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With the development of information technology, indoor positioning technology has been rapidly evolving. Due to the advantages
of high positioning accuracy, low cost, and wide coverage simultaneously, received signal strength- (RSS-) based WLAN indoor
positioning technology has become one of the mainstream technologies. A radio map is the basis for the realization of the
WLAN positioning system. However, by reasons of the huge workload of RSS collection, the instability of wireless signal
strength, and the disappearance of signals caused by the occlusion of people and objects, the construction of a radio map is
time-consuming and inefficient. In order to rapidly deploy the WLAN indoor positioning system, an improved low-rank
matrix completion method is proposed to construct the radio map. Firstly, we evenly arrange a small number of reference
points (RP) in the positioning area and collect RSS data on the RP to construct the radio map. Then, the low-rank matrix
completion method is used to fill a small amount of data in the radio map into a complete database. The Frobenius parameter
(F-parameter) is introduced into the traditional low-rank matrix completion model to control the instability of the model
solution when filling the data. To solve the noise problem caused by environment and equipment, a low-rank matrix recovery

algorithm is used to eliminate noise. The experimental results show that the improved algorithm achieves the expected goal.

1. Introduction

Location-based services (LBS) play an indispensable role in
the information technology industry. As one of the key tech-
nologies of LBS, indoor positioning technology has also
attracted widespread attention with the rapid development
of mobile Internet and the popularity of smartphones in
recent years [1-3]. An indoor positioning system is the con-
tinuation of the outdoor positioning system, which largely
fills the vacancy of traditional positioning technology and
has broad application prospects, such as navigation to spe-
cific stores in large shopping malls and indoor personnel
positioning in fire scenes. Although outdoor positioning
has already had very mature technologies such as Beidou
and Global Positioning System (GPS), in the indoor envi-
ronment, because of the interference of many factors, such
as object occlusion, personnel walking, multipath effect in
the process of signal propagation, and other noises, the dif-

ficulty of realizing indoor positioning technology is
increased [4].

In order to achieve accurate indoor positioning, a variety
of positioning systems have been proposed by researchers,
such as positioning systems based on WLAN, RFID, and
other technologies [5-7]. Since there is no need to add spe-
cial sensors to the fingerprint-based WLAN indoor position-
ing system, we use the existing WLAN system and the user’s
intelligent mobile terminal as the hardware platform and
develop software on the intelligent mobile terminal to pro-
vide positioning services for users. Therefore, the WLAN
indoor positioning system has the value of large-scale pro-
motion and application. The fingerprint-based WLAN
indoor positioning system is divided into two phases: oftline
phase and online phase. In the offline phase, we uniformly
set a large number of reference points (RP) in the position-
ing environment and collect RSS values from access points
(AP) on the RPs. Each fingerprint is obtained by combining
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RSS with its corresponding coordinate, and the set of all fin-
gerprints is the radio map. In the online phase, users’ loca-
tions can be calculated by matching the real-time collected
RSS with the RSS in the radio map [8].

For the fingerprint-based WLAN indoor positioning
system, the radio map is the basis for realizing the system
[9]. The radio map keeps the mapping relationship
between the signal space and location space. In the tradi-
tional radio map establishment method, a large number
of reference points need to be set in the target area and
multiple measurements need to be taken at each reference
point to improve the positioning accuracy [10]. This
approach consumes a lot of labor and time costs. There-
fore, to reduce the time and labor cost of radio map estab-
lishment, many effective methods have been proposed. In
Reference [11], a hybrid radio map construction method
called Hidden Environment Model (HEM) is proposed.
In HEM, an Environment Factor Matrix (EFM) is built
to model the distinct effects of the indoor environment
on signal attenuation, and the EFM is constructed using
theoretical interpolations and approximations combined
with on-site signal measurements. A precise Indoor Locat-
ing System (PILS) is proposed in Reference [12], and the
self-correlation between RSS data of reference points is
used to interpolate the radio map, which increases the
number of reference points and reduces the workload of
offline acquisition. However, the interpolation method can-
not achieve accurate RSS value estimation in the complex
electromagnetic environment indoors. Reference [13] used
unlabeled user trajectories for radio map building and
achieved interpolation of the radio map by labeling the
unlabeled data using the Bayesian theory and hidden Mar-
kov model. The paper [14] investigates the influence of sig-
nal change on the radio map and obtains the intrinsic
relationship of RSS data at different times by a linear
model, which effectively reduces the updating workload of
the radio map. However, this method requires additional
equipment, which reduces the effectiveness of the method.
The semisupervised learning algorithm is proposed in Ref-
erence [15] to construct a radio map. A small amount of
labeled data and a large number of unlabeled data are col-
lected in the offline phase, and the label propagation is cal-
culated on the unlabeled data by a semisupervised learning
algorithm. A variety of machine learning algorithms and
the collected labeled data are used to calculate the label
of unlabeled data and expand the radio map; as a result,
the purpose of reducing the radio map construction work-
load was achieved. These algorithms give us many hints.
For example, the widely used reference point expansion
methods are spatial interpolation methods, including
inverse distance weighted interpolation [16], linear inter-
polation [17], kriging interpolation [18], and spline inter-
polation [19]. However, the spatial interpolation methods
utilize the local information of the data rather than the
global information, and the interpolation results are
affected by the order of data arrangement, so the global
optimal solution cannot be obtained by the spatial interpo-
lation methods. In 2006, Donoho proposed compressed
sensing theory in Reference [20], which has become one
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of the research hotspots in signal processing, data acquisi-
tion, and other related fields. By mining the sparse charac-
teristics of massive signals, under the condition of far less
than the Nyquist sampling rate, the original signal can be
reconstructed accurately by the compressed sensing algo-
rithm. The development of compressed sensing theory in
the matrix space is matrix completion. The matrix comple-
tion algorithm uses the low rank of matrix singular value
to recover the original matrix by sampling some elements
of the matrix. In order to achieve accurate matrix comple-
tion, a series of efficient solution algorithms have been pro-
posed. Among these algorithms, the fixed point algorithm
proposed in Reference [21] and the inaccurate Lagrange
multiplier method proposed in Reference [22] can achieve
excellent completion results.

