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Breathing and heartbeat are critical vital signs which reflect the health status of human beings. Aiming to accurately measure the
vital sign in short time window, a novel signal processing method for Doppler radar vital sign detection is proposed. Firstly, a two-
step I/Q mismatch correction method which, respectively, estimates the time invariant phase imbalance and gain ratio of I/Q
channels in the calibration step and the direct-current offsets during normal operation has been proposed. By decreasing the
number of estimation parameters from 5 to 2, the parameters can be effectively estimated with data distributed over shorter
arc lengths. Then, to solve the discontinuity occurred in arctangent demodulation, the displacement information of chest
movement is extracted from the calibrated I/Q signals by extended differentiate and cross multiply algorithm. Finally, instead
of Fourier transform-based methods which require long time windows to guarantee sufficient frequency resolution, the optimal
parameters of respiration and heartbeat are found by the intelligent search of the differential evolution algorithm. The
experimental results show that the proposed method can accurately measure respiratory rate and heartbeat rate with a short
time window. For the 8 s time window, the mean absolute errors of respiration and heartbeat were 0.52 bpm and 0.79 bpm,
respectively, demonstrating its promise in real-time applications.

1. Introduction

Breathing and heartbeat are important vital signs as well as
key indicators of health condition, sleep quality [1–3], etc.
Most physiological diseases and physical abnormalities usu-
ally lead to changes in respiration and heartbeat. Therefore,
continuous and accurate monitoring of respiration and
heartbeat in daily life is very critical for early diagnosis of
disease.

Polysomnography (PSG) [4] is the primary clinical tool
for monitoring respiration and heartbeat. However, PSG is
usually limited to clinical usage due to the professional
installation of electrodes and expensive monitors. Sensors
such as thermistor [5], magnetometer [6], accelerometer [7,
8], and gyroscope [9] have also been utilized to provide
ubiquitous low-cost vital sign monitoring by detecting the
temperature change in the nasal cavity [5] or the chest wall
motion [6–9]. However, these sensors need to be in close
contact with the human body, which will inevitably cause

discomfort. In order to avoid the discomfort, some noncon-
tact approaches using the monocular camera [10], the depth
camera [11], the received signal strength of ZigBee [12], the
channel state information of Wi-Fi [13], the ultrawideband
(UWB) radar [14], and the continuous wave (CW) Doppler
radar [15–17] have been proposed. Among them, the con-
tinuous wave Doppler radar working at higher frequency
has attracted the attention of researchers due to its merits
of high sensitivity, antijamming performance, and simple
radio frequency circuit structure.

The signal processing of Doppler radar-based vital sign
detection is regarded as a baseband phase demodulation
problem [18]. Small angle approximation method [19] can
be used to extract vital signs when the amplitude of chest
movement is much smaller than the carrier wavelength of
radar. However, for high frequency radar with short wave-
length, the problems of null detection [19] and small-angle
limitation [20] are inevitable. The complex signal demodula-
tion technique [21, 22] was proposed for solving the null
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detection problem reliably with a quadrature receiver. How-
ever, the measurement of heartbeat can be easily affected by
the interference of respiration. To reduce the interference of
respiratory harmonics, a long time window is required to
obtain a sufficient frequency spectrum solution [23]. To over-
come the limitation of small angle approximation, the arctan-
gent demodulation [24, 25] was proposed. However, it relies
on accurate direct-current offset compensation and quadra-
ture channel imbalance elimination. Besides, the extended dif-
ferentiate and cross multiply algorithm was proposed [26] to
solve the phase entanglement problem in arctangent demodu-
lation. The abovementioned methods usually use fast Fourier
transform (FFT) to extract the frequency of breathing and
heartbeat. However, as the frequency resolution of FFT is
inversely proportional to the time window, the time window
must be increased to improve the measurement accuracy,
which leads to the degradation of real-time performance.

