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This work is aimed at solving the morbidity problem of the smart meter fusion model and improve the measurement accuracy and
reliability of the smart meter. Starting with the topology of the smart meter, the reason for the serious morbidity of the smart
meter model is discussed. First, the basic process of power system state estimation of smart meters is introduced, and the
concept of error analysis of smart meters is clarified. Then, the causes and mechanisms of the ill-conditioned problems of the
smart meter model are analyzed, and methods to reduce the morbidity of the smart meter calculation model are analyzed.
Finally, a data optimization algorithm based on a greedy strategy and an improved Tikhonov regularization method is
proposed. The model data is processed and optimized to reduce the morbidity of the smart meter measurement model. The
results show that the analysis algorithm for reducing the morbidity error of the smart meter proposed in this study can
effectively interfere with the morbidity of the smart meter calculation model. The processing effect shows that it can reduce the
measurement error of the smart meter to about 5%, which is an order of magnitude lower than the error before processing,
and the processing effect of the least square method is improved by more than 70%. From the perspective of processing speed,
when the user number is between 50 and 100, the running time of the algorithm ranges between 1.5 and 3.5 s, which can be
fully adapted to the actual situation and has strong practicability. In short, this study is helpful in improving the accuracy and
reliability of smart meter calculations and provides a certain reference for related research.

1. Introduction

The smart meter is one of the basic equipment for data col-
lection in the smart grid, and it plays a very important role
in the entire smart grid. It is responsible for collecting, mea-
suring, and transmitting raw electric energy data, and for
information synthesis, analysis, optimization, and display
[1, 2]. In addition to conventional electric meters’ basic elec-
tric energy measurement functions, smart meters also have
two-way multirate metering functions, user-side control
functions, and two-way data communication functions [3].
As a powerful sensor terminal, the smart meter plays an
essential role in the identification layer of the smart grid. It
needs to perform detailed calculations and metering of elec-
tric energy for charging. In addition to supplementing

energy billing based on smart meter measurement data, it
can also enable and support advanced applications, such as
energy consumption behavior analysis, demand response
strategy design, and electricity market pricing. The normal
operation of the smart grid is guaranteed through the com-
prehensive operation of these functions [4, 5]. Therefore,
whether the smart meter measures electric energy is directly
related to the normal operation of the functions as men-
tioned above. It is also closely related to the vital interests
of each user who participates in the use of electricity. Once
the smart meter fails, it may affect the transmission and dis-
tribution of electric energy, bring troubles to people’s lives,
and even cause serious losses. Due to the massive and scat-
tered distribution of smart meters, it is very difficult to deter-
mine the status of each meter in operation to find and
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replace expired or faulty individuals. However, if it is not
ruled out and replaced directly in a large area, it will cause
a lot of waste of human resources and materials [6, 7].

At present, the common method used to check the status
of electric energy meters is sampling verification. The Interna-
tional Organization for Metrology (OIML) established the
TC3/SC4 working group to create relevant documents to mea-
sure whether private electricity meters can still be used. How-
ever, the faults of smart meters are diverse, and it is difficult for
sampling verification methods to ensure that all types of faulty
meters are tested without omission, which will inevitably cause
losses to residents [8, 9]. Some scholars tried to analyze the sta-
tistical data of smart meters to find the faults and operating
errors of the energy meters. This method of identifying faults
in smart meters through data can theoretically realize “full-
range state monitoring of energy meters.” However, after it
is put into practical application, many errors will be caused
due to the influence of the external complex environment
and technical means. There are still many technical issues that
need to be further studied and resolved. It is mainly reflected
in difficulty in obtaining the loss calculation parameters of
the station area as well as the poor model conditions, which
lead to calculation errors and the inability to form sufficient
reference values [10].

Based on the above analysis, the cause and mechanism of
the serious morbidity model of the actual smart meter circuit
measurement error analysis are analyzed, and methods to
weaken the morbidity are discussed. A regularization method
based on data preprocessing and improvement is proposed to
intervene in the morbidity of the model. In addition, the least
square method is introduced as a control group to carry out a
simulation experiment to verify the effectiveness of the data
preprocessing method, hoping to improve the error calcula-
tion accuracy of the electric energy meter.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some related theories and methods about
smart meters. Section 3 considers algorithm verification
results and the discussion. Finally, Section 4 provides some
concluding.

