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Online soft tissue characterization is important for robotic-assisted minimally invasive surgery to achieve precise and stable robotic
control with haptic feedback. This paper presents a new nonlinear recursive adaptive filtering methodology for online nonlinear
soft tissue characterization. An adaptive unscented Kalman filter is developed based on the Hunt-Crossley model by windowing
approximation to online estimate system and measurement noise covariances. To improve the accuracy of noise covariance
estimations, a recursive formulation is subsequently developed for estimation of system and measurement noise covariances by
introducing a weighting factor. This weighting factor is further modified to accommodate noise statistics of large variation
which could be caused by rupture events and geometric discontinuities in robotic-assisted surgery. Simulations, experiments,
and comparison analyses demonstrate that the proposed nonlinear recursive adaptive filtering methodology can characterize
soft tissue parameters in the presence of system or measurement noise statistics in both small and large variations for robotic-
assisted surgery. The proposed methodology can effectively estimate soft tissue parameters under system and measurement
noises in both small and large variations, leading to improved filtering accuracy and robustness in comparison with UKF.

1. Introduction

Soft tissue properties are of great importance in robotic
minimally invasive surgery to characterize the interaction
between surgical tools and soft tissues for robotic control with
force feedback. However, soft tissue properties are time-
dependent and patient-specific. They are variable as per
various tissue layers and regions, various organs, and various
physiological conditions. In order to improve the robustness
and stability of haptic control, it is necessary to characterize
soft tissue properties dynamically [1].

A contact model describing the contact interaction
between surgical tools and soft tissues is essential to charac-
terization of soft tissue properties. The existing contact
models can be generally classified into two categories. One
is the continuum mechanics approach focusing on accurate
characterization of the tool-tissue contact interaction. The
typical examples in this category include the viscoelastic
model [2] and finite element model (FEM) [3], where the
mechanical behaviours of a soft tissue are accurately charac-
terized based on continuum mechanics of elasticity. How-

ever, this approach is very complex and involves a large
amount of computational load. Thus, it is only suitable for
offline analysis, while unable to satisfy the real-time require-
ment of soft tissue characterization. The other is the analyti-
cal approach focusing on analytical establishment of the
explicit relationship between force and displacement using
a spring and damper. In spite of the less accuracy compared
to the continuum mechanics approach, the analytical
approach has the advantages of real-time performance, suit-
able for a robotic control purpose. Further, since the spring
and damper represent the elasticity and viscosity of soft
tissues, the approach still maintains certain accuracy for
characterization of soft tissue behaviours. Thus, the existing
studies are mainly dominated by the analytical approach,
leading to various spring-damper models for online soft
tissue characterization. The simple one is made up of a
spring, unable to model the viscosity effect [4]. The Maxwell
model consists of a serialized spring and damper [5]. The
Kelvin-Voigt model consists of a parallel spring and damper
[6]. The Kelvin-Boltzmann (KB) model improves the K-V
model adding a serialized spring [7]. In general, the above
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models are a linear model, involving physical inconsistencies
at the initial and end stages of contact with soft tissues [4].
Comparing to the above models, the H-C model is a nonlin-
ear contact model and shows consistencies with physical
contact. However, the use of such a nonlinear model requires
a nonlinear estimation algorithm, which is a challenging
research task. Accordingly, the use of the H-C model for
accurate and real-time characterization of soft tissue proper-
ties has been very limited. A survey of the existing contact
models can be found in [8, 9].

In order to achieve the real-time performance for soft tis-
sue characterization, it also needs to develop an online esti-
mation algorithm. So far, the existing studies are mainly
dominated by a linear estimation algorithm such as the
recursive least square (RLS) [10, 11] and Kalman filter [8].
However, a linear estimation algorithm is only suitable for
linear contact models. In order to use a linear estimation
algorithm with the nonlinear H-C model, it requires a linear-
ization process. Since the linearization process of the nonlin-
ear H-C model causes error for estimation, the resultant
solution may be biased or even divergent [12]. Further, the
Kalman filter also requires prior knowledge of system noise
statistics. A survey on estimation and tuning of system noise
statistics for Kalman filtering can be found in [13, 14].

The unscented Kalman filter (UKF) is an online nonlin-
ear estimation algorithm, where the state mean and covari-
ance are approximated in third-order accuracy using
unscented transformation [15]. However, similar to the
Kalman filter, the performance of UKF relies on accurate
contact and measurement models. Currently, there have
been few studies focusing on development of a UKF algo-
rithm for characterization of nonlinear soft tissue proper-
ties. Xi et al. studied a reduced-order UKF based on a
cubic Hermite FEM for characterization of myocardial
stiffness [3]. However, this FEM is subject to the quasistatic
assumption, which does not account for the contact
dynamics. The reduced dimension of the state vector also
deteriorates the estimation performance. The authors also
studied a UKF based on the H-C model for soft tissue
characterization [16], but without considering the UKF
requirement of accurate system models. Just recently, the
authors reported an improved UKF to handle the error of the
H-C contact model using the scaling factor [17]. However, this
method is based on the assumption that the measurement
model is accurate, which does not correspond to the real-
world situation with errors involved in both contact and mea-
surement models. Further, it is also based on windowing
approximation [18, 19] to use residuals within a small window
of historical time points to calculate system noise characteris-
tics at the current time point. In spite of the fast response to
dynamic model noise, the estimation accuracy is limited due
to the restricted data in the small time window. Recursion
[20, 21] is a strategy to assess system characteristics at the pres-
ent time point using all historical data, leading to higher accu-
racy than windowing approximation. Since all data are
assembled via a recursive process, rather than stored in mem-
ory, this strategy also has a small computational load. However,
compared to windowing approximation, the recursion strategy
is slow in response to model noise due to the use of all available

data. As windowing approximation and recursion complement
with each other, it is necessary to study how to effectively com-
bine both strategies together to fully leverage their individual
advantages for improvement of the UKF performance.

