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In recent years, many high-performance spectral-spatial classification methods were proposed in the field of hyperspectral image
classification. At present, a great quantity of studies has focused on developing methods to improve classification accuracy.
However, some research has shown that the widely adopted pixel-based random sampling strategy is not suitable for spectral-
spatial hyperspectral image classification algorithms. Therefore, a composite clustering sampling strategy is proposed, which can
greatly reduce the overlap between the training set and the test set, while making sample points in the training set sufficiently
representative in the spectral domain. At the same time, in order to solve problems of a three-dimensional Convolutional
Neural Network which is commonly used in spectral-spatial hyperspectral image classification methods, such as long training
time and large computing resource requirements, a multiscale spectral-spatial hyperspectral image classification model based on
a two-dimensional Convolutional Neural Network is proposed, which effectively reduces the training time and computing
resource requirements.

1. Introduction

Hyperspectral image (HSI) is acquired by dedicated hyper-
spectral cameras, which contains the spectral information
of a same ground object in hundreds of continuous bands
[1]. Compared with traditional remote sensing images such
as RGB three-band remote sensing images and multispec-
tral remote sensing images, the imaging bands of HSIs
have greatly increased. Each band of HSIs maps a two-
dimensional (2D) image with spatial geometric relationship,
and each pixel has a spectral characteristic curve. Therefore,
HSIs effectively combine spatial and spectral information
and are widely used in the field of remote sensing. In a variety
of application scenarios of HSIs, HSI classification technol-
ogy is relatively mature and is widely used in urban research
[2], marine disaster forecasting [3], and other tasks.

In recent years, some research in the field of deep learning
has attracted the attention of many scholars. Deep learning is
a new field of machine learning. With the improvement of
computer processing capabilities and the emergence of excel-
lent algorithms, the performance of various methods was
considerably improved in the field of deep learning. At the

same time, deep learning is also widely combined with
remote sensing. Many great models for HSI classification
were proposed, such as stacked autoencoder (SAE) [4], deep
belief networks (DBN) [5], recurrent neural network (RNN)
[6], and Generative Adversarial Networks (GAN) [7].

In the field of deep learning, a Convolutional Neural
Network (CNN) is much stronger than other deep learning
models in feature selection and extraction of high-
dimensional data. CNNs were widely used in HSI classifica-
tion [8–10]. However, CNNmodels still have a great possibil-
ity to improve the performance of HSI classification. When
CNNs were first used for HSI classification, models only used
the spectral feature information of pixels [11, 12], which
largely wastes an advantage of HSIs; that is, spatial informa-
tion and spectral information are closely combined. In
response to this problem, a spatial-spectral classification
method was proposed [13], and the spatial position informa-
tion and spectral information of pixels were full used during
model training, which effectively improved classification per-
formance of CNN models. Therefore, the spatial-spectral
classification method has been widely used [14, 15]. In a large
number of studies on spatial-spectral HSI classification
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methods, it was found that multiscale spatial-spectral HSI
classification methods can effectively enhance the classifica-
tion ability and robustness of models [16]. At present, multi-
scale spatial-spectral HSI classification methods have very
high classification performance [17].

Among many spatial-spectral HSI classification models,
3D-CNN models have achieved best performance, so most
researchers choose 3D-CNN to build multiscale spatial-
spectral HSI classification models [18, 19]. However, 3D-
CNN has problems such as too many network parameters,
too much computing resources for training, and too long
training time, which limits the popularization and applica-
tion of multiscale spatial-spectral HSI classification methods.
Therefore, it is necessary to improve existing models.

In recent years, many methods were studied for spatial-
spectral HSI classification. A large portion of the hyperspec-
tral remote sensing community has focused their research on
improving the classification accuracy by developing a variety
of spectral-spatial methods [9, 20, 21], but little attention has
been paid to experimental settings. In supervised deep learn-
ing methods, before models start training, labeled original
dataset needs to be divided into a training set and a test set.
Because it is difficult to obtain labeled HSI datasets,
researchers generally use public HSI datasets such as Indian
Pines. Therefore, in the research process, the training set
and test set are often divided on a same HSI. In previous
HSI classification methods that use only the spectral feature
information of pixels, the most commonly used sampling
strategy is to randomly select pixels on a HSI according to a
predetermined proportion to form the training set, and
remaining pixels constitute the test set. The random sam-
pling strategy is consistent with people’s intuition. It can
select as representative pixels as possible to form the training
set and make the training set and test set approximately meet
the conditions of independent and identical distribution.
Therefore, in research of spectral-spatial HSI classification
methods, almost all studies have adopted the traditional ran-
dom sampling strategy by default.

However, it is found that the use of the random sampling
strategy in spectral-spatial HSI methods is unreasonable, as it
will cause unfair performance evaluation [22]. In spectral-
spatial HSI methods using the random sampling strategy,
the correlation caused by an overlap between training sam-
ples and test samples will amplify classification accuracy,
resulting in an improper evaluation of spectral-spatial HSI
classification methods. The sampling problem was originally
noticed by Friedl et al. [23], who referred to the overlap as
autocorrelation. Geiß et al. [24] compared the effects of
different sampling strategies and verified the necessity of
using appropriate sampling strategies for model evaluation.
Liang et al. [25] proved the influence of data dependence
on the credibility of models by computational learning
theory. Therefore, the widely adopted pixel-based random
sampling strategy is not always suitable for spectral-
spatial HSI classification algorithms, because it is difficult
to determine whether the improvement of classification
accuracy is caused by incorporating spatial information into
a classifier or by increasing overlap between training and
testing samples.

To solve this problem, several new sampling strategies
were proposed. Liang et al. [25] proposed a new controlled
random sampling strategy, which effectively enhanced the
independence between the training set and the test set in
spectral-spatial methods. Lange et al. [26] proposed two
improved sampling strategies based on the density-based
clustering algorithm (DBSCAN), which also enhanced the
independence between the training set and the test set in
spectral-spatial methods. However, the controlled random
sampling strategy is to randomly select seed points in the
entire dataset, without taking into account the problem of
category imbalance; that is, the phenomenon that the num-
ber of pixels of one class is far more or less than that of other
classes in the dataset. HSIs have the problem of the same
spectrum from different materials and the same materials
with different spectra. These sampling strategies are based
on the spatial location of pixels, without considering the
spectral domain representativeness of pixels.

In view of the above problems, this paper attempts to
combine the excellent performance of DBSCAN on noncon-
nected regions and the good effect of the k-means clustering
algorithm on connected regions and combines the spectral
information of HSI datasets to propose a composite cluster-
ing sampling strategy. At the same time, an efficient multi-
scale spatial-spectral HSI classification model is proposed. It
combines the advantages of 3D-CNN and two-dimensional
Convolutional Neural Network (2D-CNN) to effectively
extract multiscale spatial-spectral features while reducing
the need for computing resources. The main contributions
of this paper are as follows.

(1) A new composite clustering sampling strategy is pro-
posed, which combines the respective characteristics
of DBSCAN and k-means clustering algorithms, and
uses the spectral domain average variance as a met-
ric. Compared with other sampling strategies, the
proposed method effectively improves the classifica-
tion accuracy of spatial-spectral methods. Although
it also reduces independence between the training
set and the test set, the loss of independence is
extremely limited and acceptable

(2) Combining the advantages of 3D-CNNand 2D-CNN,
a new multiscale spatial-spectral HSI classification
model is proposed. The proposed model not only
can effectively extract multiscale spatial-spectral fea-
tures of pixels but also overcomes problems of too
many model parameters, long training time, and
high computing resource requirements in existing
methods

2. Related Work

2.1. DBSCAN. DBSCAN is a classic density-based clustering
algorithm. Its basic principle is clustering by finding the larg-
est set of densely connected points. It uses local density of
points to divide clusters and does not need to set the number
of clusters k in advance. Different from partition clustering
methods and hierarchical clustering methods, it defines the
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cluster as a largest set of densely connected points. It can find
clusters of arbitrary shape in the dataset and can effectively
identify connected areas in the dataset. Below, some key def-
initions [27] are given for dataset D = fx1, x2,⋯, xmg.

