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In the process of transient test, due to the insufficient bandwidth of the pressure sensor, the test data is inaccurate. Firstly, based on
the projection of the shock tube test signal in the sparse domain, the feature expression of the signal sample is obtained. Secondly,
the problem of insufficient bandwidth is solved by inverse modeling of sensor dynamic compensation system based on swarm
intelligence algorithm. In this paper, the method is used to compensate the shock tube test signals of the 85XX series pressure
sensors made by the Endevco company of the United States, the working bandwidth of the sensor is widened obviously, the rise
time of the pressure signal can be compensated to 12.5 μs, and the overshoot can be reduced to 8.96%. The repeatability of
dynamic compensation is verified for the actual gun muzzle shock wave test data, the results show that the dynamic
compensation can effectively recover the important indexes such as overpressure peak value and positive pressure action time,
and the original shock wave signal is recovered from the high resonance data.

1. Introduction

Transient signal refers to the signal with short duration, wide
spectrum range, and obvious beginning and end. A large
amount of energy is released instantaneously after a certain
amount of explosive explodes in gun launching, which pro-
duces a shock wave, which propagates around at supersonic
speed and conforms to transient process, which belongs to
transient signal. Shock wave pressure measurement is an
important parameter to evaluate weapons [1]. In the national
project participated by the author, the shock wave was mea-
sured by 85XX series pressure sensors made by the Endevco
company of the United States. However, the frequency
response of 85XX series sensors cannot fully meet the fre-
quency response characteristics of a certain caliber gun [2],
the effective bandwidth cannot completely cover the high-
frequency components of the signal, the overshoot is seri-
ously amplified, and the original shock wave signal cannot
be obtained.

For similar problems, many scholars adopt the method of
later dynamic compensation to correct the data and improve
the test accuracy in recent years [3–6]. The traditional

dynamic compensation methods can be divided into two cat-
egories: one is to identify the sensor system based on the sen-
sor model, on this basis, compensation links are constructed,
such as zero pole assignment method and deconvolution
method, etc [4, 7, 8]. But the sensor modeling itself has
errors, which directly affect the dynamic compensation accu-
racy. The other is the neural network algorithm and swarm
intelligence algorithm which does not depend on the sensor
model. The dynamic compensation method based on the
swarm intelligence algorithm has high precision [1, 3, 5, 6].
Particle swarm optimization (PSO) is widely used in sensor
dynamic compensation because of its low complexity, Spe-
cific applications such as QR decomposition and PSO-
based dynamic compensation of pressure sensor are pro-
posed in reference [5], but it is easy to fall into local optimum
[3, 5]. Some scholars have also proposed other optimization
algorithms, such as the fireworks algorithm (FWA) [3],
which is characterized by high explosiveness and better pop-
ulation diversity, but it is followed by slow solving speed.

To sum up, researchers are committed to develop a gen-
eral solution algorithm and constantly improve the structure
of the system mathematical model to obtain better solution
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speed and accuracy, but so far, each algorithm has its lim-
itations. In this paper, from another point of view, the
abovementioned improved system mathematical model
problem is transformed into the problem of optimizing
the mathematical structure of the problem to be solved,
so that the problem itself is more suitable for the existing
solutions and easier to be solved. Therefore, this paper
proposes to design a sparse domain filter, combined with
different swarm intelligence algorithms, aiming at the
sparse characteristics of the signal to be compensated, that
is, many zero value coefficients are generated after the
sparse transformation [9], which reduces the solution
parameters in the calculation process, reduces the solution
space, obtains higher solution accuracy and faster solution
speed, and reduces the complexity of the model.

The rest of this paper is arranged as follows. In Section 2,
the principle of dynamic calibration and dynamic compensa-
tion of the pressure sensor are described. Section 3 is the
design of a dynamic compensation filter based on the swarm
intelligence algorithm. Section 4 is a dynamic compensation
experiment and application in the actual test. Section 5 is
the conclusion.

2. Dynamic Calibration and Dynamic
Compensation Principle of the
Pressure Sensor

2.1. Dynamic Calibration of the Pressure Sensor. To get the
dynamic performance index of the pressure sensor, it is nec-
essary to calibrate the pressure sensor dynamically. At pres-
ent, the internationally recognized dynamic calibration
method of the pressure sensor is to calibrate the pressure sen-
sor with a shock tube as the “ideal” step pressure signal gen-
erator [10]. The dynamic calibration diagram of the shock
tube is shown in Figure 1 [5].

