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Indoor localization as a technique for assisting, or replacing outdoor satellite and cell tower localization systems, has taken a toll in
the recent Internet of Things (IoT) era. This IoT drive has prompted increased research towards indoor localization, where
fingerprinting, radio mapping as a cost-effective and efficient scheme, is emerging as the best enterprise entrepreneurs choose.
However, indoor complex environments comprise of trackable devices (TD) at various heights, such as child trackers, dog tags,
TD on the table, TD’s in the pockets, and situations such as pedestrians talking on the phone: that is at the height of the ear,
amongst others. This paper first investigates and analyses “experimentally” the impact of received signal strength indicator
(RSSI) fingerprinting height to construct radio maps for indoor localization. Secondly, it proposes the novel trapezoid path loss
model for RSSI estimation and finally the nearest neighbour trapezoid (NNT) algorithm for IoT smart indoor localization
leveraging and mitigating the impact of height considered during the offline signal fingerprinting. We further propose
approximately 1 meter above the flooring of the target space as the effective fingerprinting height for indoor localization
approaches.

1. Introduction

Realization of Internet of Things (IoT) technology in recent
years for smart cities, smart homes, and integrated govern-
ment infrastructure services have raised the applicability of
location-based services (LBS). Localization fingerprinting in
complex Wi-Fi indoor environments as a technique to
achieve precise indoor positioning has attracted affordable
and reliable accuracy ever since the introduction of the
RADAR [1, 2] and Horus indoor localization systems [3].
Indoor localization usage covers a wide range of aspects, such
as emergency response [4], location-based targeted advertis-
ing [5, 6], indoor robotics navigation [7], and capability that
falls short to outdoor satellite navigation systems indoors due
to signal fluctuations within complex indoor environments
[8]. Indoor positioning technologies such as Bluetooth [9],
ultra-wideband [10], radiofrequency technologies [11],
microelectromechanical systems [12], wireless local area net-

works [13], computer vision [14], magnetic field [15], ultra-
sonic [16], and infrared signal have been proposed [17].

In this paper, we first experimentally evaluate, test, and
analyse the effect of fingerprinting height to indoor localiza-
tion accuracy using machine learning nearest neighbour in
signal space approaches such as nearest neighbour (NN)
and k-nearest neighbour (KNN) algorithms with various
radio maps constructed at different heights. The KNN algo-
rithms return the location estimate as the average of the coor-
dinates of the k neighbours corresponding to the smallest
RSS distances to the query RSSI values [2]. Then, we propose
and test the performance of the trapezoid path loss model to
estimate the RSSI and the trapezoid nearest neighbour algo-
rithm to accurately estimate the mobile location with mini-
mal distance error. Experimental results show better
localization accuracy performance by the proposed trapezoid
signal distance model than the Euclidean distance deploying
the proposed NNT algorithm than the native NN algorithm.
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The contributions of this paper can be summarized as
follows:

(1) The proposed system deploys the RSSI-based
approach, which requires no additional hardware
and easily implemented on/off the shelf mobile
devices equipped with the 802.11 family chipsets.
Other than relaying of the internal inertia sensors,
our proposed technique utilizes the received RSSI to
estimate the height of the trackable device

(2) We propose trapezoid signal distance, instead of the
Euclidean distance of the received RSSI signal and
the fingerprint, as the evaluation function that proves
better positioning accuracy

(3) We propose a novel trapezoid model for signal pre-
diction in free space based on proposed trapezoid sig-
nal distance other than the log distance model

(4) We propose the nearest neighbour trapezoid algo-
rithm (NNT) for indoor complex fingerprinting
localization. Furthermore, we state that the proposed
model can be used in any other location system. It
provided better and robust localization

Indoor localization systems are discussed in Section 2.
Empirical fingerprint construction is presented in Section 3.
In Section 4, we describe our proposed trapezoid construc-
tion process, the trapezoid path loss model, and the localiza-
tion algorithm. Section 5 presents the experimental
evaluation. Finally, Section 6 concludes this paper.