In order to avoid the frequency resolution problem of
FFT and improve the real-time performance, we propose a
novel signal processing method for Doppler radar vital sign
detection. The main contribution of this paper is as follows.

(1) To effectively estimate and compensate the radar
imbalance from data distributed over short arc
length, a two-step correction method has been pro-
posed. Since the phase imbalance and the gain ratio
of I/Q channels are time invariant, we only estimate
them in the calibration step and treat them as con-
stants in normal operation. As a result, only direct-
current offsets of I/Q channels need to be estimated
in normal operation, which effectively reduce the
requirement of arc length

(2) To accurately measure vital signs with data in short
time window, the phase demodulation is regarded
as a parameter optimization problem, and the vital
sign parameters which best fit the displacement of
chest movement extracted from the calibrated I/Q
signals can be estimated by the differential evolution
algorithm. Therefore, the frequency resolution prob-
lem of FFT-based methods [21, 27] can be avoided,
and the respiratory and heartbeat parameters can
be accurately estimated with limited data of short
time window

(3) We conducted extensive experiments in real envi-
ronments and compared them with state-of-the-arts
to evaluate the performance of the proposed method.
The experimental results show that the proposed
approach can achieve accurate and robust vital sign
measurement with a limited data length from 24GHz
Doppler radar

The rest of the paper is organized as follows. Section 2
describes the I/Q mismatch correction and displacement sig-
nal extraction method in detail. In Section 3, the respiratory
and heartbeat parameter extraction method based on the
differential evolution algorithm is presented. The experi-
ments and results are given in Section 4, and Section 5 con-
cludes the work.

2. Signal Preprocessing

2.1. I/Q Mismatch Correction. Ideally, the locus of error-free
measurements from the I/Q channels of Doppler radar is a
circle centered at the origin. However, the shape of an ideal
circle can be easily altered by errors in practice [28].

I tð Þ = AI × cos 4πx tð Þ
λ

+ θ

� �
+ DCI ,

Q tð Þ = AQ × sin 4πx tð Þ
λ

+ θ + ϕ tð Þ
� �

+ DCQ,
ð1Þ

where θ = 4πd0/λ + θ0 is a constant phase shift determined
by the initial phase shift θ0 and the distance d0 between
the radar and the target object. AI and AQ are the ampli-
tude of two orthogonal output signals. xðtÞ is the chest
wall displacement due to respiration and heartbeat. λ is
the carrier wavelength. DCI and DCQ are the direct-
current offsets in I/Q channels. ϕðtÞ is the total residual
phase error.

In order to observe the variation of radar error param-
eters, the hardware-in-the-loop simulation setup shown in
Figure 1 is developed to simulate chest wall movement
and collect I/Q signals of Doppler radar. Table 1 describes
the simulation setup’s components. A carton with a size of
10 cm × 10 cm is installed on the sliding table to provide a
reflective surface. The sliding table is driven by a stepper
motor that is controlled by a microcontroller simulating
the chest wall movement. To improve the accuracy of
parameter estimation, the displacement of the sliding table
is set to ±6mm to make the collected data distributed on
the whole ellipse. Different obstructions such as box, glass,
and cloth are placed between the radar and the measured
object. A set of radar parameters are estimated by the least
square-based ellipse fitting algorithm [29–31] from col-
lected data of I/Q signals under different distances and
obstructions. As can be seen from Table 2, the direct-
current offsets and the amplitudes vary greatly with

Radar

Sliding table

Stepper motor

Stepper motor driver

Figure 1: Experimental setup for mechanical motion detection.
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distances and obstructions, while the total residual phase
error and the ratio of amplitudes remain nearly unchanged.
In order to reduce the number of parameters to be esti-
mated, a two-step I/Q mismatch correction method, which
estimates the invariant parameters in the calibration step
and the variant parameters during normal operation, is
proposed.

