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Fault detection can increase the reliability and efficiency of power electronic converters employed in power systems. Among the
converters in the power system, a Neutral Point Clamped (NPC) three-level inverter is most commonly used to drive electric
motors. In this paper, a new approach for open-circuit fault detection and location of the NPC three-level inverter for a shifting
process using a constant voltage-to-frequency ratio is proposed. In order to diagnose open-circuit fault in as short a time as
possible, an adaptive electrical period partition (AEPP) algorithm is proposed to pick single electrical periods from real-time
three-phase current signals. The Maximal Overlap Discrete Wavelet Transformation (MODWT) and Park’s Vector Modulus
(PVM) are used for feature analysis and normalization of electrical period signals. The statistical characteristics of the electrical
period signals are extracted, and a random forest model is constructed to realize the state classification. Compared with the
traditional fault diagnosis method, the proposed algorithm finds fault locations quickly and accurately. The effectiveness and
accuracy of the proposed algorithm are verified by experiments.

1. Introduction

As the key device that converts DC signals into AC signals,
inverters are widely used in electrical power control devices,
such as mine hoists and belt control systems. Neutral Point
Clamped (NPC) three-level inverters are most commonly
used because of their advantages of lower harmonic distor-
tion in the voltage output and less impact on the load. Insu-
lated Gate Bipolar Transistors (IGBTs) are used as power
switches in inverters, operating under high voltage, high
temperature, and high frequency in an on-and-off situation
for a long time. Due to excess electrical and thermal stress,
IGBT failures have the highest probability of all faults of
the inverter [1]. Compared with a two-level inverter, a
three-level inverter has more power switches, leading to
more complex circuits and increased instability [2]. Most
common power switch faults in the inverter are short-
circuit or open-circuit faults. In most cases, short-circuit
faults cause over-current conditions, which can be detected

by standard protection systems, such as fuse, relay, and cir-
cuit breakers. Standard protection systems disconnect the
power supply in order to protect associated components
from damage. In contrast, open-circuit faults generally do
not cause shutdown of the system; instead, they degrade per-
formance, even leading to severe secondary faults in other
parts of the system. Since open-circuit faults cannot be
detected by the standard protection system, open-circuit
faults are the focus of this paper.

Since fault diagnosis of open-circuit faults is critical for
the inverter [3, 4], researchers have become more and more
interested in fault diagnosis of complicated systems in the last
few decades. A large number of fault diagnosis methods have
been proposed by researchers for open-circuit faults. These
methods can be classified into voltage-based and current-
based methods. Generally, voltage-based methods realize
the diagnosis by comparing the differences between faulty
voltage and normal reference voltage. In [5], a fault diagnosis
method based on the zero voltage vector sampling method

Hindawi
Journal of Sensors
Volume 2020, Article ID 9206579, 18 pages
https://doi.org/10.1155/2020/9206579

https://orcid.org/0000-0001-9046-4316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9206579


for sampling current and reconstructing three-phase current
was proposed. In [6], a multiscale adaptive fault diagnosis
method based on signal symmetric reconstruction prepro-
cessing was recommended to diagnose arbitrary switching
faults of microgrid inverters under variable load conditions.
[7] developed a strategy for identifying open-circuit faults
by constructing standardized variables for fault modes. In
[8], a fault model based on the envelope of the voltage
between the output lines of the inverter was used for fault
diagnosis. [9] proposed an analytical model based on the dif-
ference between the instantaneous voltage of the fault state
and the measured signal. However, voltage-based methods
need additional voltage sensors and complex analysis unit
and are easily affected by the change of load.

Current-based open-circuit fault diagnosis methods
based on the output current change trend and direction
of the power switches [10] are mostly used in inverters.
Park’s transform methods are commonly adopted in
current-based methods. In [11], a fault diagnosis method
based on the average of the current and instantaneous
angles of the current vector was advanced. In [12], an
open-circuit fault diagnosis method based on the normal-
ized mean current Park’s Vector Modulus (PVM) and angle
was proposed. In [13], the average current parking vector
was used to construct a three-level NPC signature table
for possible fault conditions. A converter-based hybrid logic
dynamic (MLD) model was used to estimate the open-
circuit fault of grid current in [14]. In [15], an open-
circuit fault diagnosis strategy based on the change of rotor
current was offered. [16] proposed that fault diagnosis of
the T-type multilevel converter is achieved by monitoring
the abnormal change of the neutral current of the DC
bus. [17] put forth a three-phase voltage source inverter
(VSI) current sensor and open circuit fault diagnosis algo-
rithm based on adaptive threshold. Park transform methods
are required to compare with the set threshold to realize the
diagnosis. Setting the threshold value to a constant when
the load changes is difficult because the current amplitude
cannot be predicted. Therefore, it is difficult to guarantee
the accuracy of these fault diagnosis methods and apply
them in actual systems.