2. Related Theories and Methods for the
Study of Morbidity Models of Smart Meters

2.1. Analysis of Topological Structure Model of Electric
Energy Error. The origin of power system state estimation
research is traced back to 1970.With thematurity of electronic
technology and the development of computer communication
technology, power system measurement technology has also
been further developed and improved. The related research
and application of state estimation have become common,
which has become an indispensable part of the power system
[11]. It is responsible for helping transmission network opera-
tors to obtain real-time status information of the power sys-
tem, while providing corresponding services for power users.
At this stage, estimating the state of the power system is also
one of the research hotspots of power energy management
systems. It involves functions such as state estimation, data
error management, and information prediction. The specific
process is illustrated in Figure 1 [12, 13]. In addition, the state

estimation of the power system also includes a reliability anal-
ysis and static safety analysis. Today, with the rapid develop-
ment of network communication technology, the Internet of
Everything has become a normal state. Moreover, data has
also become a silent language. In 2019, Shen et al. [14] con-
ducted bilingual text mining and analyzed the trend of Online
to Offline business from the perspective of social media. The
results of bilingual text mining were compared according to
company, region, service app, and operating mode. The
research provides important insights from crowd intelligence
and reveals an analysis of recent trends in the development
of Online to Offline in different language regions. Many
needed information can be obtained through data analysis
and mining. Therefore, the security control of network power
data and the network has become more important. The gen-
eral electrical topology is illustrated in Figure 1.

With the rapid development of computer technology
and communication technology, the concepts of “smart city”
and “smart transportation” have emerged one after another.
In addition, in terms of power detection and management,
new concepts such as smart meters and smart management
systems have also emerged [15]. Remote online verification
of smart meters in low-voltage stations is essential for main-
taining the power grid. It can ensure the stable operation of
users’ rights and interests and reduce operating costs and
power consumption [16, 17]. However, due to the serious
morbidity of the fusion model, the calculation result of the
smart meter has a large error, and there are still many uncer-
tain data. The existence of these problems greatly reduces
the accuracy of smart meters [18]. The focus of this research
is on the serious ill-posed problems of the error analysis
model of smart meters. Therefore, the causes and mecha-
nisms of error in mathematical models and ill-conditioned
models are analyzed to explore a method to reduce the ill
conditions of computational models. The research mainly
focuses on smart meters, and the electrical topology of smart
meters is illustrated in Figure 2.

In Figure 2, the high-precision energy metering smart
meter is used as a total meter to accurately measure the
entire system’s electrical energy and power consumption.
Smart meters are installed on the user side of each residence
[19, 20]. In the actual energy consumption information col-
lection system, the measured value of the total table is
defined as the energy consumption of the total station,
which is because the accuracy of the total meter in the sta-
tion area is higher than the accuracy of the counter-
supported meter. It is assumed that there is no measurement
error in the entire meter, and it is also assumed that the
weighted average of the relative errors remains stable within
several consecutive measurement periods [21, 22]. In addi-
tion, determining the correct relationship between house-
hold changes is a basic requirement for theoretical
calculations. Suppose the collected power data is insufficient
and the optimal amount of data is greater than the number
of a single meter. In that case, this problem can be solved
by deleting all meter data in the period.

2.2. Error Analysis of Smart Meter. In the topology diagram
of the smart meter layout illustrated in Figure 2, it is
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assumed that the measurement period of the total meter is a,
and ca is the power consumption of the period a. The num-
ber of users in this area is n, the actual power consumption
of a user is m, the actual measured power of the smart meter
is ax,y , and the actual power consumption during the power
consumption process is z [23, 24]. Then, in the case that
there is no error in the measured value of the total meter,
the relationship between the actual power consumption of
the user during a certain period of time and the actual power
loss during the power process is shown as follows:

ca = za =〠mx,y: ð1Þ

It is assumed that the relative error of the electric energy
meter is ξ, and the relative error calculation equation is
shown as follows:

ξ =
ax,y −mx,y

mx,y
× 100%: ð2Þ

The real power consumption at this time is expressed as
follows:

mx,y =
1

1 + ξ
cx,y: ð3Þ

The operation error of the smart meter is obtained by
transforming and solving the above equations simulta-
neously. On this basis, the measurement error involved in
the study is not the measurement error at a certain instant,
but the overall error level analyzed by the instrument over
a period of time.

