data collected from different sources in an environ-
ment where there is a possible latency in data transfer.
When using the HCI-MAP, all sensors are time synchronized
with the possible error in the range from -0.5 to +0.5ms.

The HCI-MAP uses the TCP/IP network stack, and it
communicates with sensors by using the HTTP(S) protocol.
Communication with some sensors is direct. For example,
software that monitors the mouse cursor position is realized
as an application that runs on the client’s computer. On the
other hand, some sensors communicate with the platform
indirectly. For example, software that delivers data from the
EEG sensor to the platform runs on an Android tablet, which

communicates with the EEG device itself using the Bluetooth
protocol (Figure 6).

In general, it is possible to connect any device to the plat-
form, as long as it has support for TCP/IP (i.e., HTTP(S) pro-
tocol). Hosting of the server part of the HCI-MAP can be
done either in the local network or in the cloud environment
available on the Internet. However, despite the possibility of
using different and multiple sensors, in this research, we col-
lected the data (events and states) only from the VSTMWeb
application, the EEG device, eye tracker, and mouse, while
only the EEG data (sampled by the VSTM application events)
was used in the analysis. The inclusion of the data from other
sensors could potentially significantly improve the experi-
ment but requires significant modifications in the experi-
mental design and in the data analysis.

4. Materials and Methods

Twelve subjects, divided into two groups, took part in the
experiment. Each subject was presented with two images
during two recording sessions, without taking a break. The
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Figure 4: The main screen of “MyEmotivator” application.
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first image was shown in an isolated environment, and the
second image was shown in front of the audience. The first
group of subjects was presented with Image A as the first
image and Image B as the second image. The second group
of subjects was presented with the reversed order of images
(Image B first and Image A second). Subjects wore the EEG
device on their head during the test, and the complete session
was recorded with MyEmotivator software. Test setup is
shown in Figure 7.

At the beginning of the testing, the subject was presented
with an image for 1 minute, with adequate instructions to
remember as many details as possible. After that, the subject
had 2 minutes to answer 10 questions about image details.

image_presented quiz_started
question_shown_1 question_shown_2

question_shown_3
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Figure 5: Example of the visualized EEG data collected by using the HCI-MAP.
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Figure 6: The network architecture of HCI-MAP.

Figure 7: Participants wearing EEG equipment during the
experiment.
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After completion of the test, the number of correct answers
was shown to the subject.

We obtained 11 complete measurements. For each user,
we had two sets of data, one with measurements related to
the first presented image and another related to the second
presented image. In the end, we had 23 valid datasets for clas-
sification—11 full datasets (for both images) and one set con-
taining partial data from participant number 12 (while
watching Image A, second in a row).

Gathered data was organized by participant number,
question number, image type (picture A or picture B), image
order of viewing (image viewed first or second), and correct-
ness of the answer, using the following features.

4.1. Average Values of Six Emotional States. Gathered values
of measured emotional states from EEG signals are absolute,
varying in range from 0 to 100. We used three features (min-
imal, maximal, and average values) for each emotional state.
Therefore, we had a total of 18 features (interest min, interest
max, interest avg, engagement min, engagement max,
engagement avg, etc.). The values of these features were
determined for each time interval between two consecutive
question_shown events (including the first image_presented
and the last quiz_completed event) for a given user session.
The features were calculated for each participant, image,
and question. For example, we had the minimal, maximal,
and average values of each emotional state for participant
number 1, while answering question number 1, when Image
A was presented as the first picture without the audience.

4.2. The Time Duration for Answering the Questions or
Viewing the Image. By using the developed HCI-MAP, we
were able to achieve the required synchronization precision
of all sensors and application data (<5ms error margin).
The triggered events sent from the VSTM application were
recorded in milliseconds, which enabled us to get the exact
time period that the participant spent answering every ques-
tion and viewing the image. There were a total of 11 values
for this feature for each user session (10 questions and 1
image display period).