Definition 1. (Eps-neighborhood). For xi ∈D, the Eps-neigh-
borhood of xi contains points in dataset D = fx1, x2,⋯, xmg
whose distance from xi is not more than Eps, that is,
NEpsðxiÞ = fxj ∈D ∣ distðxi, xjÞ ≤ Epsg.

Definition 2. (core points). For xi ∈D, if there are at least
MinPts points in the Eps-neighborhood of xi, then point xi
is called core point.

Definition 3. (directly density-reachable). For xi, xj ∈D, if these
conditions are satisfied: xi is a core point and xj ∈NEpsðxiÞ,
then xj is said to be directly density-reachable from xi.

Definition 4. (density-reachable). If there exists a series of
points y1, y2,⋯, yl that satisfy xi = y1, xj = yl, and yi+1 is
directly density-reachable from yi, then xj is said to be
density-reachable from xi.

Definition 5. (density-connected). If there is a point y such
that both xi and xj are density-reachable from y, then xi
and xj are said to be density-connected.

DBSCAN defines the maximum set of a series of densely
connected points as a cluster, and points that do not belong
to any cluster are defined as noise. It works well on datasets
with well-defined category boundaries.

2.2. k-Means Clustering Algorithm. The k-means clustering
algorithm was proposed by MacQueen in 1967 [28]. Because
of its advantages such as good effect and simple idea, the k
-means clustering algorithm was widely used. The k-means
clustering algorithm generally uses Euclidean distance as an
index to measure the similarity between points. The similar-
ity between points is inversely proportional to distance. The k
-means clustering algorithm needs to set the number of clus-
ters k in advance. The algorithm initially randomly selects k
points as the center of clusters. Based on the similarity
between points and the center of clusters, the position of
the cluster center is continuously updated to reduce the
Sum of Squared Error (SSE) of clusters. When SSE no longer
changes or objective function converges, the algorithm ends
and final result is obtained.

The formula for calculating the Euclidean distance
between any point x and cluster center Ci in dataset D =
fx1, x2,⋯, xmg is

d x, Cið Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where x is a point, Ci is the ith cluster center, m is the
dimension of points, and xj and Cij are the jth attribute
values of x and Cij.

The SSE calculation formula for dataset D = fx1, x2,⋯,
xmg is

SSE = 〠
k

i=1
〠
x∈D

d x, Cið Þj j2, ð2Þ

where k is the number of clusters.

2.3. CNN. CNN is a kind of feed-forward neural network.
The main network layers of CNN include convolutional
layers, pooling layers, and fully connected layers. Different
from traditional neural networks, CNNs have the character-
istics of sparse connections and weight sharing and have bet-
ter stability and generalization capabilities [29]. According to
different input signal dimensions, CNN can be divided into
one-dimensional (1D) CNN, 2D-CNN, and 3D-CNN. In
application, different network models are selected according
to requirements. In these three CNNs, the structure of the
convolution kernel is similar. Because 2D-CNN is most
widely used, the formulas for 2D convolution kernels are
listed below [30].

In 2D-CNN, the value vx,yi,j of the jth feature map in the i
th layer at point ðx, yÞ is calculated as

vx,yi,j = f 〠
m

〠
Hi−1

h=0
〠
Wi−1

w=0
kh,wi,j,m ⋅ v x+hð Þ y+wð Þ

i−1,m + bi,j

 !

, ð3Þ

wherem represents the feature map connected to the current
feature map in the ði‐1Þth layer, Hi and Wi represent the
length and width of the convolution kernel, vx,yi,j represents
the value of position ðx, yÞ on the jth convolution kernel in
the ith layer, and kh,wi,j,m represents the connection weight of
the mth feature map connected to ðh,wÞ, and bi,j represents
the bias of the jth feature map in the ith layer.

3. Proposed Method

3.1. Composite Clustering Sampling Strategy. In this paper,
combining the advantages of DBSCAN and k-means cluster-
ing methods, a composite clustering sampling strategy is
proposed. At the same time, the composite cluster sampling
strategy uses the spectral domain average variance as a mea-
sure, which not only makes divided training set and test set
maintain high independence but also makes the sample
points in the training set have high spectral domain
representativeness.

At the beginning of the composite clustering sampling
strategy, DBSCAN is used for the first clustering of the HSI
dataset. The purpose of this step is to divide the HSI dataset
into multiple partitions. The partition referred here is a
group of connected pixels with the same labels. For each
class, there are usually several partitions distributed on the
map, corresponding to the land cover of the same category
in different locations. With the excellent performance of
DBSCAN in identifying class boundaries, different partitions
under the same category can be effectively identified.
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For each partition identified by DBSCAN, the k-means
algorithm is used for the second clustering. The k-means
clustering algorithm performs well on the connected region;
it can be used to divide each partition into k clusters, which
are clustered spatially. For each spectral dimension of each
cluster, the variance of all pixels in the cluster is calculated
under this dimension. The variances of these different spec-
tral dimensions are averaged, and it is called spectral domain
average variance. The proposed spectral domain average var-
iance can effectively evaluate differences among pixels within
a cluster. Because pixels in a cluster have the same label, if the
spectral domain average variance of a cluster is large, it
means that pixels in the cluster have large differences. Obvi-
ously, for each class, it is desirable to choose as many differ-
ent samples as possible to form the training set, so that
models can be fully trained. Therefore, different clusters in
a partition are sorted in a descending order according to
spectral domain average variance, sampling points are
acquired according to the sampling proportion to form the
training set, and the remaining part constitutes the test set.

In some cases, there are few pixels in some partitions,
which is not suitable for secondary clustering. Therefore, if
the number of samples in a cluster is less than k (the number
of clusters), the pixels in the partition are sorted according to
spatial position, and then, sampling points are acquired
according to a sampling ratio and incorporated into the
training set. As shown in Figure 1, the composite clustering
sampling strategy proposed in this paper mainly includes
the following steps.

Step 1. For each class in the HSI dataset, use DBSCAN to
perform the first clustering based on pixel coordinates to
obtain all partitions in this class.

Step 2. Determine whether to perform secondary cluster-
ing based on the number of pixels in a partition. If the num-
ber of pixels is small, pixels are sorted according to spatial
position, and then, sampling points are obtained according
to a predetermined sampling rate and incorporated in the
training set. Otherwise, the k-means method is used for the
second clustering on the partition to form k clusters.

Step 3. Calculate the spectral domain average variance of
each cluster obtained in Step 2; sort these clusters in a
descending order according to spectral domain average
variance.

Step 4. According to a predetermined sampling propor-
tion, sample points are intercepted from the ordered arrange-
ment obtained in Step 3 and incorporated in the training set.

3.2. NewMultiscale Spatial-Spectral HSI Classification Model.
In traditional multiscale spatial-spectral HSI classification
methods, a large-scale three-dimensional (3D) data block is
often divided with each pixel as the center; then, convolution
kernels of different sizes are used to extract multiscale spatial-
spectral information. The extracted spatial-spectral features
are integrated to form a spatial-spectral feature map, and
the feature map is input to the subsequent network structure
for training. As shown in Figure 2, traditional multiscale
spatial-spectral classification methods are shown.

However, although traditional multiscale spatial-spectral
classification methods can effectively extract multiscale

spatial-spectral features, noise information is often intro-
duced. As shown in Figure 3, when the size of 3D data
block is large, smaller convolution kernels will obtain
spatial-spectral features that do not belong to the central
pixel, which will bring noise to the extracted spatial-
spectral feature map.