Uncertainty is a great challenge in the fault diagnosis of
inverters. The uncertainty can be caused by several factors,
such as bias and noise of sensors. Motivated by solving these
uncertainty problems, we propose a data-driven fault diagno-
sis methodology in three-phase inverters. Recently, many
algorithms based on signal and knowledge methods have
shown good performance in the fault diagnosis of inverters
[18]. In [19], a three-phase inverter fault diagnosis method
based on Bayesian network was proposed. In [20], spectral
kurtosis (SK) based on Choi-Williams distribution (CWD)
and wavelet-packet energy Shannon entropy (WPESE) are
used for the fault detection, and the DC component method
is used for the fault localization for open switch faults in the
closed-loop inverter. In [21], a principle of low-frequency
sampling of the main fault components and neural networks
for classification was established for the fault diagnosis of
inverters. In [22], a neural network fault diagnosis method
based on current Park’s Vector Transform (PVT) and dis-

crete wavelet transform (DWT) was recommended. In [23],
an online fault diagnosis model was offered with wavelet
decomposition for processing fault current signals and
SVM for classification. The diagnosis methods in [18–23]
focused on the open-circuit fault of a two-level inverter.
However, the three-level inverter consists of more power
switches than a two-level inverter, resulting in a more com-
plex circuit structure and lower reliability. Therefore, the
possibility of faults in a three-level inverter is higher, and
the types of faults are more diverse [2]. In [24], the feature
was extracted by Fast Fourier Transform (FFT) and classified
by support vector machine (SVM) to detect faults of the mul-
tilevel inverter. But in this paper, fault characteristics are
extracted from the output voltage waveform and only pure
R load is analyzed while the loads in the power system gener-
ally are RL type. Also, the FFT method is used for signal anal-
ysis. This analysis does not have good performance in
transient states of the system and cannot show us the time
of the fault occurrence.

The fault diagnosis algorithms implemented in the pre-
vious research papers are mainly based on signals under
constant speed condition or conditions in different speeds
of the motor, rarely considering the shifting process. A con-
stant voltage-to-frequency ratio method is used to adjust the
speed during the shifting process while the amplitude and
frequency change throughout the whole process. Compared
to constant speed, the signal analysis of the shifting process
is more complex. Moreover, traditional threshold and fea-
ture analysis methods tend to perform poorly because of
the changing amplitude and frequency when used in practi-
cal applications. The proposed fault diagnosis method in
this paper, on the other hand, is used particularly to diag-
nose open-circuit fault during the shifting process of the
NPC inverter.

The proposed method consists of three parts: signal
analysis, fault feature extraction, and fault identification. In
the first part, signal analysis, a period partition algorithm
is designed to pick electrical periods from the output
three-phase current signals. The electrical period is decom-
posed by three-level MODWT, and PVM is used to normal-
ize the low-frequency approximation component which is
retained for fault diagnosis during the shifting process.
Then, in fault feature extraction, 11 signal statistical charac-
teristics are extracted as fault features. Last, in fault identifi-
cation, RF is used to identify faults according to fault
features. The simulation based on MATLAB/Simulink and
a test-bed using a converter of coal mine hoist is constructed
to verify the proposed method, in which a motor accelera-
tion process of the hoist is set up to simulate the shifting
process of the NPC inverter. The result shows that this
method has good robustness and can solve the problem of
noise misdiagnosis.

The organization of the paper is as follows. In Section 2,
the main faults of the three-level NPC inverter are analyzed.
In Section 3, an electrical period partition method is
proposed. In Section 4, the new fault diagnosis algorithm is
constructed. In Section 5, the effectiveness of the proposed
fault diagnosis algorithm is demonstrated by simulation
and experimental results.
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2. NPC Three-Level Inverter Fault Analysis

The structure of the NPC inverter is detailed in Figure 1. The
inverter is composed of the DC bus and three legs (A, B, and
C). Each leg includes four IGBTs, four free-wheeling diodes,
and two clamping diodes. Each free-wheeling diode has an
antiparallel connection with the power switch to provide a
reverse conduction loop for the current. The C bus has two
capacitors providing the middle point “O.” Capacitors C1
and C2 can absorb the power difference between the rectifier
and the inverter, and support the dc link. Ud denotes the dc-
link voltage. Motor M is the load. The NPC inverter is used
for generating the three voltages applied across the windings
of the motor. The state of each power switch is controlled by
the corresponding gate signal. When the gate signal is 1 (high
level), the power switch is turned on; when the gate signal is 0
(low level), the power switch is turned off.