4.3. Normalized Average Value of Six Emotional States. Dif-
ferent personality traits of the human entail great differences
in emotional reactions to external stimuli that are reflected
through the variance in maximal and minimal values of mea-
sured emotional states. For that reason, we introduced a new,
relative feature: the normalized average value of the emo-
tional state. This feature describes the relation between each
average value of emotion and maximal emotion value of the
whole session. It is calculated with the formula:

normalized value of the emotion

= average emotion value
maximal session emotion value :

ð1Þ

The feature value ranges from 0 to 1. By using it in the
classification, in some cases, we increased the percent of suc-
cessful classifications by approximately 10%.

In our experiment, we made a couple of hypotheses. The
first is related to the presence of the audience during the test.
We expected that the presence of the audience would repre-
sent a distraction for the participants that would be mani-
fested with a greater number of wrong answers and
noticeable differences in levels of stress and focus, which
can be detected in our quantitative analysis. On the other
hand, we expected that the presence of the audience would
increase the stress of the participants, and this could be
detected by analysis of EEG data. Also, we expected that con-
centration would be higher while the participants observed
the image as compared to when answering the questions,
and for the questions where a participant does not know
the answer, the stress would be increased.

5. Results and Discussion

5.1. Classification Results. In this paper, we classified data
using three different classes: (1) order of displaying the image
(image displayed first or second (i.e., with or without the
audience)), (2) type of the image (Image A or Image B), and
(3) correctness of the answer (image, correct or incorrect).
The classification was done using four algorithms: Naive
Bayes, support vector, KNN, and random forest. In this
paper, only the best two results are presented.

5.1.1. Order of Displaying the Image. Each classifier was pre-
sented with two classes: image displayed first in a row and
image displayed second. The classification was performed
with and without (using only EEG data) the time duration
feature as a classification attribute.

If the time duration feature was used, the best results were
achieved using the K-nearest neighbors classifier, with k = 1,
and Euclidean distance function as a search algorithm
(Table 1). From a total of 253 instances, the correct classifica-
tion was done for 228 of them, which is an accuracy of
90.12% for cross-validation (Table 1(a)) and 86.05% when
training the classifier with 66% of the available data
(Table 1(b)). We performed the classification with a k value
of 2 (84.19% cross-validation; 86.05% with 66% training
set), k = 3 (85.38% cross-validation; 86.05% with 66% train-
ing set), and k = 7 (81.82% cross-validation; 86.05% with
66% training set).

With the time duration feature, the second best result was
achieved using the random forest classification algorithm,
with number of iterations set to 100 and unlimited tree
depth. In this case, the percentage of correctly classified
instances was 85.38% for cross-validation and 86.05% with
66% training set (Table 2).

When not using the time duration feature as an attribute
in classification algorithms, the best results were achieved
using the K-nearest neighbors classifier, with k = 1, and
Euclidean distance function as a search algorithm. Using
only gathered emotional state values calculated from EEG
data, we had 226 (of 253; 89.33%) correctly classified
instances with cross-validation (Table 3(a)) and 74 (of 86;
86.05%) correctly classified instances when using 66% of data
for training and the rest for testing the classifier (Table 3(b)).
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The second best result using emotional state features only
was achieved using the random forest classification algorithm,
with number of iterations set to 100 and unlimited tree
depth. With cross-validation, the obtained classification
accuracy was 84.98%, and when using the 66% training set,
the accuracy was 84.88%.

The above results show that we can determine with the
best accuracy of 90.12% (86.05%) to which image order of
display every given instance belongs to (i.e., which was the
order of the picture the participant viewed when answering
the question). Because of the fact that the participants were
isolated from the audience when viewing the first image
and with the audience when viewing the second image, we
can determine with the accuracy of 90.12% if the participant
was in the presence of the audience when answering the
question. In the case of image display order, the best results
were achieved when using the time duration feature together
with the emotional state features.