This paper presents a new nonlinear recursive adaptive
UKF to estimate the parameters of the H-C contact model.
It combines windowing approximation with recursion to
address the UKF limitation in requirement of accurate
contact and measurement models. An adaptive UKF is
developed based on windowing approximation to offer the
classical UKF with the capability to online estimate the noise
covariances of the H-C contact and measurement models.
Subsequently, a recursive adaptive UKF is developed by
incorporating a weighting factor in the adaptive filtering
process to improve the estimation accuracy. This weighting
factor is further modified to accommodate the noise statistics
of large variation, which are occurring in robotic-assisted
surgery due to rupture events and geometric discontinuities.
Simulation and experimental results together with compari-
son analysis demonstrate the efficiency of the proposed
method for online soft tissue characterization.

2. Hunt-Crossley Model

The Hunt-Crossley (H-C) model describes the dynamic
mechanism of mechanical contact between soft tissues and
surgical tools with a nonlinear spring and damper [22]:

F = Kdn + Bdn _d
p, ð1Þ

where F, K , B, d, _d, n, and p denote the interaction force,
stiffness, damping coefficient, displacement, velocity, and
power indices of displacement and velocity, respectively.

From (1), the system state equation is defined as

xk = f xk−1ð Þ + qk−1 =

dk−1 + _dk−1 × Δt

_dk−1

Kk−1d
nk−1
k−1 + Bk−1d

nk−1
k−1

_d
pk−1
k−1

Kk−1

Bk−1

nk−1

pk−1

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
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+ qk−1,

ð2Þ

where xk = ½dk, _dk, Fk, Kk, Bk, nk, pk� is the system state at
time tk, qk~ð0,QkÞ is the system noise which is assumed as
a white Gaussian noise with zero mean and covariance Qk,
f ð·Þ is the system function, and Δt is the time step.

The measurement function is defined as

yk =Hkxk + rk =
dk

Fk

 !
+ rk, ð3Þ
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where yk denotes the measurement vector,Hk is the measure-
ment matrix, and rk~ð0, RkÞ is the measurement noise which
is also assumed as a white Gaussian noise with zero mean and
covariance Rk.

3. Analysis of Conventional UKF

Let us briefly analyse the problems of the classical UKF. The
conventional UKF procedure is as follows:

(i) Initialization.

Calculate the initial estimated state and its associated
covariance:

x0 = E xt0ð Þ,
P0 = E x0 − xt0ð Þ x0 − xt0ð ÞT

h i
,

ð4Þ

where xt0 is the predefined initial state.

(ii) Time update.

Select the sigma points of the estimated state at time tk−1
(k = 1, 2,⋯):

xik−1 = xk−1, i = 0ð Þ,
xik−1 = xk−1 + a

ffiffiffiffiffiffiffiffiffiffiffiffi
NPk−1

p� �
i
, i = 1, ⋯ ,Nð Þ,

xik−1 = xk−1 − a
ffiffiffiffiffiffiffiffiffiffiffiffi
NPk−1

p� �T
i
, i =N + 1,⋯, 2Nð Þ,

ð5Þ

where N is the dimension of state vector x, a is the tuning
parameter to control the spread of the sigma points around
xk−1, and

ffiffiffiffiffiffiffiffiffiffiffiffi
NPk−1

p
is the ith column of the mean square root

of NPk−1.
Transform the sigma points with the state function,

yielding a set of transformed samples:

xik∣k−1 = f xik−1
� �

: ð6Þ

Calculate predicted state xk∣k−1 and its associated covari-
ance Pk∣k−1 :

xk∣k−1 = 〠
2N

i=1
wix

i
k∣k−1, ð7Þ

Pk∣k−1 = 〠
2N

i=1
wi x

i
k∣k−1 − xk∣k−1

� �
xik − xk∣k−1
� �T +Qk, ð8Þ

where

wi = 1 − 1
a2

, i = 0,

wi =
1

2Na2
, i = 1, 2,⋯, 2N:

8>><
>>:

ð9Þ

(iii) Measurement update.

As the measurement model is linear, the measurement
update is performed with the same equations as the Kalman
filter.