The calibration step only needs to be performed once
before the normal operation. The least-based ellipse fitting
algorithm [29] is used to estimate the 5 parameters with suf-
ficient data. Then, the time invariant parameters ϕ and AI /
AQ can be obtained and finally used for I/Q mismatch cor-
rection during the normal operation.

Equation (1) can be expressed as

I −DCIð Þ2
A2
I

+ Q −DCQ

AQ cos ϕ −
I −DCIð Þ sin ϕ

AI cos ϕ

� �2
= 1: ð2Þ

Substituting the initial values I0, Q0 of the I/Q signals
collected by radar in Equation (2), we yield

I0 −DCIð Þ2
A2
I

+ Q0 −DCQ

AQ cos ϕ −
I0 −DCIð Þ sin ϕ

AI cos ϕ

� �2
= 1: ð3Þ

By subtracting (3) from (2), we obtain

y = a × c,

y = I2 − I20
� �

+ A2
I

A2
Q

Q2 −Q2
0

� �
−
2AI

AQ
sin ϕ IQ − I0Q0ð Þ,

a = 2 I − I0ð Þ2 Q −Q0ð Þ½ �,

c =
DCI −

AI

AQ
sin ϕDCQ

A2
I

A2
Q

DCQ −
AI

AQ
sin ϕDCI

2
6664

3
7775:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4Þ

Note that ϕ and AI / AQ are the invariant parameters esti-
mated in the calibration step. According to Equation (4), the
standard recursive least square algorithm can be applied to esti-
mate parameter c from I/Q signals, and then, DCI and DCQ

can be calculated. Finally, the radar signals can be calibrated
by substituting DCI , DCI , AI / AQ, and ϕ in Equation (1)

Ic tð Þ = AI × cos 4πx tð Þ
λ

+ θ

� �
= I tð Þ −DCI ,

Qc tð Þ = AQ × sin 4πx tð Þ
λ

+ θ

� �
= Q tð Þ −DCQ − AI/AQ

� �
Ic tð Þ sin ϕ tð Þ

cos ϕ tð Þ :

ð5Þ

Table 1: Description of the simulation setup’s components.

Component Model Description

Radar K-LC5 24GHz Doppler radar transceiver with I/Q IF outputs

Sliding table SGX1204-100
Ball screw rail sliding table with screw diameter of 12mm, screw pitch of 4mm,

and maximum movement distance of 100mm

Stepper motor BS57HB76-03
Two phase stepper motor with step angle of 1.8°, torque of 1.5Nm, and maximum

speed of 600 rpm

Stepper motor driver DM542 Pulse controlled stepper motor driver

Microcontroller STM32F405 168MHz cortex-M4 CPU with FPU

Power supply AC-DC power +24V 6.75A

Table 2: Calibration parameters of I/Q signals.

Distances Obstructions DCI (10
6) DCQ (105) AI (10

5) AQ(10
5) AI / AQ ϕ radð Þ

20 No 1.77 -4.30 0.91 0.71 1.29 -0.36

40 No 1.77 -4.27 0.92 0.69 1.33 -0.32

60 No 1.72 -3.87 0.93 0.73 1.28 -0.40

80 No 1.40 -8.38 3.46 2.76 1.26 -0.40

100 No 1.85 -5.29 3.52 2.90 1.21 -0.33

20 Box 1.76 -1.35 2.04 1.58 1.29 -0.34

40 Box 1.71 -5.93 2.00 1.52 1.31 -0.30

60 Glass 1.82 -4.73 2.01 1.58 1.28 -0.37

80 Glass 1.72 -3.69 0.54 0.39 1.36 -0.28

100 Cloth 1.52 -5.06 0.27 0.21 1.28 -0.31
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Figure 2 shows the raw and calibrated I/Q signals of radar.
As can be seen from Figure 2, the proposed two-step correction
method can effectively correct the distorted ellipse into a stan-
dard ellipse with center at the origin.