In view of this problem, based on the work of improving
existing methods and models, a new multiscale spatial-
spectral HSI classification model is proposed, which is called
1D-3D-2D-CNN model. In the 1D-3D-2D-CNN model, the
spectral data of pixels and a plurality of 3D data blocks of dif-
ferent scales centered on pixels are extracted. For the extracted
1D spectral information, a 1D convolution kernel is used to
extract spectral features; for extracted 3D data blocks, corre-
sponding 3D convolution kernels are used to extract multi-
scale spatial-spectral features. Then, the extracted spectral
features and multiscale spatial-spectral features are trans-
posed into 2D feature maps and fused to obtain a multiscale
spatial-spectral feature map and input it to a subsequent 2D-
CNN for training. As shown in Figure 4, the new multiscale
spatial-spectral HSI classification model proposed in this
paper mainly includes the following steps.

Step 1. For each pixel, extracted spectral information
corresponding to the pixel and a plurality of data blocks
with different sizes centered on the pixel is, respectively,
divided.

Step 2. The spectral data is convolved using a 1D convo-
lution kernel to extract spectral features; 3D convolution
kernels are used to convolve corresponding data blocks to
extract multiscale spatial-spectral features.

Step 3. The extracted spectral features and multiscale
spatial-spectral features are reshaped into 2D feature maps
and fused to obtain a multiscale spatial-spectral map.

Step 4. The multiscale spatial-spectral feature map is
input into 2D-CNN for training.

Partitions

DBSCAN

Determine whether
the second clustering
requirement is met?

Hyperspectral
dataset

Clusters 

Yes k-means

Sorted No

Training and test
sets 

Figure 1: A flow chart of a composite clustering sampling strategy.
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3.3. Multiscale Spatial-Spectral HSI Classification Method
Based on Composite Clustering Sampling Strategy. Combin-
ing the work done in Sections 3.1 and 3.2, a multiscale
spatial-spectral HSI classification method based on the
composite clustering sampling strategy is proposed.

This method mainly includes the following steps.

Step 1. The composite clustering sampling strategy is
used to divide the original HSI dataset into the suitable train-
ing set and test set.

Step 2. The training set is input to the 1D-3D-2D-CNN
model shown in Figure 5 for training.

Step 3. The test set is input to the trainedmodel for testing.

Features
from size-1

kernel

Features
from size-2

 kernel

•
•
•

Features
from size-n

kernel 

Feature
fusion Classifier

Figure 2: A schematic diagram of traditional multiscale spatial-spectral classification methods.

Central
pixel

Effective
convolution

Invalid
convolution

Figure 3: The disadvantage of traditional multiscale spatial-spectral classification methods.

2D feature
map

2D feature
map

Feature
fusion 2D-CNN

1 × 1 × c

m × m × c

n × n × c

1D convolution
operation 

3D convolution
operation 
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Feature 3

Reshape

Reshape

Reshape
3D convolution

operation 
2D feature
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Figure 4: The new multiscale spatial-spectral HSI classification model.
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4. Experimental Results

In order to verify the effectiveness of the proposed multiscale
spatial-spectral HSI classification method based on the com-
posite clustering sampling strategy, experiments are per-
formed on three commonly used public HSI datasets:
Indian Pines, Pavia University, and Salinas. The experimen-
tal environment is the Google Colaboratory cloud computing
platform. Google Colaboratory is provided by Google Inc.
and provides free GPU acceleration services for artificial
intelligence (AI) researchers.

In this paper, three indicators, Overall Accuracy (OA),
Average Accuracy (AA), and Kappa coefficient, are used as
the evaluation criteria for model performance. Among them,
OA points to each pixel to evaluate the classification accuracy
of all sample points in the test set; AA points to the category,
which means the average of classification accuracy of each
class; Kappa considers the number of correctly classified
pixels and misclassified pixels at the same time; it is an index
to evaluate the consistency and credibility of classification
results. In order to reduce the impact of random errors, all
experimental data in this chapter are the average of five inde-
pendent repeated experiments.

4.1. Dataset. The Indian Pines dataset is a HSI of the Indian
Pines area in northwestern Indiana, USA, obtained by an
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
It has a spatial resolution of 20 meters, is composed of 145
× 145 pixels, and contains 200 spectral bands (24 bands
affected by water vapor and ozone are removed). Its wave-
length range is between 0.4 and 2.5 microns. The ground
object reference map of the Indian Pines dataset contains
16 different classes, including farmland, woods, grassland,
and other vegetation. The number of pixels in different cate-
gories in the Indian Pines dataset is extremely uneven.
Figure 6 is the 11th band pseudocolor map and the category
label map of the Indian Pines dataset. As can be seen from
Figure 6, the pixels of the Indian Pines dataset are clustered
and the category boundaries are clear. Table 1 lists the cate-
gory names of the Indian Pines dataset and the number of
pixels in each category. As can be seen from Table 1, the
Indian Pines dataset has a small number of pixels, with only
10249 labeled pixels. The number of pixels in some categories
is too low. For example, category “alfalfa” has only 46 pixels,
category “grass-pasture-mowed” has only 28 pixels, and cat-
egory “oats” has only 20 pixels. When the number of sample
points is too low, the effectiveness of deep learning methods

1D-Conv
size = 3

3D-Con
size = 3 × 3 × 3

3D-Conv
size = 3 × 3 × 5

Feature
fusion

1 × 1 × c

3 × 3 × c

5 × 5 × c

Dataset Conv
3 × 3

ReLU
SAME

ReLU
SAME

ReLU
SAME

ReLU
SAME

Max
pooling

Dropout
sigmoid

Dropout
softmax

Conv
3 × 3

Conv
3 × 3

Conv
3 × 3

Fc
layer

Fc
layer

Fc
layer

Figure 5: A flow chart of the 1D-3D-2D-CNN.

Stone-steel-towers
Woods
Soybean-clean
Soybean-notill
Hay-windrowed
Grass-trees
Corn
Corn-notill

Buildings-grass-trees-drives
Wheat
Soybean-mintill
Oats
Grass-pasture-mowed
Grass-pasture
Corn-mintill
Alfalfa

Figure 6: Band 11 pseudocolor map and category label map of Indian Pines dataset.
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is not good, but for the sake of experimental consistency,
experiments in this chapter did not exclude these small pixel
categories.

The Pavia University dataset is a HSI of the Pavia Univer-
sity campus in northern Italy acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS-3) developed
in Germany. It has a spatial resolution of 1.3 meters, is com-
posed of 610 × 340 pixels, and contains 103 spectral bands
(12 bands affected by water vapor and ozone are removed).
Its wavelength range is between 0.43 and 0.86 microns. The
ground object reference map of the Pavia University dataset
contains 9 different classes, such as lawn and macadam.
Figure 7 is the 60th band pseudocolor map and the category
label map of the Pavia University dataset. As can be seen
from Figure 7, only in categories “bare land” and “lawn”,
pixels are clustered and category boundaries are clear. In
other seven categories, pixels are scattered and category
boundaries are blurred. Table 2 lists the category names of
the Pavia University dataset and the number of pixels in each
category. As can be seen from Table 2, the Pavia University
dataset has a large number of labeled pixels, but only nine
categories. The categories in the dataset are relatively bal-
anced, and there is no phenomenon that the number of pixels
in one category is too low.