Calculate predicted measurement yk∣k−1 and its associated
covariance Pyk∣k−1

:

yk∣k−1 =Hkxk∣k−1, ð10Þ

Pyk∣k−1
=HkPk∣k−1H

T
k + Rk: ð11Þ

Calculate the crosscovariance between predicted state
xk∣k−1 and predicted measurement yk∣k−1:

Pxk∣k−1yk∣k−1
= Pk∣k−1H

T
k : ð12Þ

Determine the Kalman gain:

Kk = Pxk∣k−1yk∣k−1
P−1
yk∣k−1

: ð13Þ

Update estimated state xk and its associated covariance
Pk:

xk = xk∣k−1 + Kk yk − yk∣k−1
� �

, ð14Þ

Pk = Pk∣k−1 − KkPyk∣k−1
KT

k : ð15Þ

(iv) Go to step (i) for the next sample until all samples
are processed

It can be seen from (8) that if the system noise covariance
involves uncertainty, predicted state covariance Pk∣k−1 will
become inaccurate, leading crosscovariance Pxk∣k−1yk∣k−1

given

by (12) to become inaccurate. The inaccurate Pxk∣k−1yk∣k−1
will

further lead Kalman gain Kk to become biased, thus degener-
ating the state estimate given by (15). In a similar way, if the
measurement noise covariance involves uncertainty,
predicted measurement covariance Pyk∣k−1

will become inac-

curate, leading Kalman gain Kk to be biased. Accordingly,
the state estimate given by (14) will be corroded. From above,
it is evident that without the accurate system noise covari-
ances, the filtering solution of the conventional UKF will be
biased or even divergent.
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4. Recursive Adaptive Unscented Kalman Filter

In this paper, a new recursive adaptive UKF is developed by
combining windowing approximation with recursion to the
online estimate system and measurement noise covariances
via covariance matching, which is to balance predicted state
covariance Pk∣k−1 and predicted measurement covariance
Pyk∣k−1

with their theoretical values.

4.1. Estimation of System Noise Covariance. By introducing
an adaptive scaling factor Φ, we readily have the following
relationship:

Qk =ΦQk−1: ð16Þ

Substituting (16) into (8), the predicted state covariance
can be further represented as

Pk∣k−1 = 〠
2N

i=1
wi x

i
k∣k−1 − xk∣k−1

� �
xik∣k−1 − xk∣k−1
� �T +ΦQk−1:

ð17Þ

It can be seen from (17) that the adaptive scaling factorΦ
enables us to adjust the system noise covariance for online
tuning the predicted state covariance.

In theory, the predicted state covariance is defined as

~Pk∣k−1 = E x̂k − xk∣k−1
� �

x̂k − xk∣k−1
� �T� �

: ð18Þ

Since the real state x̂k is generally unknown, in (18)
replacing the real state with the estimated state and applying
windowing approximation to calculate the expectation, we
readily have a suboptimal estimation for the predicted state
covariance:

~Pk∣k−1 =
1
m
〠
m

j=1
xk−j − xk−j∣k−j−1
� �

xk−j − xk−j∣k−j−1
� �T , ð19Þ

wherem represents the number of the state vectors within the
time window (tk−m, tk−1) and is named the window size.

Define the innovation vector by

Zk∣k−1 = yk − yk∣k−1: ð20Þ

By (14), we readily have

xk − xk∣k−1 = KkZk∣k−1: ð21Þ

Substituting (21) into (19) yields

~Pk∣k−1 =
1
m
〠
m

j=1
Kk−jZk−j∣k−j−1Zk−j∣k−j−1

TKk−j
T : ð22Þ

Based on the above, the adaptive scaling factor Φ can be
attained by matching the predicted state covariance given

by (17) with its theoretical value given by (22):

〠
2N

i=1
wi x

i
k∣k−1 − xk∣k−1

� �
xik∣k−1 − xk∣k−1
� �T +ΦQk−1 = ~Pk∣k−1:

ð23Þ

Thus, the adaptive scaling factor for the system noise
covariance can be determined as

Φ =
tr ~Pk∣k−1
� �

− tr ∑2N
i=1wi x

i
k∣k−1 − xk∣k−1

� �
xik∣k−1 − xk∣k−1
� �T� �

tr Qk−1ð Þ ,

ð24Þ

where trð·Þ denotes the trace of a matrix.
It can be seen from (22) that ~Pk∣k−1 is approximated using

the information within the current window, and thus, it can
account for dynamically changing conditions. However,
due to the limited data available within the time window,
the estimation accuracy is limited. In order to address this
problem, the theoretical predicted state covariance is further
expressed into a recursive form:

~P
∗
k∣k−1 = Ck

~Pk∣k−1 + 1 − Ckð Þ~P∗
k−1∣k−2, ð25Þ

where Ck is called the weighting factor, which is commonly
defined by [23, 24]:

Ck =
1
Jk
, ð26Þ

where Jk is the number of the entire available time points.
It can be seen from (25) that ~P

∗
k∣k−1 is based on the entire

available data rather than the limited data available within
the current time window, leading to improved accuracy.
~P
∗
k∣k−1 is contributed by two portions. One is at the current

time point, which is calculated by windowing approximation
to use the data available within the current window to charac-
terize dynamically changing conditions that occurred. The
other is at the previous time point, which reflects the historical
tendency. The contributions at both current and previous
time points are combined via weighting factor Ck. ~P

∗
k∣k−1 takes

the full contribution at the current time point when Ck = 1,
while taking the full contribution at the previous time point
when Ck = 0. The smaller the value of Ck is, the smaller the
contribution at the current time point is and in turn the larger
the contribution at the previous time point is.

