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Hydroponic plant culturing requires the concentration of nutrients in the supplied solution to be maintained at a constant level.
For example, phosphate ion concentration directly affects crop growth, which necessitates the development of convenient and
rapid techniques for on-site phosphate quantitation. Herein, we developed a new low-cost colorimetric method of quick on-
site phosphate quantitation based on a modification of the conventional molybdenum colorimetric method. Specifically, the
nutrient solution treated with ascorbic acid and molybdate was analyzed by colorimetric method after 10min incubation, and
a phosphate quantitation protocol was proposed. To verify this protocol, 50 nutrient solution samples with concentrations of
0–200 ppm were used to develop a model and perform a validation experiment, and the PLSR (Partial Least Squares
Regression) and PCR (Principal Component Regression) models were developed and validated using a crossvalidation
method and sample transmission spectra. The PLSR model, employing smoothing preprocessing at a 5 nm wavelength
spacing, exhibited the best prediction performance and showed an error of ~10% within the measurement range during
verification. In addition, an artificial neural network-based model achieved R2 = 0:93 for the training set and R2 = 0:86 for the
validation set. Finally, we developed convenient-to-use software for phosphate ion quantitation by the presented method and
performed a demonstration test.

1. Introduction

Hydroponic cultivation in greenhouses is a method of grow-
ing plants, which is already widely used in many countries.
Modernized greenhouses generally use a nutrient solution
supply system where a concentrated nutrient solution is
diluted ~100-fold with raw water and adjusted to electrical
conductivity (EC) to supply to crops [1, 2]. Unfortunately,
this EC-based method does not allow us to determine the
concentrations of individual ion. Besides, the optimal nutri-
ent supply varies with weather and crop conditions and the
ion balance in the nutrient solution can hardly be maintained
[3], since an increase or decrease of the concentration of a
particular ion may result in ionic imbalance, which compli-
cates the efficient management of optimal ion concentration

at each crop growth stage. That is why the development of an
appropriate nutrient concentration sensing technique for
individual ion is needed.

Among the ions contained in nutrient solutions supplied
to greenhouse-cultured crops, the phosphate ion (PO4

3−) is
one of the most essential macronutrients [4–6]. Phosphate
ions affect the energy metabolism of plants and are the lead-
ing nutrient that can be utilized by microorganisms and
plants [7], for performing photosynthesis and respiration of
plant growth [8]. Since plant growth is critically affected by
both excess and lack of phosphate ions, it is necessary to
develop a technique of quick phosphate ion quantitation to
prevent unbalanced plant growth.

The reliable method to determine the phosphate concen-
tration is the spectrophotometric molybdenum blue method,
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which is generally developed by Murphy and Riley [9]. The
molybdenum blue method is a colorimetric approach, and
this is commonly used to determine the concentration of
chemical elements in solutions by using a color-generating
reagent in a simple way [10]. This method involves the reac-
tion of acid ammonium molybdate with phosphate ions to
form phosphomolybdenum complexes [11], which are
reduced to molybdenum blue by strong acid condition using
ascorbic acid and sulfuric acid.

In previous studies, using a modified molybdenum blue
method was applied to measure the phosphate ion concen-
tration of the water by absorbing a light source and by using
a transmitted spectrum that measured at 700nm–850nm
[11, 12]. However, this method needs a spectrometric labora-
tory analyzer to determine the exact phosphate concentra-
tion and is high-cost. Several simple spectrophotometers
that spend low-cost are reported [13, 14]. Unfortunately,
these spectrophotometers were able to detect clear reagents
and were less than ideal to detect phosphate ions in nutrient
solution that complexes a number of ions.