During calibration, the sensor to be measured is installed
at the end of the shock tube low-pressure chamber, the sepa-
rated diaphragm is inserted between the low-pressure cham-
ber and the high-pressure chamber, and the diaphragm with
different thickness is selected according to the range of the
sensor. Under the action of the excitation signal, the pressure
in the high-pressure chamber increases gradually until the

diaphragm breaks. At the same time, a shock wave with con-
stant pressure is generated at the diaphragm position to the
low-pressure chamber, and then the sensor generates the
response signal. The high-speed data acquisition instrument
processes the response data of the velocity sensor according
to formulas (1)–(3) to obtain the Mach number Ma and the
step pressure Δp of the reflected shock wave felt by the pres-
sure sensor to be calibrated [5]. According to the range ofMa
and Δp, we can judge whether the step signal generated by the
shock tube fully excites the sensor to be calibrated, which
provides effective and reliable data for the subsequent com-
pensation system model construction.

v = l
t
, ð1Þ

Ma =
v
c
, ð2Þ

Δp = 7
3 M2

a − 1
� � 4M2

a + 2
M2

a + 5

� �
p0, ð3Þ

where v is the incident velocity of the shock wave, l is the
distance between velocity sensors, c is the sound velocity
before the shock wave disturbance is received in the low-
pressure chamber, and p0 is the pressure in the low-
pressure chamber.

2.2. Principle of Dynamic Compensation. As mentioned in
the introduction, to meet the requirements of the actual
dynamic test, it is necessary to compensate for the pres-
sure sensor dynamically. The compensation principle is
shown in Figure 2. After the output signal Y ðnÞ is con-
nected with a compensation system, the compensated sig-
nal uðnÞ can meet the requirements of dynamic
measurement accuracy [3].

In conclusion, the shock tube is used as the standard
pressure signal source as the step signal UðnÞ of the pres-
sure sensor test system. Due to the wide range of the sig-
nal spectrum, the frequency components falling within the
resonant frequency range of pressure sensors are amplified
several times, resulting in signal distortion and dynamic
error. By designing a dynamic compensation filter, the
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Figure 1: Dynamic calibration diagram of the shock tube.
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Figure 2: Schematic diagram of sensor dynamic compensation.
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overamplified frequency is attenuated properly, and the
main information and waveform change trend of the test
signal are recovered.

3. Design of Dynamic Compensation Filter
Based on Swarm Intelligence Algorithm

3.1. Sparse Filter Design. In this paper, an improved dynamic
compensation filter as shown in Figure 3 is proposed. The
output signal YðnÞ is sparse transformed to obtain a small
number of nonzero coefficients, that is, the feature expression
YðkÞ. The transfer function h of the optimal compensation
system is obtained by constructing a difference equation with
the least square error function as an objective function by
swarm intelligence algorithm HðzÞ. Finally, the compensated
signal is obtained by the sparse inverse transform uðnÞ.

The difference equation is

A z−1
� �

Y kð Þ = B z−1
� �

U kð Þ, ð4Þ

H zð Þ = A z−1
� �

B z−1ð Þ = a0 + a1z
−1+⋯+aNz−N

1 + b1z−1+⋯+bNz−N
: ð5Þ

Among them, UðkÞ is the sparse expression of the ideal
signal of the input port, YðkÞ is the sparse expression of the
measured data, a0, a1,⋯, an is the molecular coefficient, b1,
⋯, bn is the denominator coefficient, and N is the order of
the compensation system.

It can be seen from formula (5) that the transfer function
of the optimal compensation system HðzÞ is transformed
into the problem of obtaining the optimal parameters, that
is, the swarm intelligence algorithm is used to iterate for
many times to obtain the orderAðzÞ−1 and BðzÞ−1 coefficients
of the optimal filter so that the final output signal uðnÞ is as
close to UðnÞ as possible. The final compensation process is
shown in Figure 4.