During healthy operation of the NPC three-level inverter,
the three-phase current signals at the output of the inverter
are sinusoidal and have a phase difference of 120°. Signals
of phase-A output current at normal and four different fault
conditions are shown in Figures 2 and 3, which were acquired
under an acceleration process using the constant voltage-
frequency-ratio control method. In this paper, the three-
phase output current signals are used as the raw data for
the diagnosis of the open-circuit fault.

3. Electrical Period Partition Algorithm

In order to take timely protective measures in practical appli-
cation systems, one hopes to diagnose open-circuit fault as
quickly as possible. From the analysis of the three-phase out-
put current signal in different fault states, fault features can
be extracted from one electrical period of the three-phase
current signals. However, in the scenarios analyzed in this
paper, the period of the output current signal is constantly
changing, as shown in Figure 2. Therefore, we need to parti-
tion the electrical period from the changing period’s current
signal. Because the period and amplitude of the current sig-
nals of inverter output are consistent with the control target,
we can partition the current electrical period output by syn-
chronizing it with the control signal. However, this method
requires strict time synchronization, so a real-time commu-

nication mechanism is needed between the output current
signal acquisition terminal and the control terminal, which
increases the cost of software and hardware. Thus, an adap-
tive electrical period partition (AEPP) algorithm, which
mainly depends on the characteristics of the output current
signal, is proposed. In the AEPP algorithm, target signal
information from the control terminal is needed, but strict
time synchronization is not necessary; instead, asynchronism
within 50ms is allowed.

Because of the nonstationary characteristics of the output
current signals, as shown in Figures 2 and 3, the following
problems need to be resolved for the AEPP algorithm:

(1) There are various noise interference problems in the
signal

(2) The period value and peak value in one period of the
output current signal are constantly changing during
the acceleration process

(3) It is difficult to locate the peak and valley of one signal
period, especially in the low-frequency stage of the
output current. The maximum and minimum posi-
tions cannot represent the peak and valley, as shown
in Figure 4

(4) Half-cycle malformations or missing output currents
caused by open-circuit fault must be addressed

In the AEPP algorithm, the acquisition terminal regularly
obtains target period value Tref and peak value Aref from the
control terminal, which can help to solve problems (1) and
(2). The Tref and Aref here are just reference values, so strict
time synchronization between the acquisition terminal and
control terminal is not necessary.

In Figure 5, the AEPP algorithm is depicted. The steps
can be described as follows:

Step 1. Get Tref and Aref from the control terminal.

Step 2.Use the sliding window to obtain a continuous 100ms
current signal, of which 98ms is the historical signal and 2ms
is the real-time signal to be analyzed.
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Figure 1: Topology of the NPC three-level inverter.
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Figure 2: Signal of phase-A current at normal state.
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Step 3. Suppress noise interference for the 100ms sliding
window signal by LMS filter.

Step 4. Search the peak and valley of the current cycle in the
former 1ms real-time signal with Tref and Aref. The specific
details of the search process are shown in Figure 6.

Step 5. Determine which of the following next steps is appro-
priate based on Step 4’s search results:

(a) There is no peak and valley in the 1ms signal. Then
go straight to Step 6

(b) The peak is found. Because of the existence of half-
cycle malformations or missing output as described
in problem (4), the peak value and location are
used for the valley adjustment (as show in
Figure 3(c), the valley cannot be located with the
strict restrictions)

(c) The valley is found. Adjust the peak location, similar
to Step 5b

Step 6. Make the sliding window slide forward 1ms, and
update Tref and Aref according to the communication infor-
mation with the control terminal.

Here, a three-point location method is proposed for the
peak search process in Step 4. As shown in Figure 7, when

the three peak maker points F1, F2, and F3 are found in order
from F1 to F3, the peak is located. F1 is the start marker of the
peak, the value of which is 0.2∗Aref; F2 is the entry maker of
the peak, the value of which is 0.7∗Aref; F3 is the end of the
peak, the value of which is 0.2∗Aref.

The specific peak search process using the three-point
location method is shown in Figure 6. The process can be
described as follows:

Step 1.Obtain a sampling point from the 1ms real-time signal.