This study is mainly aimed at developing a portable
phosphate ion sensor that is a modified method based on
the molybdenum blue colorimetric method and visible
range (400–700 nm) spectroscopic analysis characterized
by a short response time and low-cost. Images of the nutri-
ent solution after light transmission were obtained and con-
verted to spectral data, and then, prediction models were
developed using PLSR, PCR and partial component regres-
sion (PCR), and artificial neural network (ANN) tech-
niques. Given the variety of ions present in the nutrient
solution, ANN manages nonlinear multivariate interactions
based on knowledge storage and learning and properties
that control the number of hidden neurons and hidden
layers, making it a suitable way to predict phosphate ion
concentrations in the nutrient solution [15–18]. Regression
models were developed by applying the crossvalidation
method and evaluated by the software which is able to
display the estimated concentration of phosphate ions.

2. Materials and Methods

To analyze phosphate ion concentrations in nutrient solu-
tion, two types of phosphate ion samples (distilled water-
and nutrient solution-based ones) were prepared for each
concentration. The former samples were used to analyze
the correlation between phosphate ion concentration and
wavelength, while the latter ones were used to develop
models for predicting phosphate ion concentration.
Regression models for predicting phosphate ion concentra-
tions in nutrient solution were developed using tomato
nutrient solution-based samples prepared by diluting
high-concentration nutrient solutions A and B, which were
obtained by referring to the Yamazaki nutrient solution
(1978), as presented in Table 1. In total, 50 samples with
concentrations of 10–200 ppm (interval = 5 – 10 ppm) were
prepared.

The commercially available Desktop Spectrometer Kit
3.0 (Public Lab Store, MA, USA; Figure 1) was used to
record transmission spectra and develop models for pre-

dicting phosphate ion concentration in the nutrient solu-
tion. The above device employed an optimal DVD, which
was used as a diffraction plate, and we obtained images of
diffracted light at each wavelength through a camera. The
thus obtained images were not immediately utilized for
analysis but were converted to spectral data to clearly see
the difference of wavelength according to color.

The desktop spectrometer used in the experiment fea-
tured an outer shell made of paper. Moreover, slightly dif-
ferent results were obtained even if the same sample was
used, depending on the light source. Accordingly, a portable
spectrum acquisition device was constructed by firmly fix-
ing a desktop spectrometer inside a plywood darkroom con-
taining a white light-emitting diode (LED) as an artificial
light source (Figure 2). For diffraction, patterned plastic
was separated from the back of the DVD (digital video disk)
and firmly fixed to the spectrometer at an angle that allowed
smooth spectrum acquisition. Generally, DVD consists of
two plates, one of which was engraved with a narrow pattern
of 400μm for grating, so it can be replaced instead of a
costly spectrometer grating. A cuvette holder was used to
prevent any other light from interfering with the light emit-
ted by the LED lamp powered 220V AC, which penetrated
the solution and entered the slit. Table 2 presents the spec-
ifications of the measurement device camera and the light
source installed inside the darkroom. The spectrophotome-
ter used in this study used a white LED to obtain images of
the transmitted light source.

Table 1: Nutrient content of the Yamazaki solution.

Macronutrient
Amount
(g/L)

Micronutrient
Amount
(mg/L)

Ca(NO3)2 9.44 Fe-EDTA 574.70

KNO3 15.15 H3BO3 183.00

NH4NO3 3.62 MnSO4∙H2O 227.70

MgSO4∙7H2O 29.57 ZnSO4∙7H2O 144.90

KH2PO4 10.20 CuSO4∙5H2O 18.35

K2SO4 17.40 (NH4)6Mo7O24∙4H2O 8.00

Figure 1: Desktop Spectrometer Kit 3.0 used in this study.

2 Journal of Sensors



Total phosphorus determination is commonly performed
by spectrophotometric detection relying on the well-
established molybdenum blue reaction chemistry [19]. The
molybdate-based colorimetric method proposed by [20]
requires four samples, and the color reaction takes about
30min to develop. Another molybdate colorimetric method
developed by [9] comprises five stages and employs four che-
micals (sulfuric acid, ammonium molybdate, ascorbic acid,
and potassium antimonyl tartrate) for reagent fabrication,
requiring a certain time for the above components to react.
Since a simpler method was needed to develop a portable
phosphate ion measurement device, the color reaction stage
was simplified by using only molybdate and ascorbic acid.
The minimum reaction time was set to 10min to detect

colors at a lower concentration since the sample with a con-
centration over 200 ppm had an excessive reaction and the
light transmission amount was too small to detect in the case
of the over 10min reaction.