Given the short duration of transient signal in the time
domain, that is, the low signal information density in the
whole acquisition process, the sparse characteristic of the sig-
nal under a certain base can be determined. At present, the
commonly used sparse bases are DCT, FFT, and DWT,
etc[11]. To determine the final sparse region of the signal,
several classical sparse bases are selected to transform the
step signal and shock tube signal, respectively, and the spar-
sity after transformation is compared. The results are shown
in Table 1.

Among them, the sparsity of step signal and shock tube
signal is close under the sparse transformation of the db30
wavelet base, and the sparsity degree of step signal is gener-
ally in the middle under the sparse basis in the above table.
To keep more feature points of the signal and solve the filter
parameters better, a db30 wavelet base with middle sparsity is
selected to design the sparse domain compensation filter. The
simulation results show that the proposed method can not
only guarantee dynamic performance in the time domain
but also greatly reduce the amount of calculation.

3.2. Swarm Intelligence Algorithm. The Swarm intelligence
algorithm usually imitates the occurrence process of some
phenomena in nature and arranges them into a specific solv-
ing process. The common swarm intelligence algorithms
mainly include ant colony algorithm, genetic algorithm, par-
ticle swarm optimization algorithm, and some improved
algorithms. The basic evaluation method is also focused on
its optimization speed and solution accuracy.

PSO is a traditional swarm intelligence optimization
computing technology, which has the characteristics of low
complexity, stable implementation, but easy to fall into local
optimum. The basic idea is to initialize the position and
velocity of each particle in the initial population randomly,
calculate the fitness of the objective function from the current
value, and obtain the global and local optimal solutions.
According to the updated formula, the position and speed
of each particle are adjusted continuously, and the search is
carried out gradually until it converges to the global optimal
solution [12]. FWA was proposed by Professor Tan Ying of
Peking University and others in 2010 [13]. It stimulates the
process of sparks generated by a fireworks explosion to
search the solution space, which is suitable for solving prob-
lems with more local extremum in the solution space. Its
principle is similar to particle swarm optimization (PSO).
The difference is that in the process of generating explosive
sparks, Gaussian mutation is carried out randomly to ensure
the population diversity of the offspring sparks. In addition
to retaining the individuals with the optimal fitness value,
the selection mechanism of Roulette is used to screen the
remaining particles, to obtain excellent local searchability.

Pressure
sensor system

G(z)
Dynamic conpensation

system in sparse domain
H(z)

Signal after
compensation

u(n)

Swarn
intelligence
algorithm

Sparse
transformation

Ideal dynamic response signalIdeal system satisfying
dynamic performance

Y(k)

y(k)

U(k)

Input signal
U(n)

Dynamic response
signal Y(n) Sparse

transformation
Dynamic

compensation filter
Compensation results

Inverse
transformation

Figure 3: Inverse modeling process of sparse domain filter.
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Therefore, this paper uses the above two algorithms to
calculate the dynamic compensation filter and analyzes the
performance of the compensation system.

4. Dynamic Compensation Experiment

This experiment uses the 85XX series 5 psi range pressure
sensor from Endevco, USA (1 psi = 6:895 kPa). The factory

verification certificate gives its full-scale 34 kPa (absolute
pressure), and its sensitivity is 11.02mv/kPa.

This sensor was used in this dynamic calibration experi-
ment. The temperature of the low-pressure chamber mea-
sured in this experiment is T = 23:7°C, the pressure of the
low-pressure chamber is p0 = 100:5 kPa, and the shock wave
propagation velocity is v = 353:912m/s. Calculated by c =
20:055

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
273:15 + T

p
, the sound velocity of the low-pressure

Table 1: Sparsity comparison table of transformation results of two kinds of signals under different sparse bases.

The function
name

Original
signal length

Sparse basis
Sparsity

Step signal Shock tube signal Average value

1

13999

DCT 859 1136 997.5

2 FFT 965 1279 1122

3 haar 1691 4221 2956

4 db30 1725 1703 1714

5 coif2 1699 2106 1902.5

6 sym5 1701 2021 1861

7 bior2.2 1696 2444 2070

8 rbio1.5 1700 1996 1848
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Figure 6: Time-domain diagram of the pressure test signal and step signal of the shock tube.
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chamber is 345:534m/s. Substituting c into formula (2) in
Section 2.1, the shock Mach number is Ma = v/c = 1:024,
Substituting Ma and p0 into formula (3) in Section 2.1,
we get △p = 7/3ðM2

a − 1Þð4M2
a + 2/M2

a + 5Þp0 = 11:077kPa.
That is, the pressure value of the shock management the-
ory in this experiment is obtained by speed measurement:
11:770 kPa.