Step 2. Execute judgment logic based on the current locating
maker point. If the sampling point value does not satisfy the
threshold of the current located maker point, go back to Step
1; otherwise, go to Step 3.

Step 3. Get 1ms successive signal points before the sampling
point, and Step 1 and 1ms points after the sampling point.
The successive 2ms signal points are used to verify the
located marker point. If the validation condition passes, go
back to Step 1; otherwise, go to Step 4.

Step 4.

(a) If F1 is located, change the current locating maker
point to F2
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Figure 3: Signals of phase-A current at different fault conditions.
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(b) If F2 is located, rectify the F1 location to remove the
interference such as F1, as shown in Figure 7, and
change the current locating maker point to F3

(c) If F3 is located, find the maximum value between F2
and F3 as the peak point, and calculate T1 and T2. If
T1 and T2match the threshold based on Tref, the real
peak is located; otherwise, the located peak is noise,
so change the current locating maker point to F2,
and go back to Step 1

Step 5. Search point F4 between F2 and F3 and midpoint of
F2 and F4 is located as the peak point.

The main computation work in AEPP is the peak and val-
ley location. When the sampling frequency is 10 kHz, there
are only 10 sampling points which need to compared with
Aref in an 1ms signal for the peak and valley search process.
Therefore, AEPP has a low calculation complexity.

4. Fault Diagnosis Model

4.1. Park’s Vector Modulus (PVM).During healthy operation,
the perfectly balanced three-phase current signals at the out-
put of the inverter are given as

ia = Im sin wt,

ib = Im sin wt + 2
3π

� �
,

ic = Im sin wt − 2
3π

� �
,

8>>>>>><
>>>>>>:

ð1Þ

where ia, ib, ic are the instantaneous values of the three-phase
current, Im is the maximum amplitude of current, and w is
the current frequency. To make the system load independent,
the three-phase current is normalized as

ikm = ik
Im

, ð2Þ

where k = a, b, or c and ikm is the normalized current within
the range of 1, which is useful for the normalization of
three-phase currents under variable load conditions. But it
cannot suppress high transients caused by load variations.
These transients can be suppressed with a PVM without
altering the nature of transients generated as a result of fault
occurrence [25]. The DQ transformation, or PVT, which is
used to transform three-phase currents (ia, ib, ic) into two-
phase currents (id , iq) [26], is given as
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PVM is calculated as

ipark
�� �� = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

id
2 + iq

2
q

: ð4Þ

Divided by PVM, the normalized three-phase current is
given as [27]

ikpark =
ik
ipark
�� �� , ð5Þ

where k = a, b, or c and ikparkis the normalized three-phase
current.

4.2. Maximal Overlap Discrete Wavelet Transform
(MODWT). DWT is a very useful and efficient method for
the analysis of the current signal in a static and dynamic state
system. Also, unlike other methods based on the frequency
method the same as FFT, DWT has good performance under
transient conditions. TheMODWT is an improvement based
on DWT that addresses the following limitations [28]:

(1) It requires the sample size to be exactly a power of 2
for the full transform because of the down sampling
step in the DWT

(2) The results of the DWT analysis change due to the
cyclic displacement. When the signal is subjected to
the corresponding cyclic shift, the wavelet coefficients
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Figure 4: The low-frequency stage of the output current.
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and scale coefficients of the signal DWT cannot
achieve the same cyclic displacement

(3) As the DWT decomposition series increases, its scale
factor and wavelet coefficient are halved, affecting the
statistical analysis of the coefficients

In view of the above limitations, MODWT is proposed.
While the DWT of level j restricts the sample size to an inte-
ger multiple of 2j, the MODWT of level j is well defined for
any sample size N . A scaling of the defining filters is required
to conserve energy, and filters are given by

~gl =
glffiffiffi
2

p ,

~hl =
hlffiffiffi
2

p :

ð6Þ

By inserting 2 j−1 − 1 zeros into the filters {~gl} and {~hl} at
scale j, MODET improves the problem that the wavelet coef-
ficients and scale coefficients are halved accordingly as the
number of DWT stages increases. The scale transform coeffi-
cients (approximation) and wavelet transform coefficients
(details) of MODWT at its scale j are

V j,t′ = 〠
l−1

l=0
~glV j−1, 2t+1−lð Þ mod N j−1  t = 0,⋯,Nj − 1

� �
,

Wj,t′ = 〠
l−1

l=0
hlV j−1, 2t+1−lð Þ mod N j−1  t = 0,⋯,Nj − 1

� �
:

ð7Þ

4.3. Random Forest (RF). In order to improve the efficiency
and accuracy of diagnosis results, RF combined with

LSM filter denoising
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Figure 5: The AEPP algorithm workflow.
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extracted features is investigated for the fault diagnosis of the
NPC three-level inverter [29]. RF is an ensemble classifier
based on decision tree that trains multiple models by using
the statistical sampling principle. It can improve the accuracy
and stability of the model by reducing the sensitivity to data
noise. A subset of features is randomly selected in RF. The
RF construction steps are as follows:

Step 1. Randomly extract n samples from the original dataset,
and randomly select k features and the best feature for node
segmentation.

Start

Obtain a sampling point

Execute judgment logic based
on locating maker point

Satisfy the 
threshold of F1?

Satisfy the
threshold of F2?

Verify the result using 2ms 
signal
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Figure 6: The peak search process of AEPP algorithm.
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Step 2. For the new sample set (with n samples and k
features), Gini of the probability distribution of the node
n is

IGini nð Þ = 〠
K

k=1
pk 1 − pkð Þ = 1 − 〠

K

k=1
pk

2: ð8Þ

The CART tree, which is a binary tree K = 2, can be
expressed as follows:

IGini nð Þ = 2p 1 − pð Þ: ð9Þ

For each feature A and its possible value a, calculate
GiniðD, AÞ according to Step 2:

Gini D, Að Þ = D1j j
Dj j Gini D1ð Þ + D2j j

Dj j Gini D2ð Þ: ð10Þ

Step 3. Select the optimal feature and segmentation point. For
each node on the RF, features are randomly extracted from
the d-dimensional feature set. A feature is selected according
to the Gini maximization principle [29], which divides the
data on the node into left and right child nodes. That is,
assuming that the data on the parent node np is divided into

its child nodes nl and nr , the Gini maximization principle is
to maximize

ΔIGini = IGini np
� �

− pl ∗ IGini nlð Þ − pr ∗ IGini nrð Þ: ð11Þ

Step 4. Recursively return to Step 2 and Step 3 for these two
child nodes to build a decision tree with n samples and
k features.

Step 5. Repeat Step 1 to Step 4 to build decision trees and
form the RF.

For classification problems, the final category of the
prediction is the category with the highest number of votes
in the sample leaf node.

4.4. Proposed Open-Circuit Fault Diagnosis Model. The
implementation of the proposed open-circuit fault diagnosis
model is shown in Figure 8, where the signal analysis, feature
extraction, and artificial intelligence approaches are system-
atically blended to detect open-circuit faults of the inverter.
The whole procedure is divided into the following four steps:

Step 1. Current Signal Preprocessing. Because of the interfer-
ence of the electrical environment, current signals collected
by hardware system are mixed with noise. The LMS filter is
used for denoising.

States identification

Signal filtering and 
denoising Signal filtering and

denoising

Current signal 
preprocessing

Electrical period
partition

Feature extraction.

No
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Three-phase current
signals

Real-time testing flow

Obtain 100ms window
signals from the three-
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electrical  period

Compute 11 statistical
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train random forest model
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forest model and 33

 features
Trained
random

forest model

Figure 8: Workflow of proposed open-circuit fault diagnosis model.
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Step 2. Electrical Period Partition. With the Tref and Aref
obtained from the control terminal, the electrical periods of
three-phase signals are partitioned by the AEPP algorithm
for the training dataset, while the 100ms window signals
slide forward with the three-phase current real-time acquisi-
tion and is processed by the AEPP algorithm for real-time
testing signals.

Step 3. Feature Extraction. The electrical period is decom-
posed by three-level MODWT, and only the low-frequency
approximation component is retained for normalization
using PVM. Then, 11 features in Table 1 are computed for
the normalized signal, which is reconstructed by the low-
frequency component of electrical period.

Step 4. State Identification. 33 (11∗3) features from electrical
periods of the three-phase current are used as the input
vector to train the RF model with state label in the training
flow, while the trained RF model is used for state identifi-
cation with feature vector as the input for the real-time
testing signal.

5. Experimental and Analytical Results

5.1. Experiment Setup. The simulation in the MATLAB/Si-
mulink environment and the experiment were carried out
to verify the feasibility of the proposed fault diagnosis
method of the NPC three-level inverter. A DC/AC transform
was accomplished by Space Vector Pulse Width Modulation
(SVPWM), and the input DC voltage was 540V. Figure 9
shows the simulation circuit model for inverter faults.