2.3. Model Ill-Condition Analysis. The measurement error
analysis model of the smart meter is represented by a linear
equation set, which is shown as follows:

Fx = y −m = n: ð4Þ

In equation (4), F is the coefficient matrix, x is the mea-
surement error analysis solution vector, y is the total power
list of the smart meter, m is the power loss vector of the
user’s power consumption area, and n is the constant vector
measured by the smart meter [25, 26]. In equation (4), the
constant vector on the right side of the equal sign of the
equation system contains two elements, including the total
power of the meter and the power consumption of the user.
In general, when the measurement error of a smart meter is
calculated theoretically under ideal conditions, the total
meter error and the loss in the electricity use process can
be ignored. In practical applications, however, many issues
need to be considered [27, 28]. The total counter is generally
a high-precision counter, and the measurement accuracy is
higher than that of the submeter, but there is still no guaran-
tee that there will be no measurement errors. Moreover, the
energy loss in the actual electricity use process cannot be
completely accurately calculated. The occurrence of these
errors and uncertain factors will cause the constant vector
value on the right side of the model to be disturbed and
become inaccurate. The perturbation of the constant
vector-matrix n is amplified in the calculation and solution
process of equation (4), which greatly influences the solution
of the equation. The specific expression is shown as follows:

ωxk k
xk k ≤ Fk k F−1�� �� ωnk k

nk k = cond Fð Þ ωnk k
nk k : ð5Þ
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In equation (5), the notation k•k denotes the norm. ωx is
the perturbation of the vector x, and condðFÞ represents the
condition number of the vector matrix. From the above
mathematical relationship, the perturbation of the equation
system to the vector-matrix will be magnified condðFÞ times,
and when it is solved, it will affect the stability of the solution
process. The fluctuation of stability is one of the important
indicators for judging the morbidity of the model. Generally
speaking, when the value of condðFÞ is greater than 103, it
will be regarded as a pathological model [29, 30]. IF condð
FÞ exceeds the rated value, then it indicates that the model
is very ill conditioned. The solution (counter error) obtained
by the error analysis model of the smart meter is very sensi-
tive to input interference. Even if the solution is completed,
the real error value of each subcounter obtained is very large,
causing the smart meter to have small fluctuations or large
loss errors. Therefore, to calculate the smart meter’s operat-
ing error, it is necessary to study the ill-conditioned problem
of the model and propose a solution algorithm. In addition,
it is necessary to reduce the influence of pathological condi-
tions on measurement errors and improve the measurement
accuracy of smart meters.

2.4. Discussion on Methods of Reducing Illness of Smart
Meter. When the smart meter shows the ill condition of
the error calculation model, the two algorithms can elimi-
nate the difficulty in solving the model caused by the poor
model condition. These two algorithms are the preprocess-
ing of the measurement data and the regularization of the
measurement data.

The preprocessing methods of the measurement data
includes two parts of the data optimization algorithm based
on the greedy strategy and the row-by-row difference
method.

A greedy algorithm means that when a problem is being
solved, it always makes the best choice in the current view.
Without considering the overall optimality, the algorithm
obtains a locally optimal solution in a sense. In this research,
the greedy algorithm is applied to intervene in the morbid
problems of the smart meter system. The energy consump-
tion information collection system of smart meters can pro-
vide measurement data that exceeds the requirements of
typical modeling. Choosing different data from these mea-
surement data to build different models will change the mor-
bidity of building models. Therefore, the optimization
technique is applied to select the best performing data set
from the data pool to make the smart meter error model ill
conditioned. The linear equation is solved, and the result
shows that when the number of users in the power con-
sumption area is n, n periods of data are needed to represent
it. It is assumed that the measurement system provides the
measurement data of the m period. There are Cn

m ways to
select the data [31]. In this case, a strictly exhaustive method
is adopted to calculate the number of conditions in each data
set, one at a time, and the amount of calculation and load
will become quite large. Based on the above analysis, a data
optimization algorithm based on a greedy strategy is pro-
posed to quickly select the most useful data set to solve the
model. The solution process is illustrated in Figure 3.