4.2. ModifiedWeighting Factor. In robotic-assisted minimally
invasive surgery, the variation of noise statistics is small when
the dynamic interaction environment is relatively stable [25].
However, in case of abrupt changes such as geometrical
discontinuities in soft tissue deformation, rupture events
occurring in the penetration of different tissue layers, and
unexpected contacts with rigid bones, a large variation in
noise statistics will occur in the dynamic interaction environ-
ment [26].
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The standard weighting factor Ck defined by (26) cannot
account for abrupt changes encountered in the interaction
with soft tissues. Figure 1 plots the variation of the standard
weighting factor Ck in time series where an abrupt change
in noise statistics has occurred at tk = 50 s. As shown in
Figure 1(a), Ck given by (26) starts from the maximum value
of one at the beginning. Subsequently, it decreases drastically
to a small value and gradually converges to zero in the time
series. As Ck remains at such a small value most of the time,
the contribution at the present time point to ~P

∗
k∣k−1 is small

while in turn the contribution at the previous time point is
large. Due to the small contribution at the present time point
most of the time, ~P

∗
k∣k−1 is unable to account for an abrupt

change in system noise statistics. As shown in Figure 1(a),
as Ck still remains at a small value at time point tk = 50 s, it
leads to the failure to account for the abrupt change of noise
statistics occurring at this time point. Accordingly, Ck given
by (26) is only suitable for the case that system noise statistics
are constant or have a small variation, making the proposed
adaptive UKF unable to account for a large variation in
system noise statistics.

In order to accommodate large variations in system noise
statistics, the standard weighting factor Ck defined by (26) is
modified as

CR
k =

1
Jk − b

, ð27Þ

b = kr − 1ð Þg k − krð Þ, ð28Þ

where gð·Þ is a unit step function and kr is the index of the
time point where an abrupt change occurs.

The initial value of parameter b is zero. When an abrupt
change occurs at the current time point, the parameter b will
be updated to kr − 1, making CR

k become one again. Conse-
quently, ~P

∗
k∣k−1 is calculated by taking the full contribution

at the present time point to account for the abrupt change.
Figure 1(b) shows the variation of the modified weighting
factor CR

k where an abrupt change in system noise statistics
occurred at tk = 50 s. Similar to Ck, CR

k starts from the
maximum value of one, where ~P

∗
k∣k−1 takes the full contribu-

tion at the present time point. Subsequently, the CR
k value

drops drastically to and remains at a small value until an
abrupt change occurs. With such a small value of CR

k , ~P
∗
k∣k−1

mainly follows the one at the previous time point to handle
small variations in system noise covariance. When an abrupt
change occurs at the time point k = 50 s (kr = 50 s), the
parameter b defined by (28) will be updated to kr − 1, restor-
ing CR

k back to the maximum value of one to account for the
abrupt change that occurred. Subsequently, CR

k drastically
drops to and remains at a small value until a new abrupt
change occurs. This variation process of CR

k is repeated when-
ever an abrupt change occurs, allowing the adjustment of
~P
∗
k∣k−1 to account for an abrupt change by taking the full

contribution at the present time point.

By substituting the weighting factor with the modified
weighting factor, (25) becomes

~P
∗
k∣k−1 = CR

k
~Pk∣k−1 + 1 − CR

k

� �
~P
∗
k−1∣k−2: ð29Þ

Thus, the adaptive scaling factor is calculated by

Φ =
tr ~P

∗
k∣k−1

� �
− tr ∑2N

i=1w
c
i xik∣k−1 − xk∣k−1
� �

xik∣k−1 − xk∣k−1
� �T� �

tr Qk−1ð Þ :

ð30Þ

4.3. Estimation of Measurement Noise Covariance. The
measurement noise covariance can also be estimated in the
similar way as the system noise covariance. By introducing
an adaptive scaling factor Γ, the measurement noise covari-
ance can be represented as

Rk = ΓRk−1: ð31Þ

Substituting (31) into (11), the predicted measurement
covariance can be further expressed as

Pyk∣k−1
=HkPk∣k−1H

T
k + ΓRk−1: ð32Þ

It can be seen from (32) that the adaptive scaling factor Γ
enables us to adjust the measurement noise covariance for
online tuning the predicted measurement covariance.

Using windowing approximation [27], the theoretical
predicted measurement covariance can be directly calculated
as

~Pyk∣k−1
= 1
m
〠
m

j=1
Zk−j∣k−j−1Zk−j∣k−j−1

T : ð33Þ

Similar to (29), the theoretical predicted measurement
covariance ~Pyk∣k−1

can be further expressed by a recursive form

as

~P
∗
yk∣k−1

= CR
k
~Pyk∣k−1

+ 1 − CR
k

� �
~Pyk−1∣k−2

, ð34Þ

where the modified weighting factor CR
k is also applied to

handle both small and large variations in the measurement
noise covariance.

By matching the modified predicted measurement
covariance given by (32) and its theoretical value given by
(34), we readily have

HkPk∣k−1H
T
k + ΓRk−1 = ~P

∗
yk∣k−1

: ð35Þ

From (35), the adaptive scaling factor Γ for estimation of
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measurement noise covariance is determined as

Γ =
tr ~P

∗
yk∣k−1

� �
− tr HkPk∣k−1H

T
k

� �

tr Rk−1ð Þ : ð36Þ

5. Performance Evaluation and Discussions

Aprototype systemhas been implemented using the proposed
methodology for online soft tissue characterization. This sys-
tem takes measurements of contact force and displacement as
input signals to online estimate the nonlinear parameters of
the H-C model. Based on the estimated parameters of the

H-C model, the contact forces with soft tissues are recon-
structed from displacements and further compared with the
input forces to calculate the estimation error. Simulations
and experiments togetherwith comparison analysis have been
conducted to evaluate the performance of the proposedmeth-
odology in terms of (i) systemnoise covariance estimation, (ii)
measurement noise covariance estimation, (iii) the effect of
the weighting factor, and (iv) force reconstruction based on
the estimated parameters of the H-C model.