The Salinas dataset is a HSI of Salinas Valley, California,
USA, acquired by AVIRIS sensors. It has a spatial resolution
of 3.7 meters, is composed of 512 × 217 pixels, and contains
204 spectral bands (20 bands affected by water vapor and
ozone are removed). The ground object reference map of
the Salinas dataset contains 16 different classes. Figure 8 is
the 188th band pseudocolor map and the category label
map of the Salinas dataset. As can be seen from Figure 8,
labeled pixels of the Salinas dataset are clustered and category
boundaries are clear. Table 3 lists the category names of the

Salinas dataset and the number of pixels in each category.
As can be seen from Table 3, the Salinas dataset has a large
number of pixels, with 16 categories. The categories in the
dataset are relatively balanced, and there is no phenomenon
that the number of pixels in one category is too low.

4.2. Experiments with the Proposed Method. In order to quan-
tify the independence between the training set the and test set
after using different sampling strategies, the test set indepen-
dence rate is used to evaluate multiple sampling strategies.
Test set samples that are not involved in the training process
are called test set-independent sample points, and the test set
independence rate refers to the ratio between the number of
test set-independent sample points and the number of all
samples in the test set. The k value of the composite cluster-
ing sampling strategy should be an integer greater than or
equal to two. In the experiment, the k value of the composite
clustering sampling strategy is from 2 to 16, and performance
is observed when k value is small. If no conclusion can be

Table 1: Category name and the number of pixels in the Indian
Pines dataset.

Label Category name The number of pixels

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-grass-trees-drives 386

16 Stone-steel-towers 93

Total number of pixels 10249

Shadow

Tar

Plate metals

Macadam

Pitch

Brick

Bare land

Tree

Lawn

None

Figure 7: Band 60 pseudocolor map and category label map of the
Pavia University dataset.

Table 2: Category name and the number of pixels in the Pavia
University dataset.

Label Category name The number of pixels

1 Pitch 6631

2 Lawn 18649

3 Macadam 2099

4 Tree 3064

5 Plate metals 1345

6 Bare land 5029

7 Tar 1330

8 Brick 3682

9 Shadow 947

Total number of pixels 42776
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drawn when k is not greater than 16, then the value of k is
further expanded.

The 1D-3D-2D-CNN model proposed in this paper has
five convolutional layers. In the first convolutional layer, a
1D convolution kernel of size 3 is used to extract spectral
features for the spectral information of size 1 ∗ 1 ∗ c, and
3D convolution kernels with sizes (3, 3, 3) and (5, 5, 3)

are used to extract multiscale spatial-spectral features for
data blocks of size 3 ∗ 3 ∗ c and 5 ∗ 5 ∗ c, where c is the
spectral dimension size. The number of filters for the first
convolution layer is two. After the first convolution layer,
spectral features and multiscale spatial-spectral features
are transposed into 2D feature maps and fused. The next
four convolutional layers are 2D convolutional layers, con-
volution kernel sizes are all (3, 3), all use Rectified Linear
Unit (ReLU) activation function, and the number of filters
in each layer is 4, 16, 32, and 64. Among these 2D convo-
lutional layers, the first two layers use “SAME” padding,
and the last two layers use “VAILD” padding. A maximum
pooling layer with a step size of 2 is used after the last con-
volutional layer. Three fully connected (FC) layers are used,
of which the first two FC layers used dropout. The second
FC layer uses sigmoid activation function, and the third
FC layer uses softmax activation function. The model’s
training epoch is 1000, batch size is 128, loss function is
cross entropy, and the model uses Adam optimizer. Using
a hierarchical learning rate, when the batch is less than
400, the learning rate is 2 × 10−3; when the batch is greater
than 400 and less than 600, the learning rate is 1 × 10−3;
when the batch is greater than 600 and less than 800, the
learning rate is 5 × 10−4; and when the batch is greater than
800, the learning rate is 1 × 10−4.

In order to verify the validity of the 1D-3D-2D-CNN
model proposed in this paper, a 3D-CNN model is designed
for comparison experiments. The 3D-CNN model differs
from the 1D-3D-2D-CNN model only in convolutional
and pooling layers. It has five 3D convolutional layers, the
number of filters in each layer is 2, 4, 16, 32, and 64, and
the size of convolution kernels are all (3, 3, 3). These 3D
convolutional layers all use ReLU activation function.
Among five 3D convolutional layers, the first three layers
use “SAME” padding, and last two layers use “VAILD”
padding. In the designed 3D-CNN model, no pooling layer
is used. During model training, according to experience, a
sampling rate of 10% to 30% is usually used to select the
training set. In this section, the training set is selected at the
most commonly used sampling ratio, which is 20%. In order
to verify the effectiveness of the composite clustering sam-
pling strategy, as there are few research results in this field,
the paper chooses to realize the improved area-based sam-
pling strategy proposed by Lange et al. [26] for comparison
experiments.

As shown in Figure 9, in the Indian Pines dataset,
although the test set independence rate of the composite clus-
tering sampling strategy proposed in this paper is higher than
that of the random sampling strategy, it is somewhat lower
than that of the area-based sampling strategy. As the k value
of the composite clustering sampling strategy increases, the
test set independence rate gradually decreases. In the com-
monly used sampling ratio of 10% to 30%, when k is taken
from 2 to 16, compared with the area-based sampling strat-
egy, the composite clustering sampling strategy causes a
decrease in the test set independence rate. When k is 2 and
the sampling ratio is 10%, the test set independence rate
decreases least, which is 6.4% lower than that of the area-
based sampling strategy under the same conditions. When

Vinyard_vertical_trellis
Vinyard_untrained
Lettuce_romaine_7wk
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Grapes_untrained
Celery
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Fallow_smooth
Fallow_rough_plow
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Brocoli_green_weeds_2
Brocoli_green_weeds_1

Figure 8: Band 188 pseudocolor map and category label map of the
Salinas dataset.

Table 3: Category name and the number of pixels in the Salinas
dataset.

Label Category name The number of pixels

1 Brocoli_green_weeds_1 2009

2 Brocoli_green_weeds_2 3726

3 Fallow 1976

4 Fallow_rough_plow 1394

5 Fallow_smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes_untrained 11271

9 Soil_vinyard_develop 6203

10 Corn_senesced_green_weeds 3278

11 Lettuce_romaine_4wk 1068

12 Lettuce_romaine_5wk 1927

13 Lettuce_romaine_6wk 916

14 Lettuce_romaine_7wk 1070

15 Vinyard_untrained 7268

16 Vinyard_vertical_trellis 1807

Total number of pixels 54129
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k is 16 and the sampling ratio is 30%, the test set indepen-
dence rate decreases most, which is 33.7% lower than that
of the area-based sampling strategy under the same condi-
tions. The loss of independence is large between the training
set and the test set divided by the composite clustering sam-
pling strategy. This is due to the large number of categories
and small number of pixels in the Indian Pines dataset. It
can be seen from Figure 9 that in the composite clustering

sampling strategy, the independence of dataset has reached
a lower level when k is 16. However, at low k values, the test
set independence rate is still acceptable.

In the Indian Pines dataset, it can be seen from Table 4
that in both 3D-CNN and 1D-3D-2D-CNN models, the
composite clustering sampling strategy can make model’s
classification performance better than the area-based sam-
pling strategy. In the 3D-CNN model, when k is 14, it has
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Figure 9: Test set independence rate for different sampling strategies with window tensor size w equal to five in the Indian Pines dataset.

Table 4: Classification accuracy and test set independence rate with different sampling strategies of the Indian Pines dataset.

Sampling strategy
3D-CNN 1D-3D-2D-CNN Test set-independent

sample rate (%)OA (%) AA (%) Kappa Time (min.) OA (%) AA (%) Kappa Time (min.)