2. Related Works

Indoor localization research has seen a great deal of interest
over the decade cutting across various architectures. Several
solutions have been proposed by multinational industries
and researchers, some requiring dedicated infrastructures
such as infrared [18], ultrasound [19], and radiofrequency
identification (RFID) [20, 21], thus increasing the cost of
deployment. However, RFID emerging techniques to resolve
collision detections, such as the enhanced collision detection
(ECD) [22], can improve identification rate, time, and slot
efficiencies at low cost, whereas some solutions leverage
already existing sensor infrastructures, such as Bluetooth [9,
23], frequency modulation (FM) [24], GSM cellular [25],
and wireless fidelity (Wi-Fi) signal strengths [2, 3, 26, 27].
They deploy techniques such as the angle-of-arrival (AoA)
leveraging the angle of incidence of the received signal vec-
tors [28], time-difference-of-arrival (TDOA), the time-of-
flight (TOF) [29] leveraging the arrival time sequence to
measure the delay of the signal, and signal strength finger-
printing. Fingerprint techniques map indoor propagated sig-
nals to a specific reference point, without the need to know
the transceiver’s location and transmit power, as opposed to
techniques that rely on building signal propagation models
for localization.

WLAN indoor localization system based on fingerprint-
ing comprises of basic two stages. The first stage is radio

map construction during the offline surveying stage: During
this stage, site survey calibration is carried out to obtain spe-
cific reference points at which RSSI sample vectors are sam-
pled at a predetermined height and then saved in the
localization server. The second stage is the localization query
stage: During this stage, sensor device queried fingerprint
vectors at unknown locations are compared to fingerprints
in the radio map database in the localization server and then
returns the corresponding location estimate that minimizes
the mean errors in accordance to the localization algorithms’
criterion. Indoor complex environments comprise devices
tractable at different heights, such as child trackers, dog tags,
mobile devices on the table or in pockets, and pedestrians on
phone talking, amongst other height orientations. These
diverse height orientations would have an impact on RSSI
signal fluctuations; thus, different localization accuracy esti-
mation results during online localization; this is because in
most cases offline fingerprints are sampled and constructed
at a specific height. This paper, therefore, presents an in-
depth experimental evaluation to validate this height effect,
proposes a novel trapezoid path loss model, and finally pro-
poses novel trapezoid nearest neighbour localization
approach.

3. Fingerprint Localization

The fingerprint-based localization process consists of offline
data collection, radio map construction phase, and online
localization estimation phase. Offline construction of the
radio map is initialized by the site survey, with grid formation
calibrating of the target indoor environment. At each cali-
brated reference point (RP), we use a prerequisite Wi-Fi
enabled tractable device (TD) to scan and sample the
received signal strength indicator (RSSI) value from hearable
transmitter access points (APs) in a predefined time stamp.
When a discoverable number of APs are less than 3, the fin-
gerprint signature at that specific RP point is not viable for
complex indoor localization environments; thus, the finger-
print surveyor should take note of the AP population within
the target environment signal coverage.

Let N be the number of RPs and L be the total number of
APs deployed in the signal coverage target floor. We denote
the RSSI value formAP l at RP i as f li (dBm).We sample mul-
tiple random fingerprint signals at each predefined RP and

then averaged the signal values to find the mean RSSI �f
l
i at

each RP i from AP l denoted as

�f li =
1
Sli
〠
Sli

s=1
f li sð Þ, i = 1,⋯,N:l = 1,⋯, L ð1Þ

where f liðsÞ is the sth RSSI sample (in dBm) at RP i from AP l,
and Sli is the total number of RSSI samples collected within
the predefined time stamp. Then, the fingerprint at RP i is
defined as

Fi = �f
1
i , �f

2
i ,⋯, �f Li

h i
: ð2Þ
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Forming an interactive radio map matrix as

Ψ =

�f
1
1 ⋯ �f

L
1

⋮ ⋱ ⋮
�f
1
N ⋯ �f

L
N

0BB@
1CCA: ð3Þ

Secondly, for each predefined time stamp, we calculate
the mean and standard deviation of the RSSI per AP to store
in a radio map at the back end of the server. Let σln (dBm) be
the corresponding standard deviation of Sln collected RSSIs.

Similarly, given the online query target measured RSSI Rl

from AP l, the RSSI vector at the target, denoted as ϑ, can be
defined as

ϑ = R1, R2,⋯, RL� �
: ð4Þ

During the data processing, to differentiate the RSSI
values within indoor environment, mW, instead of dBm, is
used when we consider the random signal level mean, i.e.,

�f
l
i

���
mW

= 10 �f
l
i

��
dBm

� �
/10, ð5Þ

which transforms RSSIs from smartphones to values for bet-
ter signal differentiation. Correspondingly, we also transform
RSSI values tl′s in ϑ from dBm into mW.