5.1. Simulations and Analysis. Simulations were conducted to
evaluate the performance of the proposed methodology in
estimating system and measurement noise covariances
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Figure 1: The effects of both standard and modified weighting factors on ~P
∗
k , where an abrupt change occurs at tk = 50 s: the black solid line

represents the proportion of ~Pk at the current time point while the red dashed line the proportion of ~P
∗
k−1 at the previous time point.
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together with associated force reconstructions. The time
steps for the simulations were set to 10ms. The initial state
was defined as x0 = ½0:1, 0:1, 0:01, 0:0001, 0:0001, 1, 1�.

5.1.1. System Noise Covariance Estimation. For the perfor-
mance evaluation in terms of system noise covariance esti-
mation, it is supposed that the measurement noise statistics
are exactly known. Without loss of generality, set Rk = 1
and EðrkÞ = 0. Two cases are studied. One is that system noise
covariance is constant or has a small variation, and the other
is that system noise covariance involves abrupt changes.

(1) Constant or Small-Variation System Noise Covariance.
Simulation trials were conducted under the same conditions
by the adaptive UKF (AUKF) and recursive adaptive UKF
(RAUKF) for the case that system noise covariance is con-
stant or has a small variation. The measurement data were
obtained from the H-C model by adding a white Gaussian
noise with zero mean and the covariance of 0.036N. The ini-
tial estimation value was Q̂0 = 0:004N, the window size was
m = 4, the real covariance of system noise was Qk = 0:036N,
and EðqkÞ = 0. The simulation time was 90 s. As shown in
Figure 2, the system noise covariance estimated by AUKF
via windowing approximation involves large oscillations
during the entire simulation time. This is because the limited
data available within the small window restricts the estima-
tion accuracy. In contrast, the system noise covariance
estimated by RAUKF via recursion is close to the real value
after 20 s. This is because the estimation via recursion is
obtained based on the entire available data. The RMSE (Root
Mean Square Error) of AUKF is 0.0125N, while after 20 s, the
RMSE of RAUKF is 0.0032N. Thus, it is evident that the
proposed RAUKF can significantly improve the AUKF accu-
racy for estimation of system noise covariance.

Figure 3 illustrates the estimation errors in terms of force
reconstruction by both AUKF and RAUKF, based on the
estimated system noise covariances as shown in Figure 2. It
is clear that the estimation error of RAUKF is much smaller
than that of AUKF. During the entire simulation time, since
the system noise covariance estimated by AUKF involves
large oscillations (see Figure 2(a)), the resultant estimation
error also involves large oscillations. However, for RAUKF,
the resultant estimation error becomes small and is further
converged after the initial time period of 20 s, following the
trend of the estimated system noise covariance. The maxi-
mum estimation error is 0.0394N for RAUKF, but 0.1853N
for AUKF. The mean estimation error of AUKF is
0.0374N, while that of RAUKF is 0.0053N. The RMSE of
RAUKF is 0.0070N, while that of AUKF is almost nine times
larger, which is 0.0475N. Table 1 summarizes the estimation
errors of both AUKF and RAUKF.

(2) System Noise Covariance Involving Abrupt Changes. In
order to analyse the effect of the weighting factor on system
noise covariance estimation, simulation trials were con-
ducted under the same conditions by RAUKF via both stan-
dard and modified weighting factors for the case of system
noise covariance involving abrupt changes. The input signals
were obtained from the H-C model by adding a white Gauss-

ian noise with zero mean. The noise covariance was set to
0.036N within [0, 36 s] and 0.576N within (36 s, 70 s], lead-
ing to an abrupt change from 0.036N to 0.576N at 36 s.
The initial estimation value was Q̂0 = 0:004N, the window
size was set to m = 14, and the simulation time was 70 s.

Figure 4 shows the system noise covariances estimated by
RAUKF via both standard and modified weighting factors.
Although the estimation results with both weighting factors
follow the reference value of 0.036N within [0, 36 s], the esti-
mation under the standard weighting factor does not follow
the abrupt change from 0.036N to 0.576N at 36 s, leading
to the mean error of 0.372N after 36 s. In contrast, the esti-
mation of system noise covariance under the modified
weighting factor rapidly follows the abrupt change from
0.036N to 0.576N at 36 s, leading to the mean error of
0.0088N after 36 s. This demonstrates that with the modified
weighting factor, RAUKF can accommodate abrupt changes
in system noise covariance.

Figure 5 shows the estimation errors in force reconstruc-
tion based on the estimated system noise covariances as
shown in Figure 4. It can be seen that before 36 s, although
the RAUKF estimation errors via both standard and modi-
fied weighting factors are small and converged to zero, the
one via the modified weighting factor is even smaller and
has a faster convergence speed. However, after 36 s, due to
the biased estimate of the system noise covariance, the
RAUKF estimation error via the standard weighting factor
involves large oscillations, leading to the RMSE of 0.0749N.
In contrast, the RAUKF estimation error via the modified
weighting factor is much smaller and converged to zero, lead-
ing to the RMSE of 0.0046N. This demonstrates that the
modified weighting factor enables RAUKF to account for
abrupt changes in system noise covariance, leading to
improved estimation accuracy. Table 2 summarizes the
RAUKF estimation errors via both standard and modified
weighting factors.