2.2. Displacement Signal Extraction. To solve the discontinu-
ity occurred in the arctangent function when the demodula-
tion exceeds the native codomain range of (-π/2, π/2), the
extended differentiate and cross multiply algorithm [26] is
adopted for the demodulation of absolute displacement.

The derivative of the displacement information _xðtÞ can be
expressed as

_x tð Þ = λ

4π
d
dt

arctan AIQ
c tð Þ

AQI
c tð Þ

� �

= λ

4π
Ic tð Þ _Qc tð Þ − _Ic tð ÞQc tð Þ

AQ/AI

� �
Ic tð Þ2 + AI/AQ

� �
Qc tð Þ2 ,

ð6Þ

where _IcðtÞ and _QcðtÞ are the time derivative of IcðtÞ andQcðtÞ.
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Figure 2: Plan view of I/Q signals after correction: (a) raw I/Q signals; (b) the I/Q signals after eliminating the direct-current offsets and
phase error.
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Figure 3: Flow chart of the differential evolution algorithm.
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Figure 5: The overall structure of the experimental setup.

Table 3: Displacement MAE under different arc lengths.

Amplitude Central angle
MAE (percentage of error in displacement)

The proposed method Ellipse fitting algorithm

3mm 1.92π 0.3049mm (5.08%) 0.3891mm (6.49%)

2.5mm 1.6π 0.2044mm (4.09%) 0.2938mm (5.88%)

2mm 1.28π 0.1944mm (4.86%) 0.1955mm (4.89%)

1.5mm 0.96π 0.1502mm (5.01%) 0.3293mm (10.98%)

1mm 0.64π 0.0827mm (4.14%) 0.1902mm (9.51%)

0.5mm 0.32π 0.1008mm (11.08%) 2.5702mm (257.02%)
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Figure 7: The MAE of estimated respiratory and heartbeat rate with different population sizes and numbers of iterations: (a) the MAE with
different population sizes (the number of iterations is set to 100); (b) the MAE with the different numbers of iterations (the population size is
set to 80).

Table 4: The parameters for experiments in a controlled environment.

Data mr (mm) f r (bpm) φr (
°) mh (mm) f h (mm) φh (°)

1 1 12 0 0.1 60 10

2 2 12 0 0.2 60 10

3 3 18 0 0.3 72 20

4 4 24 0 0.4 84 30

5 5 30 0 0.5 96 40

6 6 36 0 0.6 108 50
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respectively): (a) respiratory rate; (b) heartbeat rate.
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Figure 9: The mean absolute errors (MAE) of different time windows in controlled environment experiments: (a) the MAE of respiratory
rate; (b) the MAE of heartbeat rate.
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In the digital field, the integration is replaced with accu-
mulation. Hence, the displacement information xðtÞ can be
rewritten in the discrete form

x n½ � = 〠
n

k=2
_x k�Δt½ �f g

= λ

4π〠
n

k=2

Ic n½ � Qc n½ � −Qc n − 1½ �ð Þ −Qc n½ � Ic n½ � − Ic n − 1½ �ð Þ
AQ/AI

� �
Ic n½ �2 + AI/AQ

� �
Qc n½ �2 :

ð7Þ

3. Respiratory and Heartbeat
Parameter Extraction

The chest wall displacement xðtÞ caused by respiration
and heartbeat can be modeled as sinusoids with ampli-
tudes mr and mh, frequencies f r and f h, and initial phases
φr and φh [32].

x tð Þ =mr sin 2πf rt + φrð Þ +mh sin 2πf ht + φhð Þ, ð8Þ
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Figure 10: The mean absolute errors (MAE) under different amplitudes of respiration and heartbeat: (a) the MAE of respiratory rate; (b) the
MAE of heartbeat rate.
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where subscripts r and h indicate the corresponding
parameters of respiration and heartbeat, respectively.
Instead of FFT [33], we directly estimate the frequencies
by a swarm intelligence algorithm to reduce the size of
time windows.