The portable spectrometer was used to characterize the
color reaction between the molybdate/ascorbic acid mixture
and 50 phosphate ion samples with different concentrations.
For the experiment, 10 g of molybdate was dissolved in 40mL
of distilled water upon stirring. Likewise, 6.6 g of ascorbic acid
was dissolved in 50mL of distilled water, and the obtained solu-
tion wasmixed with that containingmolybdate. Figure 3 shows
the operation protocol of the portable phosphate ion sensor.

Light transmitted through samples was captured by the
camera of the spectrum acquisition device. Pixel values of

Desktop Spectrometer Kit 3.0

Spectrometer module
from Desktop Spectrometer Kit 3.0

Diffraction plate from
DVD

Sample

Holder

Light

Light flow

Camera

PC

Figure 2: Portable spectrum acquisition device used for phosphate ion quantitation in nutrient solution.

Table 2: Camera and light source specifications.

Camera Light source

Model JDEPC-OV04 Model and Type LEDCD426-HE/Socket (E26)

Pixel size 2:2μm× 2:2μm Dimension 80mm ðlengthÞ; 50mm ðdiameterÞ
Full resolution 600 × 1200 pixels (UXGA) Power 220V/60Hz/4W

Step 1

Preparation
Nutrient solution
preparation and
light source
stabilization 

Step 2

Reaction

Nutrient solution 3 mL
Ascorbic acid 0.2 mL
Molybdate 0.5 mL 

Step 3

Standby

10 min reaction

Step 4 

Measurement
Output
measurement
and application
of prediction
models

Figure 3: Protocol used for phosphate ion quantitation in nutrient solution.
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image zones were converted to R, G, and B values to obtain
an average spectrum in the visible range (400–800nm). The
obtained spectral images of the sample were separated into
three channels of R, G, and B to achieve intensity histograms
of pixels along with each channel. The histogram of B was
placed at 401-600 nm, the histogram of G was placed at
501-700 nm, and the histogram of R was placed at 601-
800nm, and then, the overlapped parts were summed, and
all channels were converted to a spectrum in full range.

Prediction (regression) models were developed by apply-
ing the PLSR, PCR, and ANN techniques to spectral data
obtained for each of the 50 phosphate ion samples. In the
PLSR technique, which is related to multivariate calibration
for spectrum analysis [21], the regression equation is derived
by analyzing spectral data (that is, the main components of
independent variables) and determining new variables based
on the actually measured dependent variables [22]. Addition-
ally, factors of the PCR are related to variation in the
response measurement regressed against the effect of signifi-
cance [23] and also frequently used for quantitative spectrum
analysis. The ANN prediction method infers output layers
from input layers by using hidden layers and can assess the
prediction accuracy of the developed model [24]. The
Levenberg-Marquardt backpropagation, currently utilized
in the MATLAB ANN tool, was used for ANN training.
Smoothing (moving average), standard normal variate trans-
formation (SNV), multiple scatter correction (MSC), and the
first derivation method were used for spectral data prepro-
cessing together with conventional methods. Specifically,
smoothing was used to remove noise or light/electric signal
interferences, and SNV and MSC were used for excluding
all influences except for those of spectrum components; i.e.,
the above techniques removed disturbances such as those
due to light scattering while retaining information included
in the spectrum. The analysis results were expressed as Equa-
tion ((1)), including the coefficients of determination (RC

2

andRV
2), root mean square errors of calibration (RMSEC),

and root mean square errors of prediction (RMSEP) for

regression model accuracy and relative percentage difference
(RPD) for triplet independent tests.
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, ð1Þ

whereN is the number of samples, yi is the measured data, �y is
the mean of measured data, n and m are the number of sam-
ples used for calibration and validation, respectively, and l is
the number of samples used for the independent test set.