Area 46.81 42.55 0.3950 9.24 49.76 51.12 0.4392 1.95 90.93

Random 90.33 91.69 0.8894 9.24 94.36 92.91 0.9356 1.87 1.75

k = 2 63.55 62.66 0.5808 10.15 77.19 70.83 0.7402 1.98 81.88

k = 3 58.76 58.84 0.5284 10.11 73.72 70.68 0.7007 2.01 81.48

k = 4 65.57 64.35 0.6059 10.10 76.06 72.53 0.7278 2.00 81.52

k = 5 66.24 66.20 0.6136 10.12 77.01 70.58 0.7385 2.04 80.17

k = 6 66.73 68.39 0.6161 10.21 78.60 77.01 0.7558 2.13 77.23

k = 7 63.57 65.34 0.5803 9.37 79.83 77.50 0.7699 2.10 75.51

k = 8 67.90 68.93 0.6295 9.41 78.27 77.38 0.7501 2.05 75.15

k = 9 66.19 68.59 0.6104 9.48 80.23 79.38 0.7742 2.12 75.02

k = 10 65.49 68.57 0.6019 9.42 78.62 79.64 0.7554 2.29 74.23

k = 11 65.08 69.98 0.5963 9.50 82.86 82.08 0.8039 2.34 71.68

k = 12 69.22 72.12 0.6443 9.51 80.45 78.71 0.7769 2.36 70.20

k = 13 69.73 73.32 0.6517 9.56 80.30 80.22 0.7743 2.40 69.34

k = 14 70.94 71.98 0.6650 9.61 80.09 78.36 0.7720 2.46 67.98

k = 15 69.40 73.11 0.6467 9.69 83.01 81.13 0.8059 2.44 67.34

k = 16 70.24 72.06 0.6566 9.25 81.94 80.28 0.7932 2.46 65.81
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the highest OA and reached 70.94%, which is an increase of
24.13% compared with the area-based sampling strategy.
When k is 13, it has the highest AA and reached 73.32%,
which is an increase of 30.77% compared with the area-
based sampling strategy. When k is 16, it has highest Kappa
and reached 0.6566, which is an increase of 0.2616 compared
with the area-based sampling strategy. In the model pro-
posed in this paper, when k is 15, it has the highest OA and
reached 83.01%, which is an increase of 33.25% compared
with the area-based sampling strategy. When k is 11, it has
highest AA and reached 82.08%, which is an increase of
30.96% compared with the area-based sampling strategy.
When k is 15, it has highest Kappa and reached 0.8059, which
is an increase of 0.3667 compared with the area-based sam-
pling strategy. Experimental results on two models show that
the composite clustering sampling strategy proposed in this
paper can effectively improve the classification performance
of models.

In the Indian Pines dataset, although the test set indepen-
dence rate decreases greatly when the value of k is large, the
composite clustering sampling strategy can greatly improve
classification accuracy at a cost of smaller decreasing test
set independence rate when the value of k is small. When k
is 4 and using the 1D-3D-2D-CNN model, compared with
the area-based sampling strategy, OA increased by 26.3%,
AA increased by 21.41%, Kappa increased by 0.2886, and test
set independence rate decreased by only 9.41%. Compared
with the random sampling strategy, the composite clustering
sampling strategy still has a certain gap in final classification
accuracy. When k is 4 and using the 1D-3D-2D-CNNmodel,
compared with the random sampling strategy, OA decreased
by 18.3%, AA decreased by 20.38%, Kappa decreased by
0.2078, but test set independence rate increased by 79.77%.
Considering both classification accuracy and test set inde-
pendence rate, the performance of the composite clustering
sampling strategy is acceptable. When k is large, the test set

independence rate decreases significantly and is no longer
practical. For example, when k is 16 and the sampling rate
is 20%, the test set independence rate is only 65.81%. As the
value of k increases, the test set independence rate will further
decrease; therefore, those cases where k is greater than 16 will
not be discussed further.

Compared with the 3D-CNN model, the 1D-3D-2D-
CNN model has the largest OA growth by 17.78% when k
is 11 and has smallest OA growth by 2.95% in the area-
based sampling strategy. It has the largest AA growth by
12.16% when k is 7 and has the smallest AA growth by
1.22% in the random sampling strategy. It has the largest
Kappa growth by 0.2076 when k is 11 and has the smallest
Kappa growth by 0.0442 in the area-based sampling strategy.
When k is 2, training time is shortened the longest, shortened
by 8.17min; when k is 16, training time is shortened the
shortest, shortened by 6.79min. This is because the number
of labeled pixels in the Indian Pines dataset is small and
the 3D-CNN model cannot be sufficiently trained. In the
1D-3D-2D-CNN model proposed in this paper, although
the use of 2D-CNN will reduce training accuracy, a multi-
scale spectral-spatial method is used to effectively extract
multiscale spectral-spatial features of pixels, which effec-
tively compensates the accuracy loss caused by 2D-CNN.
Therefore, in the Indian Pines dataset, the 1D-3D-2D-
CNN model proposed in this paper can not only effectively
improve classification accuracy but also effectively shorten
training time of models.

As shown in Figure 10, in the Pavia University dataset,
the test set independence rate of the composite clustering
sampling strategy proposed in this paper is much higher than
that of the random sampling strategy, and it is not much
lower than that of the area-based sampling strategy. As the
k value of the composite clustering sampling strategy
increases, the test set independence rate gradually decreases.
In the commonly used sampling ratio of 10% to 30%, when k
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Figure 10: Test set independence rate for different sampling strategies with window tensor sizew equal to five in the Pavia University dataset.
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is taken from 2 to 16, compared with the area-based sampling
strategy, the composite clustering sampling strategy causes a
decrease in the test set independence rate. When k is 2 and
sampling ratio is 10%, the test set independence rate
decreases the least, which is 2.7% lower than that of the
area-based sampling strategy under the same conditions.
When k is 16 and the sampling ratio is 30%, the test set
independence rate decreases the most, which is 12% lower
than that of the area-based sampling strategy under the same
conditions. In the Pavia University dataset, the composite
clustering sampling strategy has a higher test set indepen-
dence rate. This is due to the fewer categories and larger
number of pixels in the Pavia University dataset.

In the Pavia University dataset, it can be seen from
Table 5 that in both 3D-CNN and 1D-3D-2D-CNN models,
the composite clustering sampling strategy can make the
model’s classification performance better than the area-
based sampling strategy. In the 3D-CNN model, when k is
14, it has the highest OA and reached 92.32%, which is an
increase of 28.96% compared with the area-based sampling
strategy. When k is 14, it has highest AA and reached
91.77%, which is an increase of 19.76% compared with the
area-based sampling strategy. When k is 14, it has highest
Kappa and reached 0.8973, which is an increase of 0.3392
compared with the area-based sampling strategy. In the
model proposed in this paper, when k is 14, it has the highest
OA and reached 93.60%, which is an increase of 27.48% com-
pared with the area-based sampling strategy. When k is 14, it
has highest AA and reached 93.29%, which is an increase of
14.17% compared with the area-based sampling strategy.
When k is 14, it has highest Kappa and reached 0.9127, which
is an increase of 0.3258 compared with the area-based

sampling strategy. Experimental results on two models show
that the composite clustering sampling strategy proposed in
this paper can effectively improve the classification perfor-
mance of models.

Although the test set independence rate decreases greatly
when the value of k is large, the composite clustering sam-
pling strategy can greatly improve classification accuracy at
a cost of a smaller decreasing test set independence rate when
the value of k is small. When k is 4 and using the 1D-3D-2D-
CNN model, compared with the area-based sampling strat-
egy, OA increased by 26%, AA increased by 12.09%, Kappa
increased by 0.3063, and test set independence rate decreased
by only 4.19%. Compared with the random sampling strat-
egy, the composite clustering sampling strategy still has a cer-
tain gap in final classification accuracy. When k is 4 and using
the 1D-3D-2D-CNN model, compared with the random
sampling strategy, OA decreased by 6.24%, AA decreased
by 6.71%, Kappa decreased by 0.0815, but test set indepen-
dence rate increased by 90.88%. In the Pavia University data-
set, considering both classification accuracy and test set
independence rate, the composite clustering sampling strat-
egy performs very well.