As the chest wall displacement xðtÞ can be computed by
Equation (7) from the calibrated I/Q signals, we can find
the most matched parameters mr , f r , φr , mh, f h, and φh
by solving

min 1
n
〠
n

i=1
x ið Þ −mr sin 2πf rt + φrð Þ −mh sin 2πf ht + φhð Þj j

 !
,

ð9Þ

where xðiÞ, i = 1, 2,⋯, n represents the displacement calcu-
lated in the ith I/Q signals.

We choose the differential evolution algorithm [34] to
solve this nonlinear optimization problem. The differential
evolution algorithm shown in Figure 3 is a very simple yet
fairly powerful stochastic global optimizer for continuous
search domain. Practically, the parameters of respiration
and heartbeat can be set up within a reasonable range for
the purpose of improving the speed optimization and reduc-
ing the calculation amount. In this paper, the amplitude, fre-
quency, and phase range of respiration and heartbeat are set
between [0mm 0.2Hz −π 0mm 1Hz −π] and [6mm 0.8Hz
π 0.8mm 2Hz π]. As discussed in Section 4.3, the optimal
population size and the number of iterations are set as 80
and 100, respectively.

To sum up, the proposed vital sign extraction method
can be implemented with the following four steps.

(1) Collect the orthogonal output signals IðtÞ and QðtÞ
detected by Doppler radar

(2) Use the proposed correction method shown in Sec-
tion 2.1 to remove phase imbalance, direct-current
offsets, and gain error of I/Q signals

(3) Obtain the chest wall displacement information by
the extended differentiate and cross multiply method
shown in Section 2.2

(4) Estimate the parameters of respiration and heartbeat
by the differential evolution algorithm

Figure 4 shows the comparison of the displacement
extracted from radar outputs and the displacement recon-
structed using the vital sign parameters estimated by the dif-
ferential evolution algorithm. As can be seen from Figure 4,
the reconstructed displacement is in good agreement with
the reference, demonstrating the effectiveness of the pro-
posed algorithm.

4. Experiments and Results

4.1. Experimental Setup and Methodology. To verify the
effectiveness of the proposed algorithm, extensive experi-
ments have been conducted in both controlled and real envi-
ronments. Figure 5 shows the structure of the experimental

setup. The amplified signals of radar are sampled by a
microcontroller controlled 24 bit analog-to-digital converter
with a sampling frequency of 50Hz. The negative tempera-
ture coefficient (NTC) resistor installing in the breathing
valve of mask provides the reference frequency of respiration
by sensing the temperature change caused by exhaling hot
airflow and inhaling cool airflow during respiration, and
the pulse sensor provides the reference frequency of heart-
beat by sensing the light transmittance change caused by
heartbeat. Besides, the microcontroller also controls the
movement of sliding table by using the stepper motor driver.
All relevant data is sent to the PC via USB interface and
processed by MATLAB R2018a.

We compare the proposed method with the complex
signal demodulation method [21], the extended differenti-
ate and cross multiply FFT method [27], and the parame-
terized demodulation method [32]. The complex signal
demodulation method [21] combines the signals of I/Q
channels into complex signals and performs spectrum anal-
ysis through FFT to obtain the frequencies of respiration
and heartbeat. The extended differentiate and cross multi-
ply FFT method [27] extracts displacement information
from radar outputs and estimates frequencies using FFT.
The parameterized demodulation method [32] defines a
demodulation operator to obtain a high spectrum energy
concentration and addresses the phase demodulation prob-
lem as a parameter optimization problem. Therefore, the
frequency resolution problem can be avoided. In the follow-
ing figures, we use CSD, DACM, and PD as abbreviations
of the above methods.