A 4 s acceleration process using a constant voltage-
frequency-ratio was simulated, in which different combina-
tions of resistors and inductors were used to simulate the
change of load as Table 1 lists. The 13 kinds of inverter states
(healthy state and 12 kinds of single IGBT open faults of Sa1,
Sa2,…, Sc4) were studied in this paper. The current sampling
frequency was 10 kHz. 4 s three-phase current signals at 13
states were collected to set up dataset Case 1, for which 35
sets of loads, as shown in Table 2, were simulated. There were
455 (35∗13, 35 types of loads, 13 kinds of states) groups of
three-phase current signals in Case 1.

Meanwhile, we set up a three-level NPC inverter fault
current signal acquisition test-bed using the converter of coal
mine hoist shown as Figure 10, consisting of a converter with
a three-level NPC inverter, DC power supply, load with resis-
tance and inductance, oscilloscope, and so forth. The 13
kinds of inverter states under different loads were analyzed
using the test-bed. The DC power supply was 550V, and
the output current signals could be obtained via the hardware
circuit experiments with different loads. The experiments
were conducted by four different loads: (1) R = 0:5Ω, L =
1:5mH; (2) R = 0:5Ω, L = 2mH; (3) R = 1Ω, L = 1:5mH;
and (4) R = 1Ω, L = 2mH. The sampling frequency of the
current signal was 10 kHz. Three-phase current signals were
collected for a 10 s acceleration process using the constant
voltage-to-frequency ratio during each experiment. Five sets
of three-phase current signals were collected for 52 (4∗13, 4
types of loads, 13 kinds of states) working conditions. A total

of 260 (5∗52) groups of three-phase current signals were
used as Case 2.

The control method of the NPC three-level inverter
used in this paper is SVPWM. The output current signal
presents a sinusoidal characteristic as a whole, but the
amplitude will also fluctuate slightly. When the sampling
frequency is reduced to 1 kHz, the detailed characteristics
of the current signal are almost completely lost. Therefore,
the sampling frequency of the current signal in the experi-
mental analysis phase is 10 kHz. In the engineering applica-
tion, in order to reduce costs, a lower current sampling
frequency will be considered.

5.2. Signal Denoising Analysis. The raw phase-A current
signals under normal state and Sa1 open-fault state of Case
2 are shown in Figures 11(a) and 12(a). It is clear that heavy
noise interfered with the signal. The denoised signals using
the LMS filter are shown in Figures 11(b) and 12(b).
Figures 11(c) and 12(c) show that the noise in the denoised
signals could be effectively suppressed by the LMS filter;
furthermore, the structural characteristics and waveform
feature were well-preserved, which could increase fault diag-
nosis precision.

5.3. Electrical Period Partition Result. The AEPP algorithm
was used to pick electrical periods form the three-phase
current signal dataset in Case 1 and Case 2. In Case 1, each
current signal was partitioned into about 190 electrical

Table 1: Statistical features.

Feature Expression (x ið Þ is the analysis signal)
Max value T1 = max x ið Þð Þ
Min value T2 = min x ið Þð Þ
Range T3 = max x ið Þj jð Þ −min x ið Þj jð Þ

Mean value T4 =
1
n

� �
〠
n

i=1
x ið Þ

Standard deviation T5 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n − 1ð Þ

� �
〠
n

i=1
x ið Þ − T1ð Þ2

s

Kurtosis T6 =
∑n

i=1 x ið Þ − T1ð Þ3
n − 1ð ÞT3

2
� �

Skewness T7 =
∑n

i=1 x ið Þ − T1ð Þ3
n − 1ð ÞT3

2
� �

Crest factor T8 =
max x ið Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1x ið Þ2
q

Impulse factor T9 =
max x ið Þj jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1 x ið Þj j
p

Shape factor T10 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1x ið Þ2
q
1/nð Þ∑n

i=1 x ið Þj j

Latitude factor T11 =
max x ið Þj jð Þ
1/nð Þ∑n

i=1 x ið Þj j

9Journal of Sensors



periods. As shown in Figure 13(a), current signals at the Sa1
and Sa2 open-circuit fault can be partitioned even in a state
of half-cycle malformations or missing output. In the positive
half cycle of the Sa2 open current signal in Figure 13(b), all
peak positions were rectified by the location of valley posi-
tions by AEPP algorithm. In Case 2, each denoised current
signal was partitioned into about 246 electrical periods. The
partition results of the Sa1 open-circuit signal and Sa2 open-
circuit signal are shown in Figures 13(c) and 13(d), respec-
tively. In Figure 13, the peaks and valleys are accurately

located in the low frequency stage of the current signal (while
the maximum and minimum positions cannot represent
peak and valley). After the electrical period partition, we
obtained 86450 (190∗455) groups of three-phase electrical
periods from Case 1 and 63690 (246∗260) groups from
Case 2.