As illustrated in the flow chart of Figure 3, data is deleted
from the selected data set in sequence, and the condition num-
ber of the matrix obtained after deletion of the corresponding
data is saved. The data that meets the minimum number of
conditions is found and deleted from the candidate data set,
whichmeans that the data is successfully deleted from the can-
didate data set. The above steps are repeated. Data is deleted
until the amount of data in the data set drops to the specified
value, then the data set is the output. After the best data set is
obtained, the linear equation is optimized by providing a row-
by-row finite difference method, which further reduces the
number of conditions in the equation coefficient matrix and
reduces the ill condition of the solution model. First, the col-
umn with the highest cumulative total is found in the coeffi-
cient matrix. All rows are sorted in descending order in this
column. Then, the two adjacent equations are subtracted one
by one to obtain the processed linear equation. Regularization
is a concept in linear algebra, which refers to how a complex
ill-posed problem is usually defined as a set of linear algebraic
equations in linear algebra theory. This set of equations is usu-
ally derived from an inverse problem corresponding to an ill-
posed problem condition. The use of massive conditions
means that rounding errors and other errors will seriously
affect the outcome of the problem. The regularization matrix
is a diagonal matrix, and the diagonal elements can apply dif-
ferent resistance stresses according to different solutions.
Given that different smart meters have different levels of mea-
surement accuracy, the accuracy level of the energy meter is
set as the constraint parameter of the corresponding solution.

The regularization method of measurement data is as
follows. In this research, an improved Tikhonov regulariza-
tion method is adopted to further reduce the mathematical
model’s morbidity. Data preprocessing is carried out to
reduce the incidence of the model. The classic Tikhonov reg-
ularization method is used to solve the ill-conditioned prob-
lem of unfavorable conditions. Due to the prior information
of the solution based on two least-squares residual norm
constraints, new constraints are added to improve the stabil-
ity of the solution. A suitable solutionxis found, such
thatMx =Nholds for the linear model, and the regulariza-
tion parameter equation is shown as follows:

Min
x

φ xð Þ = Mx −Nk k22 + α Paxk k22: ð6Þ

In equation (6), the value of α is positive, which repre-
sents the regularization parameter. Pa represents a normal-
ized matrix, kPaxk22 is a norm, and the norm vector is two.
x indicates the solution corresponding to the minimum
objective function φðxÞ. Although Tikhonov’s classic regu-
larization method can eliminate the variability in the solu-
tion, it does not provide the option of specifying a range
before the resolution. It cannot be directly applied to the
solution of the problem in this research. Therefore, the cor-
responding improvement is needed, and the improved regu-
larization parameter equation is shown as follows:

Min
x

φ xð Þ = Mx −Nk k22 + α Pa x − Lð Þk k22: ð7Þ
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In equation (7), column vector L is introduced to make
the model distributed near the column vector. The value of
α is positive, which indicates the regularization parameter.
Pa represents a normalized matrix, and x represents the
solution corresponding to the minimum objective function
φðxÞ. Equation (7) is solved to obtain the following:

x = MMT + αPa

� �−1
MTN + αPaL
� �

: ð8Þ

In equation (8). The value of α is positive, which indi-
cates the regularization parameter. Pa represents a normal-
ized matrix, and x represents the solution of equation (7).
In summary, the analysis algorithm flow of the smart meter
to reduce ill-conditioned errors is illustrated in Figure 4.

2.5. Performance Evaluation of Smart Meter Operation Error
Analysis Algorithm. In this subsection, the effectiveness of
the algorithm is verified by experiments. The data used come
from the electric energy metering data of a low-voltage sta-
tion in a city grid, and the universality of the experimental
data is considered. The high-rise residential, isolated small
residential, old residential, rural radio stations, and labora-
tory analog radio stations are selected and numbered as 1-
5. Each type has data for 365 days a year from 10 such sta-
tions. First, all types of station data undergo preprocessing
and line-by-line differential data selection. Then, the data

preprocessing strategy is combined with Tikhonov’s
improvement. The regularization method is adopted to find
the measurement error and calculate it by the least square
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method. The actual error of the meter is compared to deter-
mine the power of different algorithms to verify the accuracy
of the meter error. The test index equation for the effect of
pathological reduction is shown as follows:

r = ao
au

× 100%: ð9Þ

In equation (9), ao/au is the ratio of the condition num-
ber of the original data to the condition number of the proc-
essed data.