3. Results and Discussion

3.1. Analysis of Nutrient Solution Transmission Spectra.
Figure 4 shows the correlation between phosphate ion con-
centration and spectrum value of 50 nutrient solution sam-
ples at each wavelength, demonstrating the presence of a
strong negative correlation in the wavelength range of 450–
700 nm. Although the optimal wavelength is 820nm for the
method proposed by Murphy and Riley [9], the correlation
coefficient around -0.9 in a range of 550 and 640 was consid-
ered to be useful for selecting an effective wavelength band. It
is judged that the reason why between the transmitted light
and the phosphate ion concentration in the entire visible
region is due to the yellow and blue colors after the reaction.
In addition, it is considered that the high sensitivity of the
equipment affected the strong correlation in the middle of
the measurement area.
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Figure 4: Correlation of phosphate ion concentration with transmission spectrum at different wavelengths.
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Figures 5 and 6 show the spectra and appearance, respec-
tively, of 50 phosphate ion nutrient solution samples with
concentrations of 0–200 ppm processed as described above.
Since sample absorbance after color development is propor-
tional to phosphate ion concentration, the intensity of the
blue color increased with increasing phosphate concentra-
tion, while the corresponding transmission values concomi-
tantly decreased. The presented spectra were derived from
pixel values of captured images. For this reason, peaks of
the R, G, and B wavelength bands were identified.

3.2. PLSR and PCR Prediction Models. As shown in Table 3,
smoothing, SNV, MSC, and first-derivative methods were
applied to the PLSR and PCR models developed based on
50 spectral datasets. Notably, the best RMSEP value (18.00)

was obtained for the PLSR model involving smoothing pre-
processing at a 5 nm wavelength interval, while the corre-
sponding RMSEC, RC

2, and RV
2 values equaled 14.90, 0.92,

and 0.88, respectively (Figure 7). The error was determined
as 18.00 ppm, which was within 10% of the total measure-
ment range of phosphate ion concentration. Notably, the
error of two-step preprocessing, which combined smoothing
with either SNV or MSC, exceeded that of one-step prepro-
cessing, since the light absorption zone of the main wave-
length band could not be detected in the former case.

3.3. Result of ANN Model Validation. A previous work on the
analysis of nonlinear multiple regression models reported that
ANN exhibited a more appropriate structure and produced
better results than PLSR and PCR [25, 26]. To develop an
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Figure 5: Transmission spectra of 50 samples after color development.
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Figure 6: Features of the blue color with increasing phosphate ion concentration.
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ANN model, 30 spectral datasets with high correlation values
in the wavelength range of 400–800nmwere selected and used
as input data, and the thus developed model was trained using
Levenberg-Marquardt backpropagation to prevent overfitting.
Since the computation load became overly large when all spec-
tral data were used as input, only the top 15 datasets with
respect to the correlation value (obtained by correlation anal-
ysis) were used for model development, and a training period
of five epochs proved to be most suitable (Figure 8). Figure 9
shows the training and validation results of the developed
model. In the case of training, R2 and RMSEP values of 0.93
and 13.56, respectively, were observed, while values of 0.86
and 15.80, respectively. Compared to the existing PLSRmodel,
the ANNmodel featured a similar coefficient of determination
(R2) but performed slightly better in terms of RMSE.

3.4. Development of Phosphate Ion Measurement Software
and Demonstration Test Results. Finally, we developed soft-
ware for the above phosphate ion quantitation method relying
on the simple protocol and the PLSR-based prediction model.
Specifically, a nutrient solution sample was reacted with the

molybdate-ascorbic acid solution for 10min and transferred
into a 4.5mL cuvette. The cuvette was installed in a cuvette
holder, and the measurement was started by clicking the
“Measure” button. As shown in the left image of Figure 10,
the software displayed predicted spectral concentrations
(ppm). A measurement image is provided in a separate win-
dow on the right side.