The data measured by the calibrated sensor is shown in
Figure 5. The output of the steady-state part of the read step
pressure is about 123.465mV, which is converted to
11.204 kPa based on the sensitivity. The actual test result is
11.770 kPa, and the theoretical calculation error is about
4.81%. The calibration error of the shock tube is less than
5%. Therefore, the test data is valid data that meets the sensor
test standard.

According to the calibration data of the shock tube, the
experimental samples are obtained. The measured data
length N is 13999. The time-domain diagram of the pressure
test signal and the step signal of the shock tube is shown in
Figure 6.

As mentioned above, due to the insufficient working band-
width of the pressure sensor, there is a dynamic error in the
measured signal. It can be seen from the spectrum diagram
shown in Figure 7 that the signal frequency component of the
sensor system is abnormally amplified near the resonance point
of 71.3kHz, the effective working frequency band is difficult to
meet the requirement of no distortion measurement of shock
wave signal, and the overshoot is 190%.

The sparse transformation results of the shock tube pres-
sure test signal and step signal are shown in Figure 8. As
mentioned above, the nonzero elements in the signal are sig-
nificantly reduced, and the distribution is relatively concen-
trated. In this paper, the sparse transform result of the
shock tube pressure test signal is taken as the input signal
of sparse domain compensation filter, the sparse transforma-
tion result of step signal is taken as the output signal of sparse

domain compensation filter, and the inverse model of com-
pensation filter in the sparse domain is built.

4.1. Analysis of Dynamic Compensation Results. Considering
the compensation effect and hardware implementation diffi-
culty, the order of the dynamic compensation model is 10.
The particle swarm optimization algorithm and fireworks
algorithm were used for 5000 iterations and 20 optimization
times, respectively. Set the fireworks algorithm parameters as
fireworks number: 8; maximum spark number: 64. The initial
population size of PSO is 20. Finally, the fitness function is
recorded, and the mean value is calculated. The comparison
results are shown in Figure 9.
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It can be seen from the above figure that the initial value
of the fitness function of the fireworks algorithm is slightly
better than that of the particle swarm optimization algorithm
at the initial stage of iteration, and then the particle swarm
optimization algorithm quickly converges to the local opti-
mum after 1229 iterations and cannot jump out. Because of
its explosive search mechanism and roulette based selection
mechanism, the fireworks algorithm has better population
diversity, stronger local searchability, and constantly jumps
out of local optimum. The final algebraic value of the fitness
function is closer to 0 than the particle swarm optimization
algorithm and has better solution accuracy than a particle
swarm optimization algorithm.

Compared with the data in the literature [3] in the second
and third columns of Table 2, when the fireworks algorithm
and particle swarm optimization algorithm dynamically com-
pensate in the same time domain, the fireworks algorithm
obtains a better rise time and overshoot due to its stronger
local searchability. At the same time, compared with the
results of sparse domain solution in column 4 and column 5,
there is no significant difference in the precision and speed
of solution between the fireworks algorithm and particle
swarm optimization algorithm, and the compensation results
are better than those based on time-domain filter design
(using the same data in reference [3]). In the process of tran-
sient signal testing, overshoot and rise time make two mutu-
ally restricted parameters. Based on the fact that it is more
desirable to obtain less overshoot and faster rise time in the

actual test process, the fireworks algorithm and particle swarm
optimization algorithm can find an equilibrium solution in the
solution process to better suppress the resonance frequency.

The comparison of sparse transformation results after
dynamic compensation is shown in Figure 10. The nonzero
parameter value of the shock tube test signal after sparse trans-
formation is closer to that of the step signal. Based on the fea-
ture representation of the signal in the sparse domain, the
number of nonzero parameters in the original signal is greatly
reduced, and the minimum amount of parameter calculation
is ensured, at the same time, sparse feature representation
covers the intrinsic information of the signal. For complex algo-
rithms like fireworks, it does not increase the computational
complexity of the algorithm and reduces the iteration time. It
can be seen that the filter design based on the sparse domain
has better algorithm generality and good hardware friendliness.