3. Algorithm Verification Results
and Discussion

3.1. Data Preprocessing to Test the Effect of Morbidity
Reduction. To test the morbidity reduction effect of the data
preprocessing method, three preprocessing methods of row-
by-row difference, data optimization, and data optimization
after row-by-row difference are applied to test the morbidity
reduction effect of different data. The results are illustrated
in Figure 5.

Figure 5 shows the effect of the coefficient matrix of the
optimization algorithm, the row-by-row difference algo-
rithm, and the combination of the two on the treatment
strategy of the ill-conditioned rate. According to the com-
parison results of three sets of different strategies, the num-
ber of conditions in the coefficient matrix after data
optimization is reduced to 42%-60% of the number of initial
conditions. After the row-by-row differential data process-
ing, the matrix condition number is reduced to 22%-35%
of the original condition number. The two methods are
combined, and differencing is performed after data optimi-
zation. It is found that the morbidity rate drops to about
9%-14%, which is an order of magnitude lower than the
original morbidity rate. In summary, all the proposed data
preprocessing strategies can effectively reduce the number
of conditions in the coefficient matrix for different types of
low-voltage substations, thereby reducing the morbidity rate
of the model.

After previous discussions, it is found that the user size
can also affect the performance of the algorithm. The larger
the number of users around the site, the more data is needed,
and the demand for data provided by the optimization algo-
rithm will increase, leading to an increase in time-
consuming algorithm manipulation. Therefore, it is neces-
sary to calculate the time-consuming algorithm under differ-
ent user scales, and the calculation results are shown in
Table 1.

Table 1 shows the relationship between the user scale
and the time required for the algorithm to run, and the
selected user scale range is 10-100 households. As the scale

of user usage increases, the data optimization differential
algorithm’s running time gradually increases and maintains
a linear trend. In practical applications, however, the num-
ber of users served in a complete low-voltage zone system
is roughly in the range of 50-100. When the user number
is between 50 and 100, the running time range of the algo-
rithm is between 1.5 and 3.5 s. Due to the linear growth rela-
tionship between the two, even if the number of users in the
station area increases to about 110, the algorithm’s running
time will remain below 4 s. In summary, the data preprocess-
ing algorithm proposed in this research can be put into prac-
tical application.

3.2. Smart Meter Error and Accuracy Calculation Results. To
study the interference effect of the method proposed in this
research on the measurement error and accuracy of the
smart meter, the error of the smart meter of the users in
the low-voltage station area is calculated, and the least
square method is introduced as the control group to verify
the effectiveness of the algorithm. The comparison result is
illustrated in Figure 6.

Figure 6 shows the comparison of the interference
error of the least square method and the method proposed
on the smart meter. To further reflect the interference
effect of data preprocessing on the error of the smart
meter, the experimental results of data preprocessing com-
bined with the least square method are also added as a
comparison. If the least-squares method is used directly,
the ill conditioning of the model will have a great impact
on the measurement results of the smart meter, and the
error in some nodes may even reach more than 80%,
which results in a huge error. If the data is preprocessed
first, and then the least square method is applied, it is
clear that the relative error of the smart meter is reduced
by as much as 60% and maintained at about 20%. From
the comparison between the error of the algorithm pro-
cessing result and the actual error, the data is optimized
first, and the relative error value of the result obtained
after processing by the difference method is very small,
which is close to the true value of the error. Therefore,
the data preprocessing method proposed has a significant
effect on the morbidity reduction of the model, which
can greatly reduce the relative error of the smart meter.

Further analysis of the deviation results of the three dif-
ferent processing methods is performed, and the deviation
distribution of the three other methods is obtained. Finally,
the specific results are illustrated in Figure 7.

In Figure 7, the deviation results of the three different
processing methods are further statistically analyzed. The
deviation results of the large and small extremes and the
quartile points are selected for display to discuss the interfer-
ence effect of the method in this paper proposed on the error

Table 1: The relationship between user scale and running time.