5.4. Feature Analysis. Features set in Table 1 were computed
for each group of three-phase electrical periods after they
were normalized by PVM. As an example, for load of R = 1
Ω and H = 1mH in Case 2, the distribution of the range
values is shown in Figure 14, which were computed from
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Figure 9: Electrical simulation model of three-level inverter.

Table 2: Parameter setting of simulation model.

Number R (Ω) L (mH) Number R (Ω) L (mH)

1 1.1 1 19 1.3 8

2 1.1 2 20 1.3 10

3 1.1 3 21 1.3 20

4 1.1 5 22 1.4 1

5 1.1 8 23 1.4 2

6 1.1 10 24 1.4 3

7 1.1 20 25 1.4 5

8 1.2 1 26 1.4 8

9 1.2 2 27 1.4 10

10 1.2 3 28 1.4 20

11 1.2 5 29 1.5 1

12 1.2 8 30 1.5 2

13 1.2 10 31 1.5 3

14 1.2 20 32 1.5 5

15 1.3 1 33 1.5 8

16 1.3 2 34 1.5 10

17 1.3 3 35 1.5 20

18 1.3 5

Figure 10: Fault current signal acquisition of three-level inverter
test-bed.
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the 3198 (246∗13) electrical periods obtained from the
phase-A current signals with 13 kinds of inverter states.
The horizontal axis represents the serial number of electrical
periods, in which the 1-246 represent periods from the nor-
mal state, 247-492 represent the Sa1 open-circuit fault, and
2953-3198 represent the Sc4 open-circuit fault, in that order.
In Figures 14(a) and 14(b), the range value distributions are
computed by normalized and nonnormalized electrical
period signals, respectively. Comparing Figures 14(a) and
14(b), we find that the feature computed by the normalized
signal has stronger expressive ability. We can also observe

that the range feature can help to discriminate open-circuit
faults between Sa1 and Sa2, but have no effect on Sa1 and Sa3.
The value distributions of some other features are shown in
Figure 15, which are also computed from the 3198 (246∗
13) periods as mentioned above. The border overlapping of
different states for each feature indicates the necessity of
preprocessing the original features in order to make them
separable and ready for classification. And the disordered
structure of original features tends to decrease the perfor-
mance of the classifier if the feature is directly processed in
the classifier. Therefore, in this paper, RF is used for feature
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Figure 11: The raw and denoised phase-A current signal of the normal state.
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extraction and open-circuit fault diagnosis because of its fea-
ture analysis and classification abilities.

5.5. Results and Discussion. The RF model is used for fault
identification with the extracted features from every electrical
period-group in three phases (A, B, and C). The 11 features in
Table 1 are computed by each electrical period, and features
from periods of three phases are grouped as one sample.
Therefore, there are 33 (11∗3) features data in one sample
that are used as the input vector of the RF model. Training
and testing datasets of Case 1 and Case 2 are shown in
Tables 3 and 4, respectively.

Training time, single sample testing time, and diagnostic
accuracy are related to the number of decision trees in the
ensemble. The accuracy is affected because of the underfitting
if the number of decision trees is too small. As the number of
decision trees increases, the test accuracy increases, but the
training and test times also increase. The relationship
between training time, single sample testing time, and the
number of decision trees in the random forest is shown in
Figure 16. With the increase of the number of decision trees,
the training time also increases. As shown in Figure 17(a), the
relationship between diagnostic accuracy and the number of
decision trees is a parabolic type of curve. When the number
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Figure 12: The raw and denoised phase-A current signal of Sa1 open fault.
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Figure 13: Single-phase division result of phase-A current signal.
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of decision trees increases from 70 to 100, the diagnostic
accuracy decreases slightly. As shown in Figure 17(b), the
diagnostic accuracy keeps a high level between 20 and 60.
When the number of decision trees is greater than 50, accu-
racy does not rise, which causes overfitting problems. In sum-
mary, the optimal number of decision trees is 50 in this paper.