5.1.2. Measurement Noise Covariance Estimation. In order to
evaluate the estimation of measurement noise covariance, it
is assumed that the system noise statistics are exactly known.
Without loss of generality, choose Qk = 1 and EðqkÞ = 0.
Similar to Section 5.1.1., two cases are studied. One is that
the measurement noise covariance is constant or in a small
variation, and the other is that the measurement noise
covariance involves abrupt changes.

(1) Constant or Small-Variation Measurement Noise Covari-
ance. Simulation trials were conducted under the condition
that the measurement noise covariance is constant or has a
small variation by both AUKF and RAUKF.

The input signals were obtained from the H-C
model by adding a white Gaussian noise with zero mean
and the covariance of 0.036N. The initial estimation
value was R̂0 = 0:004N. The window size was set to m = 4.
The simulation time was 70 s. As shown in Figure 6, the esti-
mate of measurement noise covariance by AUKF involves
large oscillations during the entire simulation time, while
the one by RAUKF is very close to the reference value after
15 s. The RMSE of RAUKF is 0.0051N and is almost twice
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smaller than that of AUKF which is 0.0101N. This demon-
strates that the accuracy of RAUKF is significantly higher
than that of AUKF for estimation of measurement noise
covariance.

Figure 7 illustrates the estimation errors in force recon-
struction by both AUKF and RAUKF based on the estimated

measurement noise covariances as shown in Figure 6. It can
be seen clearly that the estimation error of AUKF is much
larger than that of RAUKF during the entire simulation time.
In addition, after 15 s, the estimation error of RAUKF is close
to zero, while that of AUKF is slightly smaller than the initial
estimation error. This is because the estimated measurement
noise covariance by windowing approximation is fluctuated
during the entire simulation time (see Figure 6(a)), while that
by RAUKF is converged to the reference value (see
Figure 6(b)). The RMSE of RAUKF is 0.0286N and is two-
three times smaller than that of AUKF which is 0.0708N.
Further, the maximum and mean estimation errors of AUKF
are about two times larger than those of RAUKF. The maxi-
mum estimation error is 0.2905N for AUKF, while 0.145N
for RAUKF. The mean estimation error is 0.0551N for
AUKF, while 0.0102N for RAUKF. Therefore, the estimation
accuracy of RAUKF is significantly higher than that of
AUKF. Table 3 compares the estimation errors of both
AUKF and RAUKF.

(2) Measurement Noise Covariance Involving Abrupt
Changes. In order to analyse the effect of the weighting factor
on measurement noise covariance estimation, trials were
conducted under the same conditions by RAUKF via both
standard and modified weighting factors for the case of mea-
surement noise covariance involving abrupt changes. The
input signals were obtained from the H-C model by adding
a white Gaussian noise with zero mean. The covariance of
this measurement noise was set to 0.036N within [0, 32 s]
and 0.576N within (32 s, 70s], leading to an abrupt change
at 32 s. The initial estimation value was R̂0 = 0:004N. The
window size was m = 14. The simulation time was 70 s.
Figure 8 shows the system noise covariances estimated by
RAUKF via both standard weighting factor and modified
weighting factor. As shown in Figure 8, the estimations of
measurement noise covariance under both weighting factors
follow the reference value of 0.036N within [0, 32 s].
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Figure 2: Estimations of system noise covariance by both AUKF and RAUKF for the case that system noise covariance is constant or in a
small variation: the estimated system noise covariances are indicated by the blue lines and the reference values by the red lines.
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Figure 3: Estimation errors in force reconstruction by AUKF and
RAUKF corresponding to the estimated system noise covariances
as shown in Figure 2: the estimation error of AUKF is indicated
by the black lines and that of RAUKF by the red lines.

Table 1: Estimation errors of both AUKF and RAUKF for the case
with constant or small-variation system noise covariance.

Error (N) AUKF RAUKF

Mean error 0.0374 0.0053

Max error 0.1853 0.0394

RMSE 0.0475 0.0070
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However, the estimation under the standard weighting factor
does not follow the abrupt change from 0.036N to 0.576N at
32 s, leading to the large mean error of 0.2662N after 32 s. In
contrast, the estimation under the modified weighting factor
follows closely the abrupt change, leading to the mean error
of 0.043N after 32 s.

Figure 9 shows the estimation errors in force reconstruc-
tion based on the estimated measurement noise covariances
as shown in Figure 8. Before the abrupt change at 32 s, both
standard and modified weighting factors result in the similar
estimation error. The mean error is 0.0025N by the standard
weighting factor and 0.0023N by the modified weighting
factor. However, after the abrupt change at 32 s, due to the
biased estimate of the measurement noise covariance, the
use of the standard weighting factor results in a large magni-
tude of oscillations in the estimation error curve, leading to
the RMSE of 0.0907N. In contrast, with the modified weight-
ing factor, the magnitude of oscillations in the estimation
error curve after 32 s is significantly decreased and gradually
converged to zero, leading to the RMSE of 0.0444N. There-
fore, it is proved that with the modified weighting factor,
RAUKF is able to accommodate abrupt changes in measure-
ment noise covariance. Table 4 lists the estimation errors of
RAUKF via both standard and modified weighting factors,
where the mean error and maximum error via the standard
weighting factor are 0.0603N and 0.5493N, while 0.0284N
and 0.2961N via the modified weighting factor.