The independent test set validation was conducted to eval-
uate the software. Tomato nutrient solution samples with phos-
phate concentrations of 33.33, 50, and 120ppm were prepared,
and each sample was measured 3 times, with the obtained
results listed in Table 4. When the concentration was as low
as 33.33ppm, the error equaled 9.91%, whereas a smaller value
of 6.10% was obtained for a high concentration of 120ppm. In
addition, RPD showed less than 10%, which satisfies the field
precision limit, and also showed a similar pattern as an error.
Since a deeper color developed at high concentrations, the pre-
diction was more accurate at high concentrations. This error
and RPD level seem to be applicable for quantifying phosphate
ion concentrations (0~1200ppm) in nutrient solutions con-
ventionally used in hydroponic farms [3].
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Figure 7: Results of PLSR smoothing calibration for regression models (a) and prediction results obtained under the same condition (b).

Table 3: Performances of multiple regression models used for predicting phosphate ion concentration.

Regression model Preprocessing
RMSEC RC

2
Regression model Preprocessing

RMSEC RC
2

RMSEP RV
2 RMSEP RV

2

PLSR

No (raw data)
18.20 0.88

PCR

No (raw data)
17.10 0.90

20.20 0.87 21.10 0.84

Smoothing
14.89 0.92

Smoothing
17.10 0.88

18.00 0.88 20.20 0.86

Smoothing + SNV
18.30 0.88

Smoothing + SNV
23.60 0.81

26.90 0.75 28.60 0.71

Smoothing + MSC
27.10 0.74

Smoothing + MSC
27.30 0.75

30.10 0.70 29.50 0.72

1st derivative
18.50 0.88

1st derivative
18.60 0.89

22.50 0.83 23.50 0.84
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Figure 9: ANN training (a) and validation (b) results.
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The proposed sensing method describes a new low-cost
colorimetric sensor of the quick phosphate quantitation
based on a modification of conventional molybdenum color-
imetry and develops predictive models based on the PLSR,
partial component regression, and ANN techniques. In addi-
tion, the portable sensor has the advantage of being more
low-cost than the other sensors used in agriculture [12, 13,
27]. In the case of phosphate ions, the conventional method
needed various reagents, and the proposed method is to be
used in a simple manner using only 2 reagents, which are
complicated but essential procedures. In addition, the porta-
ble spectrometer is a low-cost product that can be used in
agricultural fields because it used a low-cost Public Lab prod-
uct instead of a costly spectrometer. However, the next step
of this research is to consider the reaction time of 10 minutes
and the stabilization stage of the device.

4. Conclusions

Herein, we developed a low-cost device for quantitation of
phosphate ions in nutrient solution and verified its perfor-
mance. Specifically, a simplified version of the molybdenum
blue colorimetric method was employed. Sample images cap-
tured by a camera were converted to transmission spectra
within a wavelength range of 400–800nm. Spectra of 50 nutri-
ent solution samples with concentrations of 0–200ppm were
acquired for the development of the PLSR, PCR, and ANN
models, which were evaluated through crossvalidation. The
PLSR model, which was developed by subjecting spectral data
to smoothing preprocessing at the 5nm wavelength interval,
exhibited the best predictive power, featuring RMSEC =
14:885, RC

2 = 0:919, RMSEP = 17:998, and RV
2 = 0:88. The

corresponding error equaled 18.0ppm, which was within 10%
of the total measurement range for the phosphate ion. It is nec-
essary to apply various regression techniques to increase the
precision of the predictive model, but it seems suitable for use
in agricultural field applications. Finally, to facilitate the appli-
cation of the above model, we developed software for phos-
phate ion quantitation and utilized it in a demonstration test.
The developed portable phosphate ion sensor featured a
shorter processing time (~10min) and lower price than exist-
ing colorimetric sensors and should, therefore, be easy to com-
mercialize for farm applications.Moreover, apart from nutrient
solution analysis, the developed technique could also be used to
assess the extent of the river, stream, and soil eutrophication.
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