Compared with the 3D-CNN model, the 1D-3D-2D-
CNN model has the largest OA growth by 3.34% when k is
7 and has the smallest OA growth by 0.04% when k is 3. It
has the largest AA growth by 7.11% in the area-based sam-
pling strategy and has the smallest AA growth by 0.99% when
k is 5. It has the largest Kappa growth by 0.0434 when k is 7
and has the smallest Kappa growth by 0.0015 when k is 3.
When k is 4, training time is shortened the longest, shortened
by 14.94min; when k is 13, training time is shortened the
shortest, shortened by 13.67min. This is because the number

Table 5: Classification accuracy and test set independence rate with different sampling strategies of the Pavia University dataset.

Sampling strategy
3D-CNN 1D-3D-2D-CNN Test set-independent

sample rate (%)OA (%) AA (%) Kappa Time (min.) OA (%) AA (%) Kappa Time (min.)

Area 63.36 72.01 0.5581 17.94 66.12 79.12 0.5904 3.19 98.60

Random 97.54 96.90 0.9673 17.90 98.36 97.92 0.9782 3.44 3.31

k = 2 84.37 86.66 0.7979 17.80 84.91 88.71 0.8067 3.13 95.11

k = 3 87.31 85.70 0.8322 17.94 87.35 87.16 0.8337 3.65 94.10

k = 4 90.40 89.40 0.8710 18.05 92.12 91.21 0.8967 3.11 94.41

k = 5 88.78 89.73 0.8481 18.15 91.21 90.72 0.8843 3.28 94.08

k = 6 86.62 87.11 0.8236 17.99 88.83 88.56 0.8554 3.26 93.63

k = 7 88.35 87.32 0.8478 18.19 91.69 90.78 0.8912 3.34 92.94

k = 8 89.41 88.11 0.8594 17.71 91.27 89.94 0.8857 3.40 92.69

k = 9 90.52 88.15 0.8739 17.91 91.48 89.26 0.8876 3.52 92.27

k = 10 89.88 88.43 0.8646 17.97 92.84 91.35 0.9060 3.70 92.00

k = 11 89.52 88.59 0.8594 17.80 92.17 90.54 0.8968 3.70 91.16

k = 12 90.27 89.16 0.8701 17.60 92.45 91.46 0.9014 3.42 90.62

k = 13 92.06 90.95 0.8939 17.59 93.34 92.40 0.9124 3.92 90.52

k = 14 92.32 91.77 0.8973 17.76 93.60 93.29 0.9162 3.47 90.15

k = 15 90.54 89.55 0.8734 17.68 93.36 92.65 0.9127 3.87 89.87

k = 16 90.10 89.65 0.8689 17.87 90.41 90.88 0.8756 3.89 89.28
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of labeled pixels in the Pavia University dataset is large, and
3D-CNN is fully trained. In the 1D-3D-2D-CNNmodel pro-
posed in this paper, although the use of 2D-CNN will reduce
training accuracy, a multiscale spectral-spatial method is
used to effectively extract multiscale spectral-spatial features
of pixels, which effectively compensates the accuracy loss
caused by 2D-CNN. Therefore, in the Pavia University data-
set, the 1D-3D-2D-CNNmodel can effectively shorten train-
ing time of models while ensuring classification accuracy.

Decrease in the test set independence rate has slowed
down when k is greater than 6. When k is 16, the test set inde-
pendence rate is 89.28%, and the independence between the
training set and the test set remains at a high level. Therefore,
the value of k greater than 16 should be further discussed.

The classification performance of the composite cluster-
ing sampling strategy with a k value of 17 to 32 is further dis-
cussed. As can be seen from Table 6, when k is 14, the
classification accuracy of the 1D-3D-2D-CNN model has
been further improved, OA reached 94.13%, AA reached
93.55%, Kappa reached 0.9229, and test set independence
rate is still at a high level of 89.40%. However, when k is
greater than 20, classification accuracy decreases in fluctua-
tions, and the test set independence rate also decreases
continuously. When k is 32, the test set independence rate
is only 86.46%, which is already at a low level. As the value
of k increases, the test set independence rate will further
decrease. Therefore, those cases where k is greater than 32
will not be discussed further.

As shown in Figure 11, in the Salinas dataset, the test set
independence rate of the composite clustering sampling
strategy proposed in this paper is much higher than that of
the random sampling strategy, and it is not much lower than

that of the area-based sampling strategy. As k value of the
composite clustering sampling strategy increases, the test
set independence rate gradually decreases. In the commonly
used sampling ratio of 10% to 30%, when k is taken from 2
to 16, compared with the area-based sampling strategy, the
composite clustering sampling strategy causes a decrease in
the test set independence rate. When k is 9 and sampling
ratio is 10%, the test set independence rate decreases the least,
which is 1.9% lower than that of the area-based sampling
strategy under the same conditions. When k is 15 and sam-
pling ratio is 30%, the test set independence rate decreases
the most, which is 11.4% lower than that of the area-based
sampling strategy under the same conditions. The composite
clustering sampling strategy has a higher test set indepen-
dence rate.

In the Salinas dataset, it can be seen from Table 7 that in
both 3D-CNN and 1D-3D-2D-CNN models, the composite
clustering sampling strategy can make the model’s classifica-
tion performance better than the area-based sampling strat-
egy. In the 3D-CNN model, when k is 12, it has the highest
OA and reached 88.89%, which is an increase of 10.55% com-
pared with the area-based sampling strategy. When k is 13, it
has the highest AA and reached 93.97%, which is an increase
of 14.72% compared with the area-based sampling strategy.
When k is 12, it has highest Kappa and reached 0.8759, which
is an increase of 0.118 compared with the area-based sam-
pling strategy. In the model proposed in this paper, when k
is 12, it has the highest OA and reached 90.09%, which is
an increase of 7.41% compared with the area-based sampling
strategy. When k is 14, it has the highest AA and reached
94.83%, which is an increase of 12.34% compared with the
area-based sampling strategy. When k is 12, it has the highest
Kappa and reached 0.8894, which is an increase of 0.0828
compared with the area-based sampling strategy. Experimen-
tal results on two models show that the composite clustering
sampling strategy proposed in this paper can effectively
improve classification performance of models.

Although the test set independence rate decreases greatly
when the value of k is large, the composite clustering sam-
pling strategy can improve classification accuracy at a cost
of the smaller decreasing test set independence rate when
the value of k is small. When k is 3 and using the 1D-3D-
2D-CNN model, compared with the area-based sampling
strategy, OA increased by 4.49%, AA increased by 8.51%,
Kappa increased by 0.05, and test set independence rate
decreased by only 3.36%. Compared with the random sam-
pling strategy, the composite clustering sampling strategy
still has a certain gap in final classification accuracy. When
k is 3 and using the 1D-3D-2D-CNN model, compared with
the random sampling strategy, OA decreased by 7.46%, AA
decreased by 0.33%, Kappa decreased by 0.0835, but test set
independence rate increased by 92.7%. In the Salinas dataset,
considering both classification accuracy and test set inde-
pendence rate, the performance of the composite clustering
sampling strategy is acceptable.

The decrease in the test set independence rate has slowed
down when k is greater than 5. When k is 16, the test set inde-
pendence rate is 89.67%, and the independence between the
training set and the test set remains at a high level. But when

Table 6: Supplementary experiments of the Pavia University
dataset with high k value.

Sampling
strategy

OA
(%)

AA
(%)

Kappa
Time
(min.)