5.2. Experiments and Analysis. The performance evaluation is
also conducted on two experimental cases in the presence of
abrupt changes. One is robotic-assisted needle insertion in
the presence of rapture events, where the measurement data
was acquired from the literature. The other is the mechanical
indentation in the presence of geometrical discontinuities to
acquire the data of mechanical load and displacement on a
phantom tissue.
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Figure 4: Estimations of system noise covariance by RAUKF with both standard and modified weighting factors for the case that system
noise covariance involves abrupt changes: the estimated system noise covariances are indicated by the red lines and the reference values
by the blue lines.
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Figure 5: Estimation errors in terms of force reconstruction by
RAUKF based on the estimated system noise covariances via both
standard and modified weighting factors as shown in Figure 4: the
estimation error via the standard weighting factor is indicated by
the black lines and the one via the modified weighting factor by
the red lines.

Table 2: RAUKF estimation errors via both standard and modified
weighting factors for the case that system noise covariance involves
abrupt changes.

Error (N) Standard weighting factor Modified weighting factor

Mean error 0.0030 0.0009

Max error 0.4517 0.0389

RMSE 0.0749 0.0046
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5.2.1. Robotic-Assisted Needle Insertion. Trials were con-
ducted to evaluate the performance of the proposed method-
ology for the case of robotic-assisted needle insertion. The
experimental data of force and displacement on biological

soft tissues during the process of needle insertion were
obtained from the literature [28]. The input force profile
involves four peaks at the displacements of around 20mm,
29mm, 32mm, and 36mm (see Figure 10). These peaks
represent the rupture events encountered by the robotic
needle during the insertion process. For comparison analysis,
trials were conducted under the same conditions by UKF,
AUKF, and RAUKF with the modified weighting factor.
The initial state and noise covariance were set as x0 = ½0:1,
0:1, 0:01, 0:0001, 0:0001, 1, 1�, Q0 = 1, and R0 = 1. The
window size for both AUKF and RAUKF was set to m = 4.

Figure 10 shows the reconstructed forces by UKF, AUKF,
and RAUKF, respectively. It can be seen that the UKF estima-
tion results in large errors at the four peaks, where the esti-
mation error at the first peak (at displacement of around
20mm) is most significant, which is 0.738N. An obvious
deviation also remained in the displacement range from
around 40mm to 50mm after the four peaks, leading to the
mean error of 0.068N and the RMSE of 0.15N.

AUKF improves the estimation accuracy of UKF at the
four peaks, leading to the mean error of 0.044N and RMSE
of 0.069N. However, there are still pronounced errors at
and after the four peaks. This is because the estimated noise
covariance by AUKF involves large error as shown in the pre-
vious simulations. In contrast, the reconstructed forces by
RAUKF are very close to the reference values at and after
the four peaks, leading to the mean error of 0.020N and
RMSE of 0.039N. Table 5 lists the mean and maximum
errors as well as RMSEs of the three methods. It can be seen
that although both AUKF and RAUKF outperform UKF,
RAUKF has the smallest estimation errors (the mean error
of 0.020N, maximum error of 0.205N, and RMSE of
0.039N). The mean and maximum errors of RAUKF are
more than three times smaller than those of UKF. The RMSE
of RAUKF is almost four times smaller than that of UKF. The
mean and maximum errors as well as RMSE of RAUKF are
also much smaller than those of AUKF.
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Figure 6: Estimations of measurement noise covariance by AUKF and RAUKF for the case that measurement noise covariance is constant or
small-variation: the estimated measurement noise covariances are indicated by the blue lines and the reference values by the red lines.
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Figure 7: Estimation errors in force reconstruction by AUKF and
RAUKF based on the estimated measurement noise covariances as
shown in Figure 6: the estimation errors of AUKF are indicated by
the black and red lines, respectively.

Table 3: Estimation errors of AUKF and RAUKF for the case with
constant or small-variation measurement noise covariance.

Error (N) AUKF RAUKF

Mean error 0.0551 0.0102

Max error 0.2950 0.1450

RMSE 0.0708 0.0286
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5.2.2. Mechanical Indentation with Geometrical
Discontinuities. Mechanical indentation tests were also
conducted to evaluate the performance of the proposed
methodology for soft tissue characterization in the presence
of geometrical discontinuities. The indentation tests were
conducted on a phantom tissue sample using the DMA
(Dynamic Mechanical Analyser, Seiko Instruments). As
shown in Figure 11, the phantom tissue is made up of silicone
rubbers (Ecoflex 0030), which have the similar characteristics
as human soft tissues [29]. The phantom tissue is of cubic
shape (1 cm × 1 cm × 0:55 cm) to fit into the DMA machine.
An indenter of 1 cm diameter is used to compress the phan-
tom tissue vertically. In order to present geometrical discon-
tinuities, the indenter is controlled to compress the phantom
tissue with a given displacement and then held at the dis-
placement for around 0.9 s. Subsequently, the indenter is
controlled with the maximum speed (1,000,000μm/min) to
increase the displacement by 1mm and then held at the
new displacement for around 0.9 s, with the conduction of
three times. The data of displacement and load were acquired
from the DMA during the compression tests. As shown in
Figure 12, the force profile has three abrupt changes (three
steps) at around 0.9 s. 1.8 s, and 2.7 s, which represent
geometrical discontinuities in robotic-assisted surgery. Trials
were conducted based on measured forces and displacements
under the same conditions by UKF, AUKF, and RAUKF with
the modified weighting factor. The parameter settings for
these methods are the same as that in the previous case of
robotic-assisted needle insertion.