Figure 18 presents the confusion matrix of the result of
the detection when the tree number is 50. The rows stand
for the actual label, and the columns stand for the predicted
label for each condition. The diagonal elements in the matrix
represent the number of correctly classified samples of
each class, and off-diagonal elements represent misclassified

Table 3: Training and testing dataset in Case 1.

Training set
R = 1:1Ω and R = 1:5Ω
All 7 types of capacitors

Testing set
R = 1:2Ω, R = 1:3Ω, R = 1:4Ω

All 7 types of capacitors

Numbers of sample 190 × 2 × 7 × 13 190 × 3 × 7 × 13

Explanation
190 × 2 × 7 × 13: 190 electrical periods from each signal, 2 types of resistances, 7 types of

capacitors, 13 types of states

Table 4: Training and testing dataset in Case 1.

Training set
R = 0:5Ω, L = 1:5mH

Testing set
R = 0:5Ω, L = 2mH; R = 1Ω, L = 1:5mH; R = 1Ω, L = 2mH

Numbers of sample 246 × 5 × 1 × 13 246 × 5 × 3 × 13

Explanation
246 × 5 × 1 × 13: 246 electrical periods from each signal, 1 type of loads, 5 times of sampling, 13 types

of states
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samples. The confusion matrix of the result of Case 1 is
shown in Figure 18(a). It shows that Sb3 and normal have
100% accuracy. Sc1 is the worst one with the accuracy of
98.3%. Sc2 receives the most misclassification that 1.1% out
of Sc1 are misclassified to Sc2. Normal has 100% accuracy,
and no other condition is misclassified to it; it means the pro-
posed fault diagnosis method can accurately determine
whether a fault has occurred in Case 1. The overall accuracy
of Case 1 is 99.21%. Figure 18(b) shows the confusion matrix
of the result of Case 2. Sa2, Sa3, Sb2, Sb3, Sc2, and Sc3 have 100%
accuracy. Sb4 is the worst one with the accuracy of 96.8%. Sb1
receives the most misclassification that 0.2% out of Sa1, 2.9%
out of Sb4, 0.2% out of Sc1, and 0.1% out of normal are mis-
classified to Sb1. The overall accuracy of Case 2 is 99.38%.

5.6. Comparison of Diagnosis Methods. Comparative experi-
ments of six groups were carried out, including PCA-SVM,
LDA-SVM, PCA-KNN, and LDA-KNN. In the PCA, the
cumulative principal component contribution rate was 95%.
In the LDA, the dimension of LDA dimension reduction
was 5. In the KNN, the nearest number was 5, the distance
was “cosine,” and the rule was the nearest. The accuracies
of the different diagnosis methods are shown in Table 5. By
comparing different methods, we find that the combination

of AEPP, PVM, MODWT, and RF has the highest accuracy
in fault diagnosis of the NPC three-level inverter.

6. Conclusions

In this paper, identifying the open-circuit fault in an IGBT in
the NPC three-level inverter was analyzed and studied. A
novel fault diagnosis system is implemented using PVM,
MODWT, and RF. Three-phase current signals in different
fault types and during an acceleration process at variable load
conditions are sampled as the raw signals for the system. And
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Figure 18: Confusion matrix of the result on datasets of Case 1 and Case 2.

Table 5: Accuracy of fault identification for different models.

Diagnosis method Case 1 accuracy rate Case 2 accuracy rate

SVM 95.38% 95.91%

PCA + SVM 93.07% 95.65%

LDA + SVM 96.59% 97.28%

KNN 85.52% 87.98%

PCA + KNN 86.68% 87.56%

LDA + KNN 89.36% 91.28%

RF-proposed 99.21% 99.38%
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an adaptive period partition method is designed to accurately
pick the electrical periods from the real-time current signals.
The electrical period is decomposed by three-level MODWT,
and only low-frequency approximation component is retained
for feature extraction. 33 features computed from low-
frequency component which is normalized by PVM are used
as the input vector to train the RF model. Simulation and
test-bed experiments show that the method designed in this
paper has good diagnostic capability, and the diagnostic
accuracy rates are 99.21% and 99.38%, respectively.

This paper combines AEPP, PVM, MODWT, and RF,
which are used for signal analysis, feature extraction, and
fault identification. The experimental results show that com-
pared with other classification methods, based on the RF
model, the fault diagnosis model can effectively improve the
accuracy of fault identification and exhibits strong adaptabil-
ity, which can be used in the actual inverter fault diagnosis
system, especially for a shifting process. Improving the diag-
nostic accuracy and discovering more fault patterns and fea-
tures are the main future research work.
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