Test set-independent
sample rate (%)

k = 17 94.13 93.55 0.9229 3.51 89.40

k = 18 93.41 92.67 0.9133 3.57 89.17

k = 19 93.36 92.76 0.9130 3.47 88.92

k = 20 93.14 92.36 0.9097 3.49 88.73

k = 21 91.87 92.00 0.8940 3.59 88.67

k = 22 91.77 90.90 0.8926 3.55 88.12

k = 23 91.11 90.44 0.8841 3.60 87.83

k = 24 92.36 93.09 0.9004 3.64 88.18

k = 25 90.89 90.50 0.8810 3.30 87.97

k = 26 91.25 91.56 0.8863 3.34 87.50

k = 27 88.34 89.75 0.8496 3.58 87.61

k = 28 92.96 92.51 0.9080 3.68 87.23

k = 29 88.13 88.99 0.8462 3.63 87.37

k = 30 91.20 90.72 0.8841 3.73 86.92

k = 31 91.79 91.88 0.8918 3.74 87.00

k = 32 90.16 89.65 0.8708 3.79 86.46
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k is greater than 12, the classification performance of models
has decreased significantly. Therefore, those cases where k is
greater than 16 will not be discussed further.

Compared with the 3D-CNN model, the 1D-3D-2D-
CNN model has the largest OA growth by 4.36% in the ran-
dom sampling strategy and has the smallest OA growth by
0.26% when k is 13. It has the largest AA growth by 3.24%
in the area-based sampling strategy and has the largest AA
reduction by 0.99% when k is 12. It has the largest Kappa
growth by 0.049 in the random sampling strategy and has
the smallest Kappa growth by 0.0031 when k is 13. In the
area-based sampling strategy, training time is shortened the
longest, shortened by 34.78min; when k is 10, training time
is shortened the shortest, shortened by 33.16min. This is
because the number of labeled pixels in the Salinas dataset
is large, and 3D-CNN is fully trained. In the 1D-3D-2D-
CNN model proposed in this paper, although the use of
2D-CNN will reduce training accuracy, a multiscale
spectral-spatial method is used to effectively extract multi-
scale spectral-spatial features of pixels, which effectively com-
pensates the accuracy loss caused by 2D-CNN. Therefore, in
the Salinas dataset, the 1D-3D-2D-CNN model can effec-
tively shorten training time while ensuring classification
accuracy.

In summary, the composite clustering sampling strategy
has performed well in Indian Pines, Pavia University, and
Salinas datasets. The composite clustering sampling strategy
has excellent performance in a dataset where category
boundaries are fuzzy, the number of pixels is large, and the
number of categories is small, such as the Pavia University
dataset. The Indian Pines dataset has a small number of
pixels and a large number of categories, the use of the com-
posite clustering sampling strategy will cause the indepen-
dence between the training set and the test set to a larger
decrease, but it can greatly improve classification accuracy

at a cost of the smaller decreasing test set independence rate
when the value of k is small. The Salinas dataset has a large
number of pixels and clear category boundaries, the area-
based sampling strategy already can perform well, and the
performance improvement brought by the composite clus-
tering sampling strategy is not obvious. However, using the
1D-3D-2D-CNN model proposed in this paper can effec-
tively shorten training time of models while ensuring classifi-
cation accuracy.

4.3. Comparative Experiments with Other Methods. The
problem of sampling strategies in the spectral-spatial classifi-
cation field has only been raised in recent years, and research
is gradually carried out, so there are not many research
results in this field. At present, the most widely accepted
method in this field is the controlled random sampling strat-
egy [25, 31]. Liang et al. [25] conducted experiments using a
controlled random sampling strategy by support vector
machine (SVM) and random forest (RF) models combined
with 3D discrete wavelet (3D-DWT) and morphological pro-
file (EMP) spectral-spatial feature extraction methods. In
order to verify the effectiveness of the proposed method,
the classification performance of the controlled random
sampling strategy and composite clustering sampling strat-
egy is compared using OA as the metric. The proposed 1D-
3D-2D-CNN with the four space-spectrum classification
methods of SVM-3D-DWT, SVM-EMP, RF-3D-DWT, and
RF-EMP was compared. The experimental data of these four
models are quoted from the research of Liang et al. [25].

It can be found from Table 8 that under different sam-
pling ratios, the number of pixels in the training set is not
strictly a multiple relationship. This is because whether it
is a controlled random sampling strategy or a composite
cluster sampling strategy, training samples are selected for
each partition according to a predetermined sampling ratio.
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Figure 11: Test set independence rate for different sampling strategies with window tensor size w equal to five in the Salinas dataset.
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The number of samples used to compose the training set
in each partition does not contain decimals. When the
number of partitions in the dataset is large, this will cause
a significant gap.

First, observe the performance of the five models when
using a controlled random sampling strategy. As can be seen
from Tables 9–11, in the Indian Pines dataset, the classifica-
tion accuracy of 1D-3D-2D-CNN is better than that of the
other four models when the sampling ratio is 10% and 25%,
but when the sampling ratio is 5%, the classification accuracy
of 1D-3D-2D-CNN is not the best. In the Pavia University
dataset, the classification accuracy of 1D-3D-2D-CNN is bet-
ter than that of the other four models when the sampling
ratio is 25%, but when the sampling ratio is 5% and 10%,
the classification accuracy of 1D-3D-2D-CNN is not the best.
In the Salinas dataset, when the sampling ratio is 5%, 10%,
and 25%, the classification accuracy of 1D-3D-2D-CNN is
better than that of the other four models. In general, the
classification ability of 1D-3D-2D-CNN is acceptable.

Second, the experimental results of 1D-3D-2D-CNN
under the controlled random sampling strategy and compos-
ite clustering sampling strategy are compared. As can be seen
from Tables 9–11, in the Indian Pines dataset, the composite

cluster sampling strategy is superior to the controlled ran-
dom sampling strategy. In the Pavia University dataset, when
the sampling ratio is 10%, the controlled random sampling
strategy performs better, and when the sampling ratio is 5%
and 25%, the composite clustering sampling strategy

Table 7: Classification accuracy and test set independence rate with different sampling strategies of the Salinas dataset.

Sampling strategy
3D-CNN 1D-3D-2D-CNN Test set-independent

sample rate (%)OA (%) AA (%) Kappa Time (min.) OA (%) AA (%) Kappa Time (min.)

Area 78.34 79.25 0.7579 42.17 82.68 82.49 0.8066 7.39 96.96

Random 90.27 90.46 0.8911 41.21 94.63 91.33 0.9401 7.61 0.90

k = 2 77.70 82.77 0.7515 41.18 79.41 82.81 0.7710 7.68 93.99

k = 3 83.26 89.99 0.8135 41.25 87.17 91.00 0.8566 7.86 93.60

k = 4 78.84 83.04 0.7649 41.50 80.08 83.98 0.7788 8.03 94.18

k = 5 74.19 75.63 0.7123 41.44 77.18 81.63 0.7459 7.49 93.79

k = 6 83.79 85.33 0.8193 41.41 85.41 85.69 0.8373 7.75 91.80

k = 7 83.61 85.64 0.8167 41.84 84.99 85.99 0.8324 7.40 91.92

k = 8 86.44 86.27 0.8489 41.85 86.73 87.67 0.8522 8.03 91.31

k = 9 85.97 86.75 0.8437 41.19 87.91 87.56 0.8653 7.54 91.68

k = 10 87.32 91.21 0.8588 41.23 87.63 92.28 0.8624 8.07 90.60

k = 11 87.69 88.46 0.8629 41.48 89.10 91.12 0.8787 7.91 90.38

k = 12 88.89 93.07 0.8759 41.31 90.09 92.24 0.8894 7.84 89.98

k = 13 87.82 93.97 0.8644 41.54 88.08 94.29 0.8675 7.55 90.48

k = 14 86.07 91.76 0.8450 41.78 87.79 94.83 0.8643 7.68 90.42

k = 15 85.05 86.08 0.8331 41.46 86.05 87.43 0.8450 7.70 90.20

k = 16 85.86 93.77 0.8431 41.17 87.92 94.37 0.8660 7.97 89.67

Table 8: Number of pixels in the training set at different sampling
ratios.