Figure 12 shows the reconstructed forces by UKF, AUKF,
and RAUKF from measured forces and displacements. It can
be seen that the UKF estimation has large estimation errors at
each abrupt change, leading to the maximum error of
0.6341N, mean error of 0.0099N, and RMSE of 0.0157N,
respectively. Comparing to the UKF estimation, the AUKF
estimation follows the reference force curve, without
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Figure 8: Measurement noise covariance estimations by RAUKF via both standard and modified weighting factors for the case that
measurement noise covariance involves abrupt changes: the estimated measurement noise covariances are indicated by the blues lines and
the reference values by the red lines.
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Table 4: Estimation errors of RAUKF via both standard and
modified weighting factors.

Error (N) Standard weighting factor Modified weighting factor

Mean error 0.0603 0.0284

Max error 0.5493 0.2961

RMSE 0.0907 0.0444
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involving a large estimation error. The mean error of AUKF
is 0.0064N, which is smaller than that of UKF. However, due
to large error involved in noise covariance estimation, the
estimation error of AUKF becomes large after around 2 s
with a large peak error at 2.5 s where the input force is chan-
ged abruptly. However, due to the use of recursion, the
estimation of RAUKF closely follows the reference force
curve, especially at the three abrupt changes. Its RMSE is
0.0098N, which is much smaller than those of UKF and

AUKF. Table 6 compares the estimation errors of the three
methods. It can be seen that in addition to the mean error,
the maximum error and RMSE of RAUKF are also much
smaller than those of UKF and AUKF.

6. Conclusions

This paper presents a new methodology for online nonlinear
soft tissue characterization in robotic-assisted surgery. An
adaptive UKF is established based on the nonlinear H-C
model for online estimate soft tissue parameters without
prior knowledge on noise statistics. Based on this, a recursive
adaptive UKF with the modified weighting factor is further
developed to improve the estimation accuracy and
accommodate large variations in noise statistics. Simulation
and experimental results as well as comparison analysis dem-
onstrate that the proposed methodology can effectively esti-
mate soft tissue parameters under system and measurement
noises in both small and large variations, leading to improved
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Figure 10: Forces reconstructed by UKF, AUKF, and RAUKF: the input forces are indicated by the black dashed lines and the reconstructed
forces by the red solid lines.

Table 5: Estimation errors by UKF, AUKF, and RAUKF for the case
of robotic-assisted needle insertion.

Error (N) UKF AUKF RAUKF

Mean error 0.683 0.044 0.020

Maximum error 0.738 0.346 0.205

RMSE 0.150 0.069 0.039
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Phantom
tissue

(a) The indenter and phantom tissue (b) The appearance of DMA

Figure 11: Experimental setup for mechanical indentation on the phantom tissue.
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Figure 12: Reconstructed forces of UKF, AUKF, and RAUKF for the case of mechanical indentation: the input forces are indicated by the
black dashed line and the reconstructed forces by the red solid line.
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accuracy and robustness in comparison with the conven-
tional UKF.

Future work will focus on two aspects. One is to investi-
gate the stability of the proposed methodology, including
the effects of window size and initial state error on the filter-
ing performance. The other is to incorporate the proposed
methodology in robotic control and force feedback for
robotic-assisted minimally invasive surgery. It is expected
that new control strategies will be developed by integrating
the proposed methodology into the control loop for precise
and stable robotic control with force feedback in the presence
of unknown system noises.

Nomenclature

x: System state
xk: Estimated state
xk∣k−1: Predicted state
xik: ith sigma point of estimated state
xik∣k−1: ith sigma point transformed by system function
x̂k: Real state
yk∣k−1: Predicted measurement
yk: Measurement
qk: System noise
Qk: System noise covariance
rk: Measurement noise
Rk: Measurement noise covariance
Pk: Estimated state covariance
Pk∣k−1: Predicted state covariance
~Pk∣k−1: Predicted state covariance in theory
Pyk∣k−1

: Predicted measurement covariance
~Pyk∣k−1

: Predicted measurement covariance in theory

Pxk∣k−1yk∣k−1
: Crosscovariance of predicted state and
measurement

Kk: Kalman gain
Φ: Adaptive scaling factor for system noise covari-

ance estimation
Γ: Adaptive scaling factor for measurement noise

covariance estimation
N : Dimension of state
a: Tuning parameter
Δt: Time step
Fk: Interaction force
Kk: Stiffness coefficient
Bk: Damping coefficient
dk: Displacement
_dk: Velocity
pk: Power of velocity

nk: Power of displacement
m: Size of window
Jk: Number of time points
Ck: Weighting factor
CR
k : Modified weighting factor

kr : Time point when abrupt changes occur
b: Parameter for modified weighting factor
Zk: Innovation vector
Eð·Þ: Expectation
f ð·Þ: System function
Hk: Measurement matrix
gð·Þ: Unit step function
N: Newton.
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