5.1.2. Type of the Image. In this classification attempt, we had
two classes: Image A and Image B. Classification was per-
formed with and without (using only EEG data (emotional

state) features) the time duration feature as a classification
attribute.

When using the time duration feature, the best classifica-
tion results were achieved using the K-nearest neighbors clas-
sifier, with k = 1, and Euclidean distance function as a search
algorithm (Table 4). From a total of 253 instances, the correct
classification was done for 227 of them, which is an accuracy
of 89.72% for cross-validation (Table 4(a)) and 89.53% with
66% of the available data (Table 4(b)). We tried the classifica-
tion with k = 2 (84.98% cross-validation; 84.88% with 66%
training set) and k = 3 (87.75% cross-validation; 88.37% with
66% training set).

The second best result when considering type of the dis-
played image class, with the time duration feature, was
achieved using the random forest classification algorithmwith
100 iterations and unlimited tree depth. The percentage of
correctly classified instances was 83.40% for cross-
validation and 86.05% with 66% training set (Table 5).

If the time duration feature as an attribute was not used,
the best results were achieved using the K-nearest neighbors
classifier, with k = 1, and Euclidean distance search algo-
rithm. Using only the emotional state features, we had 229
(out of 253; 90.51%) correctly classified instances with
cross-validation (Table 6(a)) and 77 (out of 86; 89.53%) cor-
rectly classified instances when using 66% of the data for
training and the rest for testing the classifier (Table 6(b)).
This was the best prediction result for classification based
on type of the displayed image class. With k = 2, the percent-
age of correctly made classifications was 86.56% with cross-
validation (87.21% for 66% training set), and for k = 3, the
percentage was 89.72% with cross-validation (88.37% for
66% training set).

The second best result using EEG data features only was
achieved using the random forest classification algorithm,
with number of iterations set to 100. With cross-validation,
the obtained classification accuracy was 85.38%, and when
using 66% of data in the training set, the accuracy was
83.72%.

Result analysis shows that we can determine with the best
accuracy of 90.51% (89.53%) to which image (A or B, regard-
less if it was displayed first or second in a row) every given
instance belongs to (i.e., which image the participant was
viewing before answering the question). In the case of image
type, the best results were achieved when using only EEG
data-based features without the time duration feature. In a
similar study [25], by using EEG data gathered from eight
participants, the authors were able to successfully classify
image clips from a broad area image with an accuracy of
78–95%. In another study by Kawakami et al. [26], partici-
pants watched random images from 101 different categories.
The recommended algorithm shows that it is possible to cor-
rectly detect the image class with an accuracy of 52–74% by
using only EEG data. In the paper [27], the authors tested
the invariance of brainwave representations of simple
patches of colors and simple visual shapes and their names.
By using the developed method, they were able to correctly
recognize from 60% to 75% of the test-sample brainwaves.
The general conclusion was that simple shapes, such as
circles, and single color displays generate brainwaves

Table 1: Order of displaying the image, K-nearest neighbors
classifier (k = 1) results with time duration feature.

First Second <– Classified as

(a) Cross-validation

106 15 First

10 122 Second

(b) Training set with 66% of data

33 3 First

9 41 Second

Table 2: Order of displaying the image, random forest classifier
results with time duration feature.

First Second <– Classified as

(a) Cross-validation

105 16 First

21 111 Second

(b) Training set with 66% of data

33 3 First

9 41 Second

Table 3: Order of displaying the image, K-nearest neighbors
classifier (k = 1) results without time duration feature (with EEG
data features only).

First Second <– Classified as

(a) Cross-validation

105 16 First

11 121 Second

(b) Training set with 66% of data

33 3 First

9 41 Second
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surprisingly similar to those generated by their verbal names.
Our results confirmed that it was possible to distinguish dif-
ferent images based on EEG data, with higher accuracy.