5% 10% 25%

Indian Pines 492 1004 2549

Pavia University 2032 4155 10592

Salinas 2694 5041 13523

Table 9: Comparison experiment of 5%, 10%, and 25% sampling
rates in the Indian Pines dataset with controlled random sampling
and composite clustering sampling (k = 11) (∗).

5% 10% 25%

SVM-3D-DWT 65.2 69.9 79.1

SVM-EMP 64.8 69.2 77.2

RF-3D-DWT 57.4 61.4 67.5

RF-EMP 64.4 69.6 76.2

1D-3D-2D-CNN 63.2 72.0 79.6

1D-3D-2D-CNN∗ 64.1 72.3 82.4

Table 10: Comparison experiment of 5%, 10%, and 25% sampling
rates in the Pavia University dataset with controlled random
sampling and composite clustering sampling (k = 14) (∗).

5% 10% 25%

SVM-3D-DWT 84.8 86.4 89.2

SVM-EMP 87.4 89.5 91.7

RF-3D-DWT 75.8 79.0 83.4

RF-EMP 78.2 80.9 88.2

1D-3D-2D-CNN 85.4 88.6 92.2

1D-3D-2D-CNN∗ 85.8 87.4 93.8
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performs better. In the Salinas dataset, when the sampling
ratio is 5%, the controlled random sampling strategy per-
forms better, and when the sampling ratio is 10% and 25%,
the composite clustering sampling strategy performs better.
This is caused by the different advantages and disadvantages
of those two sampling strategies. The working principle of
the controlled random sampling strategy is to randomly
select seed points in each partition and use a region growing
algorithm to select a training set of sufficient size around the
seed points. Although this method can enhance the indepen-
dence between the training set and the test set, it cannot guar-
antee the spectral representativeness of pixels in the training
set. When the number of pixels in the partition is small and
the sampling ratio is small, the controlled random sampling
strategy can be used to obtain a training set with high spectral
domain representativeness, but when the number of pixels in
the partition is large or the sampling ratio is large, it is diffi-
cult to obtain a training set with high spectral domain repre-
sentativeness using a controlled random sampling strategy.
Contrary to the controlled random sampling strategy, when
the sampling ratio is large, the composite clustering sampling
strategy performs better, but when the sampling ratio is rela-
tively small, the composite clustering sampling strategy does
not perform satisfactorily. This is because when the sampling
ratio is relatively small, for each partition, the pixels used for
training models in the partition obtained by using the com-
posite clustering sampling strategy will be distributed in a
cluster, which makes the spectral domain representativeness
of the training set unable to be guaranteed. The Indian Pines
dataset has the characteristics of fewer pixels and fewer par-
titions, and the pixels are unevenly distributed; there are both
partitions with a small number of pixels and partitions with a
large number of pixels. Therefore, in the Indian Pines dataset,
when the sampling ratio is small, the controlled random sam-
pling strategy performs well, but when the sampling ratio is
large, the composite clustering sampling strategy is superior
to the controlled random sampling strategy. The Pavia Uni-
versity dataset has the characteristics of a large number of
pixels and partitions, so that each partition has a small
number of pixels. Therefore, in the Pavia University dataset,
the performance of the controlled random sampling strategy
and composite cluster sampling strategy is very close. The
Salinas dataset has the characteristics of a large number of
pixels and a small number of partitions, so the number of
pixels in each partition is large. Therefore, in the Salinas data-
set, when the sampling ratio is small, the controlled random

sampling strategy performs better than the composite clus-
tering sampling strategy, but as the sampling ratio increases,
the classification accuracy of the controlled random sampling
strategy only increases slightly, and the classification accu-
racy of the composite clustering sampling strategy has
increased significantly. Generally, when the sampling rate is
low and the number of pixels in each partition of the data
set is small, the performance of the controlled random sam-
pling strategy will be better; when the sampling rate is large,
the performance of the composite cluster sampling strategy
is better. In general, when the sampling rate is low and the
number of pixels in each partition of the dataset is small,
the controlled random sampling strategy performs better;
when the sampling rate is larger, the composite clustering
sampling strategy performs better.

4.4. Influence of the Number of Convolutional Layers on
Model Performance. In order to verify the effect of the num-
ber of different convolutional layers on the performance of
1D-3D-2D-CNN models, comparative experiments were
conducted at the sampling rate of 20% in the above three
datasets.

As can be seen from Tables 12–14, in the three datasets of
Indian Pines, Pavia University, and Salinas, as the number of
convolution layer increases, the classification accuracy of the
1D-3D-2D-CNN model gradually increases. However, the
effect of improving the classification performance by increas-
ing the depth of models is limited. When the depth of the
model reaches a critical value, continuing to increase the
depth of the model will cause the classification accuracy to
decrease. This is due to the problem of gradient disappear-
ance caused by too many convolutional layers. Therefore,

Table 12: Comparative experiments with different network depths
in the Indian Pines dataset (k = 11).

2 3 4 5 6 7

OA (%) 79.65 81.52 81.95 82.78 81.33 80.87

AA (%) 78.6 79.49 82.24 83.92 80.23 79.41

Kappa 0.7672 0.7891 0.7929 0.8075 0.7875 0.7875

Table 13: Comparative experiments with different network depths
in the Pavia University dataset (k = 14).

2 3 4 5 6 7

OA (%) 91.74 92.39 93.41 93.74 92.95 92.47

AA (%) 90.77 92.06 93.48 93.19 94.03 92.61

Kappa 0.8910 0.8996 0.9137 0.9183 0.9068 0.9010

Table 14: Comparative experiments with different network depths
in the Salinas dataset (k = 12).

2 3 4 5 6 7

OA (%) 87.83 88.18 89.31 90.19 89.72 89.03

AA (%) 93.02 93.35 93.06 93.91 93.05 91.58

Kappa 0.8639 0.8679 0.8805 0.8906 0.8853 0.8781

Table 11: Comparison experiment of 5%, 10%, and 25% sampling
rates in the Salinas dataset with controlled random sampling and
composite clustering sampling (k = 12) (∗).

5% 10% 25%

SVM-3D-DWT 80.9 82.2 83.4

SVM-EMP 83.5 85.0 84.8

RF-3D-DWT 77.6 80.6 83.8

RF-EMP 82.0 84.4 86.6

1D-3D-2D-CNN 83.7 86.1 87.7

1D-3D-2D-CNN∗ 80.1 86.4 92.4
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this paper chooses to use five convolutional layers to build
the 1D-3D-2D-CNN model.

5. Conclusion

This paper proposes a composite clustering sampling strat-
egy for spectral-spatial HSI classification methods, which
not only maintains a high independence between the training
set and the test set but also makes the sample points in the
training set have a higher spectral domain representation.
At the same time, a new multiscale spectral-spatial HSI clas-
sification model is proposed, which can effectively shorten
training time and reduce computing resource requirements
while maintaining or slightly reducing classification accu-
racy. However, at smaller sampling ratios such as 5%, the
performance of the proposed method is poor. In the future,
a sampling strategy for spectral-spatial HSI classification
methods will continue to be improved to enhance their per-
formance at smaller sampling ratios. Although the classifica-
tion performance of the proposed method is higher than
other existing methods, it still has a gap compared with
the random sampling method. In the future, better models
will continue to be proposed to enhance classification
capabilities.
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