Figure 11 is the spectrum comparison of shock tube test
signals before and after dynamic compensation. It can be
seen that after dynamic compensation, the resonance fre-
quency point of the signal is effectively suppressed, and the
dynamic performance of the system is significantly improved
after compensation.

Figure 12 shows the comparison before and after the com-
pensation obtained by FWA for shock tube data. After the
sparse domain dynamic compensation filter, the signal over-
shoot decreases from 190% to 8.96%, and the rise time is
12.5μs. The compensated signal is closer to the original step
signal.

Table 2: Comparison of the dynamic performance of two algorithms in different transform domains.

Dynamic performance index
Shock tube signal
to be compensated

Time-domain (ref [3]) Sparse-domain
PSO FWA PSO FWA

Overshoot/% 190 18.6 3.84 9.68 8.96

The rise time/μs —- 76 40.5 13 12.5

5000 iterations/s —- 272.15 368.84 110.46 110.60

0 5000 10000 15000
Spot

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

A
m

pl
itu

de

Comparison of sparse
transform results after dynamic compensation

Shock tube pressure test signal
Step signal

Figure 10: Comparison of sparse transform results after dynamic
compensation.

0 105 15
Frequency(Hz) ⨯104

0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 am
pl

itu
de

Spectrum comparison of shock
tube test signal before and after dynamic compensation

Spectrum before compensation
Spectrum after compensation

Figure 11: Spectrum comparison of shock tube test signal before
and after dynamic compensation.

6 Journal of Sensors



4.2. Application in Actual Test. Through the comparison and
discussion in the previous section, the optimal compensation
system is the transfer function determined by the optimiza-

tion of the fireworks algorithm. The specific results are as
follows:

Now, this compensation system is used to compensate for
the actual test results of the shock wave transient signal of the
corresponding sensor. In a certain gunmuzzle shock wave test,
the data of shock wave signal measured by the 85XX series
pressure sensor of the Endevco company of the United States
before and after compensation is shown in Figure 13. Due to
the low resonance frequency of the sensor, the test signal
obtained overlaps with a high amplitude vibration waveform,
which submerges the original shock wave signal. The reso-
nance signal is still superimposed in the subsequent reflected
shock wave, but the resonance amplitude is low due to the
small frequency component of the reflected signal at the reso-
nance frequency. After the compensation system, the original
shock wave signal is recovered from the high resonance signal,
and the overshoot is reduced. The test indexes, including the
overpressure peak value and the positive pressure action time
of shock wave, are closer to the real value. The experimental
results show that the dynamic performance of the compensa-
tion system is good and practical.

5. Conclusion

In the process of using, the pressure sensor has insufficient
dynamic characteristics and serious overshoot, which is diffi-

cult to meet the accuracy requirements of the actual dynamic
test system. To solve this problem, this paper proposes to con-
tinue the design of dynamic filters in the sparse domain to
obtain the feature expression of the original signal, improve
the accuracy of the solution, reduce the optimization parame-
ters in the process of solving, and improve the speed of solu-
tion. Finally, it is verified by the shock tube and the
measured gun data that this method can effectively compen-
sate for the pressure sensor. The model is simple to imple-
ment, high precision of compensation, obvious improvement
of dynamic characteristics, and more universal for solving
algorithms. The method proposed in this paper can also be
applied to the dynamic test of other types of sensors or test sys-
tems. It is easy to implement in hardware and can be widely
used in real-time data processing of the actual test system.
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H zð Þ = A z−1
� �

B z−1ð Þ = 2:987 − 0:760z−1 + 0:720z−2 + 1:783z−3 + 2:283z−4 − 0:703z−5 + 0:577z−6 + 1:100z−7 + 0:037z−8 − 0:192z−9 − 0:024z−10
1 + 0:504z−1 + 0:789z−2 + 1:018z−3 + 0:740z−4 + 1:527z−5 + 0:706z−6 + 0:679z−7 + 0:400z−8 + 0:393z−9 + 0:185z−10 : ð6Þ
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