User scale/user number 10 20 30 40 50 60 70 80 90 100

Running time (s) 0.45 0.63 0.92 1.27 1.59 2.01 2.43 2.87 3.35 3.86
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of the smart meter. When only the least-squares method is
used for processing, the maximum deviation of the smart
meter calculation results is 84.53%, and the minimum devi-
ation is -72.14%. After data preprocessing, the least-squares
method is used. It turns out that the maximum deviation
of the calculation result of the smart meter is 14.43%,
and the minimum variation is -12.21%. Then, the pro-
posed method is adopted, and the optimal selection of
data is performed first. It is found that the maximum
deviation of the calculation result obtained after the regu-

larization processing is 6.26%, and the minimum deviation
is -5.03%. Through the comparison of the above results,
the calculation results of the algorithm proposed in this
article have smaller errors and more accurate results.
Compared with no ill-conditioned treatment method, the
algorithm proposed can improve the calculation accuracy
of smart meters.

The above results show the overall interference effect of
the method proposed on the error of the smart meter. To
further explore the effect of the algorithm in this research
on each node, seven nodes are randomly selected from the
node system illustrated in Figure 8, and the voltage and cur-
rent at different nodes are measured. The resulting error and
phase distribution are illustrated in Figure 9.

In Figure 9, the average voltage amplitude error of the
node voltage phase error is 0.0468V, and the node voltage
phase error is 0.000215 rad before the ill-conditioned treat-
ment method is applied. The error of the nodal branch cur-
rent is 14.49%, and the phase error of the branch current is
0.1328 rad. After the ill-conditioned treatment, the average
amplitude error of the node voltage is 0.0015V, and the
error of the node phase voltage is 0.000067 rad. The error
of the branch current of the node is 0.2613%, and the phase
error of the branch current is 0.004 rad. Thus, after the ill-
conditioned processing method is applied, the calculation
error of each node is greatly reduced, especially in the cur-
rent error.

In summary, the analysis algorithm for reducing the ill-
conditioned errors of smart meters proposed in this study
can effectively interfere with the ill condition of the smart
meter calculation model. The processing effect shows that
it can reduce the measurement error of the smart meter to
about 5%, which is an order of magnitude lower than the
error before processing, and the processing effect of the least
square method is improved by more than 70%. From the
perspective of processing speed, when the user range is
between 50 and 100, the algorithm’s running time ranges
between 1.5 and 3.5 s, which can be fully adapted to the
actual situation and has strong practicability. In addition,
the data measurement of each node also plays a role in
reducing errors. The proposed smart meter reduces the ill-
conditioned error analysis algorithm, which can reduce the
interference of the morbidity of the fusion model on the
measurement accuracy of the smart meter, and the smart
meter can accurately reflect the true error level of the electric
energy meter.
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Figure 8: Experimental single-line node system.
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4. Conclusion

To effectively solve the problem of serious morbidity in the
smart meter fusion model, data preprocessing and regulari-
zation algorithms are used to solve the bad model of the
smart meter running error-checking algorithm and improve
the actual situation of low calculation accuracy of the smart
meter. The results show that the proposed method can effec-
tively solve the difficult problems caused by the ill-
conditioned model and remove the verification errors and
calculation failures caused by the ill-conditioned model itself
due to its nature. For serious problems, it can be used to ver-

ify power measurement and provide operations and deploy-
ment operations, providing certain reliable data protection.
Although certain research results are harvested in this work,
there are still many deficiencies in the research process due
to the limitations of the research methods and some objec-
tive conditions, which are summarized as follows. First, the
ill-conditioned interference method for the smart meter
fusion model is only demonstrated in the ideal state, which
needs further adjustment and improvement if it is to be
put into practical application. Second, the impact of objec-
tive problems on the precision of smart meters caused by
the environment and service life of smart meters and various
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Figure 9: Node error and phase distribution of each branch ((a) represents the node voltage amplitude error, (b) represents the node voltage
phase error, (c) represents the branch power amplitude error, (d) represents the branch current phase error)).
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components of the circuit is not taken into account. Third,
few control groups are selected in the experiment; therefore,
there is no improvement in the method proposed in the
research. In future studies, the above three points will be
improved, more comprehensive factors will be taken into
account, and more control algorithms and experiments will
be set up to make the research results more convincing.
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