5.1.3. Correctness of the Answer. In this case, an instance can
belong to one of three classes: viewing the image, correct
answer (true) or wrong answer (false). We did not use the
time duration feature in any of these classification algo-
rithms, because the time interval for viewing the image
(which was 60 seconds) was much longer than the intervals
for answering the questions. It should also be noted that we
were dealing with an imbalanced dataset (i.e., number of
instances belonging to different classes was significantly dif-
ferent). Thus, the number of instances that belong to viewing
the image was 23, the number of instances belonging to the
correct answer was 156 and the number of wrong answer
instances was 74.

Having that in mind, we did not achieve any significant
classification results using the correctness of the answer attri-
bute as a class. It can be said that the best result was achieved
by using the K-nearest neighbors classifier, with k = 3, and
Euclidean distance function as a search algorithm, where
we had more correct than incorrect classifications in two

classes: image and true (Table 7), while with all the other used
classification algorithms, there were more correct than incor-
rect classifications in only one class (true). The K-nearest
neighbor classifier gave 61.66% correctly classified instances
using cross-validation and 61.63% correctly classified
instances with the 66% training set.

5.2. Qualitative Analysis. After performing the classification
attempts using three different classes, we analyzed the
changes in emotional state features with regard to each of
these classes.

5.2.1. Order of Displaying the Image. When analyzing EEG
data with regard to the order of displaying the image, we tried
to determine the relation between individual feature and the
class by comparing the average value of the features from all
participants for each of two possible classes (first and sec-
ond). After that, we selected the features with the biggest dif-
ference in average values and grouped them based on
belonging to the same emotional state (Table 8).

As can be seen from the results, the top six features that
changed the most with regard to different classes were
related to the emotional state stress and relaxation. Fur-
thermore, values for both stress and relaxation features
(except for Stress avg/MAX) are higher (in average) in case
of the class first, which means that both stress and relaxa-
tion were greater when the participant was doing the test
for the first time without the audience as compared to the
second time with the audience. The reasons for this require
further analysis. This confirms the conclusions from other
papers [28–30] that there is a strong correlation between
the presence of the audience and stress level (blood pres-
sure and heart rate).

5.2.2. Type of the Image. In the case of type of the image class,
we used the same method for determining the relation of the
individual feature with the class in Section 5.2.1. We grouped
the features with the biggest difference in average values with
regard to the two classes based on the emotional state they
belonged to (Table 9).

The results show that stress is the emotional state with the
highest change with regard to the type of image the partici-
pant was viewing. It was higher, on average, in the case when
the participant was viewing Image A as compared to Image B,
regardless if the image was shown first or second in a row.
The reasons for this will be the subject of our future work.

5.2.3. Correctness of the Answer.As described in Section 5.1.3,
in the case of correctness of the answer, the instance could
belong to one of the three classes. Although we have used
the same method of calculating the average value of every
individual feature for each of these classes, in this case, we
made two separate comparisons. The first comparison was
between the class viewing the image, on the one hand, and
the wrong and correct answer classes, on the other hand
(Table 10), and the second comparison was between the
wrong and correct answer classes (Table 11).

The results from Table 10 show that there is a signifi-
cant decrease in stress, engagement, relaxation, and focus
when the participant switched from viewing the image to

Table 5: Type of the image, random forest classifier results with
time duration feature.

Image A Image B <– Classified as

(a) Cross-validation

120 12 Image A

30 91 Image B

(b) Training set with 66% of data

36 4 Image A

8 38 Image B

Table 6: Type of the image, K-nearest neighbors classifier (k = 1)
results without time duration feature (EEG data features only).

Image A Image B <– Classified as

(a) Cross-validation

119 13 Image A

11 110 Image B

(b) Training set with 66% of data

37 3 Image A

6 40 Image B

Table 4: Type of the image, K-nearest neighbors classifier (k = 1)
results with time duration feature.

Image A Image B <– Classified as

(a) Cross-validation

117 15 Image A

11 110 Image B

(b) Training set with 66% of data

37 3 Image A

6 40 Image B
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answering the questions. For example, the maximal stress
value was, on average, 32.28% higher while the user was
viewing the picture.