4.2. Verification of I/Q Mismatch Correction. To verify the
proposed correction method, we compare the estimated dis-
placement from Equation (7) with the reference displace-
ment of the object on the sliding table in the simulation
setup. The amplitude and frequency of the slide movement
are set to 0.5-3mm and 0.3Hz, respectively. Table 3 shows
the mean absolute errors (MAE) of estimated displacement
under different arc lengths. As the arc length of the ellipse
decreases with the amplitude of movements, the estimation
of ellipse parameters becomes difficult due to insufficient
data incentive. As shown in Table 3, the performance of
the least square-based ellipse fitting algorithm [29] is seri-
ously affected by the reduction of arc length, while the

Radar

Wireless wearable respirator

Finger pulse sensor

Figure 11: Experimental setup for vital sign detection.
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proposed two-step correction algorithm is slightly affected.
As shown in Figure 6, the proposed algorithm can accurately
estimate the displacement of a moving object, even if the
amplitude is 0.5mm. However, the least square-based ellipse
fitting algorithm [29] fails to estimate the displacement due
to incorrect parameter estimation of an ellipse. The above
results show that the proposed algorithm can accurately esti-
mate the parameters of an ellipse with very short arc length
and therefore is more suitable for the detection of slight
breathing.

4.3. Determination of Differential Evolution Parameters. The
population size and number of iterations are the key param-
eters affecting the accuracy and computational complexity of
a differential evolution algorithm. A larger population size
and a larger number of iterations help to reduce error but
also increase computational complexity. Figure 7 shows the

mean absolute errors (MAE) of estimated respiratory and
heartbeat frequencies with different population sizes and
numbers of iterations. It can be clearly seen that the errors
decrease with the increase of population size and the num-
ber of iterations. Finally, the population size and the number
of iterations are determined as 80 and 100, respectively, after
which the downward gradients of errors have become very
small.

4.4. Experiments in Controlled Environments. During the
experiments in a controlled environment, the sliding table
simulates the thoracic motion according to the movement
mode given by Equation (8) and the parameters shown in
Table 4. Figure 8 shows the estimated respiratory rate and
heartbeat rate from data 3. The real respiratory and heart-
beat frequencies are fixed at 18 bpm and 72 bpm, respec-
tively. We then use a short time window of 16 s to increase
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Figure 12: The chest wall displacement extracted from the 24GHz Doppler radar and the reference signals: (a) the resistance change of the
NTC resistor caused by respiration; (b) the voltage change of the pulse sensor caused by heartbeat.
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the sensitivity. Since the frequency resolution of FFT is
inversely proportional to the time window (1/16 s = 3:75
bpm), the respiratory and heartbeat frequencies estimated
by the complex signal demodulation and the extended differ-
entiate and cross multiply methods are 18.75 (5 × 3:75) bpm
and 75 (20 × 3:75) bpm, respectively. Therefore, the estima-
tion results of these two methods are far away from the real
values. To improve measurement accuracy, the time window
needs to be increased. But this reduces the real-time perfor-
mance. While the frequency resolution of the parameterized
demodulation method [32] and our proposed differential
evolution (DE) method do not depend on the time window

size, both methods can accurately extract the frequency
information of respiration and heartbeat with a limited time
window.

Figure 9 shows the influence of time window size on the
mean absolute errors (MAE) of each method for data 1-6.
Due to the large amplitude of chest motion caused by respi-
ration, the estimated errors of respiratory rate are smaller
than those of heartbeat rate. With the decrease of time
window, the accuracy of FFT-based methods [21, 27]
decreases dramatically. The parameterized demodulation
method (PD) [32] and the proposed differential evolution
method (DE) are only slightly affected. Our proposed
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Figure 13: The extracted vital signs of different methods in real environments (the sliding window and the step size are 16 s and 1 s,
respectively): (a) respiratory rate; (b) heartbeat rate.
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method performs better than the parameterized method on
all time windows. Figure 10 shows the influence of ampli-
tudes (mr and mh) on the MAE of each method. The time
window is 8 s, corresponding to the frequency resolution of
7.5 bpm for FFT. Hence, for respiratory rate of 30 bpm, the
respiratory errors of the FFT-based method [21, 27] are 0.
As can be seen from Figure 10, the proposed differential evo-
lution method is not affected by the amplitudes of respira-
tion and heartbeat. Its MAEs of respiratory rate and
heartbeat rate for mr = 1mm and mh = 0:1mm (data 1) are
only 0.04 bpm and 0.32 bpm. As a comparison, the MAEs
of parameterized demodulation method are 0.46 bpm and
0.48 bpm, respectively. Therefore, the proposed differential
evolution method is more suitable for detecting slight
breathing.