4. NNT Algorithm

As IoT indoor environments are comprised of localization of
persons of interest and transceivers at diverse heights, we
propose a novel approach to solve the disparity of the pair-
wise cluster of the fingerprint RSSI and receiver RSSI by the
trapezoidal area between the fingerprint perpendicular
heights. Assuming a transceiver Tx at height H1 on ðx0, y0
Þ coordinate location in the equal space calibrated indoor
space, fingerprint Fp at height H2 on ðx1, y1Þ coordinate
and receiver Rx at a height H3 on ðx2, y2Þ coordinate, as
shown in Figure 1 and the two-dimensional distance rela-
tionship in Figure 2.

In order to measure the degree of neighbour’s closeness at
varying heights, we propose minimizing the proposed trape-
zoidal distance, which is further achieved by several other
minimizations such as the hypotenuse signal distance, the
floor distance between the fingerprint and the location
device, the differential height between the two. From
Figure 1,

tan Q = C1
H1 −H2ð Þ =

C2
H2 −H3ð Þ =

C1 + C2
H1 −H3ð Þ , ð6Þ

where

C1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x0ð Þ2 + y1 − y0ð Þ2

q
, ð7Þ

h1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ð Þ2 + H1 −H2ð Þ2

q
: ð8Þ

4.1. RSSI Distance Model. Natively, during the offline calibra-
tion stage, the average RSSI at various fingerprint reference
points at different distances C1 from the Tx transceiver
antenna can be associated with the RSSI distance model as in

�f
l
i = 10n log C1ð Þ + �Al + Xσ, ð9Þ

where Al is the average RSSI at a 1m distance from Tx.
Assuming a close neighborhood from the Tx antenna nodes
in the wireless fidelity network, the transmission indoor
space-dependent parameter n remains the same. Thus, n
can be determined by

n =
�f
l
i − �Al

10 log C1ð Þ : ð10Þ

During online, the target received RSSI Rl of the sur-
rounding transceivers are compared to the fingerprint data-
base RSSI values. Similarly obeying the anticipated RSSI
distance model as in

Rl = 10n log C2ð Þ + �f
l
i: ð11Þ

The distance at which the receiver is anticipated is obtained
as

C2 = 10 Rl−�f li
� �

/10n
� �

: ð12Þ

Further, we derive the height estimate at which the RSSI
is estimated to be recorded as

H3 = H2 C1/ H1 −H2ð Þð Þ − C2
C1/ H1 −H2ð Þð Þ : ð13Þ

4.2. Trapezoid Path Loss Model. In this section, we propose
and define our trapezoid path loss model for indoor radio
propagation. Existing models have approximately predicted
the RSSI fingerprints, though extremely challenging due to
multipath effect and environmental site-specific parameters.
From Figure 2, we can derive the following relationship:

Q + 90 + α = 180, α = 90 −Q, ð14Þ

sin 90 −Qð Þ = sin 90 cos Q − cos 90 sin Q = cos Q = H2 −H3ð Þ
h2 ,

ð15Þ

cos arctan C2
H2 −H3

� 	� 	
= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + C2/ H2 −H3ð Þð Þ2
q = H2 −H3

h2 :

ð16Þ
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From Equation (16),

h2 = H2 −H3ð Þ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + C2

H2 −H3

� 	2
:

s
ð17Þ

The trapezoid nearest neighbour area A is defined as

A = C2
2 H2 +H3ð Þ = H2 +H3ð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð Þ2 − H2 −H3ð Þ2:

q
ð18Þ

The proposed trapezoid path loss model that leverages
the trapezoid distance can be defined as

Rxl = �f
l
i +

10n log C2ð Þ
h2 , ð19Þ

where averaged Rxl is the estimated received RSSI, C2 is the

estimated distance between the transceiver and receiver, �f
l
i

is the fingerprint RSSI, and h2 is the proposed trapezoid fac-
tor to signal distance that affects the signal between the trans-
ceiver and the receiver.

4.3. Proposed Algorithm. Amongst existing main machine
learning typical deterministic method for classifying objects
based on closest neighbour training examples in the radio
map such as NN and KNN, we propose novel height-
specific NNT and KNNT algorithm for the online localiza-
tion stage. KNNT aims at returning the position estimate of
the current location query as an average of the k-neigh-
bours in the radio map resulting from the minimum pairwise
trapezoid signal distance d, used to query fingerprint in a 2-
dimensional space.