When comparing the average emotional feature values
for the wrong and correct answers, the only significant differ-
ence was in relaxation, which was higher (on average) for the
questions that were answered correctly.

6. Conclusion

In this research, we used EEG device to gather data on
human performance while doing the electronic visual short-
term working memory test. There were 12 subjects partici-
pating in the experiment. At the beginning of the testing,
the subject was presented an image for 1 minute, with ade-
quate instructions to remember as many details as possible.
The first group of participants was presented Image A as
the first image in the isolated environment without the audi-
ence and Image B as the second image with the audience. The
second group of subjects was presented with the reversed
order of images.

The values of six emotional states (interest, engagement,
excitement, stress, relaxation, and focus) were used in differ-
ent classification attempts with regard to three classes: order
of displaying the image, type of the image, and correctness of
the answer. There are several conclusions that can be drawn
from the classification results. First, the classification results
show that, by using the emotional states of the participants
and question duration interval, we can determine with the
best accuracy of 90.12% which was the order of the image
the participant viewed when answering the question. Because
of the fact that the second image was displayed in front of the
audience, this means that we can determine with an accuracy
of 90.12% if the participant was in the presence of the audi-
ence when answering the question. Second, results obtained
from the quantitative analysis of the emotional states of the
participants enable us to determine with an accuracy of
90.51% which image (Image A or Image B, regardless if it
was displayed first or second in a row) the participant was
viewing before answering the question.

Using the qualitative analysis, by comparing overall
changes in the emotional states of the participants, we were
able to conclude that both stress and relaxation were higher
(on average) when the participant was doing the test for the
first time (without the audience) as compared with the sec-
ond time (with the audience). Furthermore, the stress was
higher (on average) when the participant was viewing Image
A as compared with Image B. Also, there was a significant
decrease in stress, engagement, relaxation, and focus when
the participant switched from viewing the image to answer-
ing the questions, and the relaxation value was higher (on
average) for the questions that were answered correctly.

In future work, we plan to deal with some questions that
occurred during the analysis of these results. First, there is a
question about the cause for the elevated average stress and
relaxation values when doing the test the first time (without
the audience) as compared to doing it the second time (with
the audience). Second, the higher average stress level that was
measured when participants were viewing Image A also

Table 8: Comparison of average values for features for class first
and second.

Difference in % Feature Emotional state

-6.32 Stress max Stress

-4.27 Stress avg Stress

+3.76 Stress avg/MAX Stress

-3.30 Rel max Relaxation

-2.93 Rel avg Relaxation

-2.62 Rel min Relaxation

Table 9: Comparison of average values for features for class Image
A and Image B.

Difference in % Feature Emotional state

-7.93 Stress max Stress

-6.30 Stress avg Stress

+4.98 Eng avg/MAX Engagement

-4.40 Stress min Stress

-3.66 Exc avg/MAX Excitement

Table 10: Comparison of average values of features for class viewing
the image and classes wrong and correct answer.

Average difference in % Feature Emotional state

-32.28 Stress max Stress

-25.29 Eng max Engagement

-15.85 Rel max Relaxation

-13.58 Foc max Focus

Table 11: Comparison of average values for features for class wrong
answer and correct answer.

Difference in % Feature Emotional state

+3.59 Rel max Relaxation

+3.15 Rel avg/MAX Relaxation

+2.97 Rel avg Relaxation

Table 7: Correctness of the answer, K-nearest neighbors classifier
(k = 3) results.

Image True False <– Classified as

(a) Cross-validation

16 5 2 Image

5 119 32 True

3 50 21 False

(b) Training set with 66% of data

4 1 1 Image

3 43 12 True

2 14 6 False
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requires further analysis. Using the presented classification
methods, we were not able to get significant results when try-
ing to find the correlation between EEG data and the correct-
ness of the answer. One of the goals of our future work will be
to find a method to predict the outcome of the test (i.e., num-
ber of correct answers) by using EEG data and possibly data
from other sensors.
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