4.5. Experiments in Real Environments. As shown in
Figure 11, during the experiments in real environments, a
subject seated still in a chair and breathed naturally with
her chest facing the antennas. At the same time, the subject
wore the mask with NTC resistor and the finger pulse sensor
shown in Figure 5 to measure the reference signals of respi-
ration and heartbeat, respectively. Figure 12 shows the com-
parison between the signals measured by the NTC resistor,
the pulse sensor, and the displacement demodulated from
the 24GHz Doppler radar. By performing peak-seeking
operations on the above signals, the reference frequencies
of respiration and heartbeat can be obtained.

Figure 13 shows the respiratory rate and the heartbeat
rate obtained from the above vital sign extraction algo-
rithms. The obtained parameters are estimated with data
from a certain time window. A smaller time window can
better reflect the changes in respiratory and heartbeat

parameters and improve the real-time performance of the
algorithm. In this paper, an overlapping sliding window
with a window size of 16 s and a shift interval of 1 s was
adopted to estimate the parameters. The total time length
of the estimated parameters is 60 s. The reference is the aver-
age value of respiratory rate and heartbeat rate obtained in
the time window of 16 s. It should be noted that the frequency
resolution of FFT corresponding to the time window of 16 s is
3.75 bpm, which makes the results of the complex signal
demodulation [21] and the extended differentiate and cross
multiply methods [27] far away from the reference and fluc-
tuate greatly. The parameterized demodulation algorithm
[32] and the proposed differential evolution algorithm are
not affected by the problem. The errors of the proposed dif-
ferential evolution method (MAE = 0:31bpm and 0.43 bpm
for respiration and heartbeat) are smaller than those of
parameterized demodulation method (MAE = 0:35 bpm
and 0.68 bpm for respiration and heartbeat). As shown in
Figure 14, the accuracy of the proposed differential evolution
algorithm is also better than other algorithms in different
time windows, especially in the case of short time window.
These results show that the proposed differential evolution
method is more suitable for real-time monitoring of vital
signs in short time window.

5. Conclusions

In this paper, we proposed a novel vital sign signal extrac-
tion algorithm to accurately extract the respiratory and
heartbeat parameters in short time window. The proposed
method firstly corrects the I/Q signals according to the pro-
posed two-step I/Q mismatch correction method. Then, the
chest wall displacement can be obtained by the extended

4 8 16

Time window size (s)

0

1

2

3

4

5

6

7

M
A

E 
of

 re
sp

ira
to

ry
 (b

pm
)

1.00

6.98

0.76

6.98

0.52 0.54

1.932.23

0.310.35

1.29 1.22

(a)

4 8 16

Time window size (s)

0

1

2

3

4

5

6

7

8

9

M
A

E 
of

 h
ea

rt
be

at
 ra

te
 (b

pm
)

DE
PD (31)

CSD (21)
DACM FFT (34)

1.00

2.47

8.64 8.54

0.79

1.56

4.90

5.84

0.43
0.68

3.69

5.05

(b)
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differentiate and cross multiply method. Finally, the differ-
ential evolution method is used to estimate the parameters
of respiration and heartbeat. The comprehensive experi-
mental results demonstrate that the proposed method has
higher accuracy than other existing vital sign extraction
algorithms in Doppler radar vital sign detection, especially
in the case of short time window. Our future work will
focus on sleep stage detection based on these measured vital
signs and machine learning.
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