bℓ Rð Þ = 1
K
〠
K

i=1
argminℓi dið Þ, ð20Þ

where the proposed trapezoid signal distance as in Equation
(20) between the reference fingerprint and the observed test
fingerprint is calculated as

d2i = h2li ∗ sqrt 〠
L

l=1

�f
l
i − Rl


 �2 !
: ð21Þ

5. Experimental Evaluation

Raw data fingerprinting experiment was carried out on the
office floor of our faculty administration building of Chong-
qing Posts and Telecommunications University (CQUPT), a
test bed of about 66m wide by 17.1m long, whose schematic
experimental test floor plan is shown in Figure 3. Several
stages include the experimental setup and data acquisition
steps in Section 5.1, the initial experiment to determine the
effect of height on radio fingerprinting, the proposed trape-
zoid path loss model, and the proposed trapezoid localization
algorithm based on accuracy results and cost of construction.

5.1. Setup and Data Acquisition. In the test bed setup, initial
prescans discover various RSSI readings that could be result-
ing from tethered devices in various offices, which in turn
could increase the preprocessing computational cost of the
collected data due to increased discoverable TD’s. To mini-
mize the processing, we filter out and simplify the process
by setting up 5 D-Link APs (DAP 2310) operating at
2.4GHz IEEE 802.11b/g/n Wi-Fi standard as baseline testing

Tx

Fp

Rx

H3

(x2,y2)(x1,y1)(x0,y0)

C2C1

Q

Q

h1

h2

H1

H2

Figure 1: Fingerprinting system perpendicular relationship. The height relationship of the transmitter, fingerprint, and receiver.
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y
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C2

C1
P

P

x

Figure 2: Fingerprinting system floor relationship. The floor
distance relationship of the transmitter, the fingerprint, and the
receiver.
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transceivers. Installed at a height of 1.68m on the adjustable
Fidck SPs-502 speaker stands, whereas the sampling TDs are
at respective heights as described in Figure 4.

During the one-time offline training phase, we calibrate
RPs on the floor at respective scaling intervals of 0.8m form-
ing a grid. At each grid RP, we sample 120 RSSI values (in
dBm) as fingerprints within a 1-second time interval using
our developed android application facing the northing direc-
tion, installed it on a prerequisite Samsung Galaxy GT-
S7568, and averaged and stored as fingerprints in the locali-
zation server, at different heights of 1.51m, 0.97m, 0.34m,
respectively, as illustrated in Figure 4, as well as Figure 5
showing the real image of the various height setups in the test
bed. Meanwhile, we further calibrate test RP’s, at which
respective 120 RSSI values are sampled, averaged, and stored
for online unknown locality testing.

Considering the amount of time for the surveyor to inter-
act with the developed APP, our developed android platform
sampling APP is simpler and user friendly than in [30],
requiring only the reference point name, the interval at which
we sample the RSSI. On scan initialization for a predefined
time stamp, it records the interval, the RSSI value followed
by MAC address of the source transceiver AP. Saving the
sampled data into a text file (.txt) format in the security dig-
ital (SD) card, from which we later extract RSSI values using
MATLAB R2015b running on 64-bit Windows 7 Ultimate
desktop equipped with i3 4160 CPU@3.60GHz processor
and 4GB RAM to form an interactive matrix, thus empirical
RSS database.

5.2. Height Effect on Localization Accuracy. We experimen-
tally evaluate the localization accuracy of various Wi-Fi fin-
gerprints constructed at different heights for indoors
localization to enable use for determining the extent to which
the height factor impacts our fingerprint. We use nearest
neighbour algorithms of NN and KNN, where NN is a special
case of the KNN algorithm when the number of neighbours
in the localization formulation is equal to one (k = 1).

H1 vs.T1 represents radio map fingerprints at height 1
(H1 = 0:34m) versus testing fingerprints at height 1
(T1 = 0:34m); this notation is adopted for all the possible
height combinations used in the testing (Figure 6), summa-
rized in Table 1. We can see a radio map constructed with
fingerprints at heights H2, and test fingerprints at height T
3, that is “H2 vs. T3” performing better than other compari-
son fingerprint height combinations. This confirms that
when a localization device is at the height of 1.51m, location
fingerprints constructed at H2 result in reduced localization
mean error greatly than H1, and H3 fingerprints, respec-
tively, with the same online query test fingerprints at height
T3. We further observe that, under different values of the
well-known parameter k used by the KNN, the attained local-
ization accuracy differs greatly, with k = 3 resulting in better
performance with combinations of H2 vs. T3. When the
number of neighbour’s used during the localization algo-
rithm is equal to 1 (k = 1), resulting results are attributed to
the NN algorithm. From this point, we select and proposed
H2 as our fingerprinting height for the analysis of the pro-
posed trapezoid path loss model and finally the proposed
localization technique.

5.3. Trapezoid Pass Loss Model Analysis. Efficient, applicable
RSSI signal prediction is a key to indoor localization in the
era of IoT, however, due to the diversity of the height of
location-based devices, accurate signal modelling at different
receiver heights on the same location possesses a challenge
due to multipath effect, refraction, diffraction, and reflection
of the signal by the complex indoor environments. Consider-
ing the lobby area (Area 3), we perform a comparison to the
choices of minimization factors from the following enabling
features such as the proposed trapezoid signal distance (blue
colour), the signal distance (red colour), the floor distance
(green colour), and the trapezoid area (black colour). From

AP1

AP3

AP2

66 m
AP4

Area 2

Area 1

Area 3

(0,0)

N

AP5

Area 4

17.2 m

Figure 3: Test bed. Five APs installed on the target floor. 327 RPs calibrated at an interval of 0.8m.

AP
Speaker stand: Fidck

SPS-502

1 m
1.68 m

1.51 m 0.97 m

0.34 m

Figure 4: Configuration of the heights.
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the comparison, we observe overall superior localization
accuracy performance of the proposed prediction path loss
model leveraging height estimation than peers, as seen in
Figure 7. Furthermore, analysing the localization accuracy
by the NNT algorithm that leverages trapezoid path loss
model at each TP location in Area 3, as seen in Figure 8.
We observe robustness with NNT localization mean errors
of range 0 meters (floor) such as TP location 6, TP location

Galaxy trend

Galaxy trend

AP

H1&T1 H2&T2 H3&T3

1.68 m

1.
68

 m

1.
68

 m

0.
34

 m

Galaxy trend

AP AP

0.
97

 m

1.
51

 m

Figure 5: Configuration of the heights picture. H1 vs. T1, H2 vs. T2, and H3 vs. T3.
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Figure 6: Comparison of location mean errors under difference combinations of heights and k parameter values.

Table 1: Summary of height combinations.

Height 0.34 (m) 0.97 (m) 1.51 (m)

0.34 (m) H1 vs. T1 H1 vs. T2 H1 vs. T3
0.97 (m) H2 vs. T1 H2 vs. T2 H2 vs. T3
1.51 (m) H3 vs. T1 H3 vs. T2 H3 vs. T3
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16 and 9 meters (ceiling), with a median of 2 meters com-
pared to NN range of 2 meters (floor) to 15 meters (ceiling)
with all RSSI test RP’s.

5.4. Localization Accuracy Analysis.We evaluate the accuracy
of the proposed NNT localization algorithm by computation
of the mean error with the well-known NN algorithm in dif-
ferent environments, as seen from the Figure 9, below for
each areas subsection, and the general total floor, we observe
the NNT algorithm (blue) outperforming the native NN
algorithm (red), both in room base localization and total
floor base localization Figure 10.

6. Conclusions

As the demand increases for indoor LBSs in the IoT era, Wi-
Fi-based fingerprinting as a key low-cost approach to precise
indoor navigation and positioning keeps increasing. This
paper firstly presents an extensive experimental analysis on
the effect of the height, chosen by the offline site surveyor
for sampling RSSI data in one-sided heading, as a minimum
measure during the fingerprint radio map construction. We
further note that pedestrians and traceable valuables indoors
can be found at diverse heights; thus, the same could
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Figure 9: Localization sub area accuracy. (a) Area 1 corridor with LoS AP1 and AP3. (b) Area 2 left lower space with LoS AP2. (c) Area 3
middle lobby with LoS AP5. (d) Area 4 lower middle lobby with LoS AP4.
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reversibly affect the localization radio map, directly impact-
ing the localization accuracy. From this evaluation, we
observe the effect of AP’s installation heights versus the local-
ization height in complex environments and further propose
that radiofrequency-based indoor fingerprinting to be sam-
pled at approximately 1m above the floor of localization
interest.

Secondly, we propose a novel trapezoid path loss model
to better estimate indoor RSSI fingerprint characteristics
due to changing height. On the same basis, we finally propose
a novel trapezoid-based nearest neighbour indoor localiza-
tion scheme that leverages online RSSI to dynamically pre-
dict and update the RSSI in real time. Comparing with the
classic nearest neighbour algorithm for localization accuracy
performance, the experimental findings clearly show that the
proposed algorithms can better predict RSSI with dynamic
indoor coverage and improve the positioning accuracy.
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