Inspired from the above articles, an improved low-rank
matrix completion method is proposed to fast construct
the radio map in the indoor positioning system. Because
the RSS data matrix in the radio map has a low-rank charac-
teristic, the construction problem of the radio map can be
modeled as a low-rank matrix completion problem. There-
fore, we only need to collect RSS data at some reference
points, and the complete radio map can be filled by the
matrix completion algorithm. To eliminate the noise in the
RSS data, the F-parameter and the sparse noise term are
introduced to the traditional matrix completion model,
and an improved algorithm is obtained. In the process of
solving the model, the solution is performed by the alternat-
ing direction multiplier method (ADMM).

The main contributions of this paper are as follows:

(1) The low-rank matrix completion model is proposed
to achieve the fast establishment of the radio map,
while the F-parameter is used to eliminate the insta-
bility of the model solution

To construct a complete radio map, the accuracy of the
data used for filling needs to be guaranteed. When collecting
data, due to the influence of the environment (such as
human walking and wall blocking), the collected RSS data
contain a lot of noise. In the traditional model, only the ker-
nel function is considered by the low-rank matrix complete
model, and the low rankness of the model is guaranteed by
the kernel parameters. In this paper, the regularization term
is introduced into the traditional low-rank matrix comple-
tion model, and the F-parameter is used to eliminate the
model instability.

(2) A sparse term is introduced to the low-rank matrix
completion model to eliminate the sparse noise in
RSS data

Due to the influence of the environment, RSS data not
only brings Gaussian noise but also contains a small amount
of outliers, called sparse noise. In the low-rank completion
model, the F-parameter only has a good processing effect
on Gaussian noise, but it does not solve the problem caused
by outliers. Inspired by the low-rank recovery matrix model,
we introduce the sparse term of the recovery model to solve
the problem of outliers. Therefore, using the new Ll
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parameter to characterize the sparse noise can effectively
solve the instability problem caused by outliers.

The remainder of this paper is organized as follows. The
related works are discussed in Section 2. In Section 3, the
fingerprint-based WLAN indoor positioning system is intro-
duced, and the framework of the fast construction algorithm
of the radio map is given. In Section 4, we theoretically
derive and realize this method. The experimental results
and analysis are presented in Section 5. Finally, Section 6
draws the conclusion of this paper.

2. Related Works

In order to reduce the acquisition workload in the offline
phase, various low-rank completion methods have been pro-
posed in recent years.

Assuming that the data matrix has low-rank characteris-
tics, the matrix completion algorithm can be used to esti-
mate the value of missing data, and the synthesis matrix
closest to the target matrix is obtained under the constraint
conditions. However, the robustness of most matrix comple-
tion algorithms is not satisfactory when Gaussian noise is
added. Li et al. [23] proposed a new robust matrix comple-
tion method. The method has better robustness and accu-
racy when the data are destroyed by Gaussian noise. Zhang
and Tan introduced a total variance constraint term based
on the original kernel parametric constraint for low-rank
matrices [24]. A weighting algorithm was introduced to
improve the low rankness of the low-rank matrix and the
sparsity of the sparse matrix. This method not only ensures
the detailed information of low-rank completion but also
ensures the denoising effect.

The above researches on low-rank matrix completion are
only optimized in static aspects, and Song and Wang applied
the matrix completion model to the field of data mining
according to the structural characteristics of web links [25].
Mapping the data into a high-dimensional space makes the
nonlinear relationships in dynamic links convert to linear
relationships, thus making the model more complete of han-
dling complex network structures. Besides, Reference [26]
proposes an efficient algorithm for alternate iterative solu-
tion of subproblems for low-rank completion models. The
algorithm uses the nonlocal self-similarity of data to propose
an interpolation method for the nonlocal low-rank recon-
struction model. Reference [27] proposed a weighted kernel
parametric minimum model with initial value bootstrap. By
constructing weights of opposite magnitude to the singular
values, the approximation matrix is made to approximate
the original matrix well. Second, the linear search is
improved to accelerate the proximal gradient algorithm
solution model, which improves the convergence speed of
the algorithm.

After continuous optimization, the low-rank matrix
completion model has achieved better results. In recent
years, improved low-rank matrix completion algorithms
have also been widely used in the construction of the radio
map. Hu et al. [28] represented the RSS data space as a
low-rank matrix and constructed a complete radio map
from sparse measurements by the improved low-rank matrix

completion method. Experiments proved that the method
effectively reduced the number of collected RSS data. An
experimental model for constructing a radio map was pro-
posed by Xue et al. in Reference [29]. Based on the indoor
RSS map, the signal feature points are proposed and the
radio map is reconstructed using the grid points in a geo-
metric space and the signal feature points in an RSS space.
The model is significantly better than the traditional posi-
tioning method. Tan et al. [30] proposed an improved opti-
mization model based on the traditional matrix completion
model. The optimized model converts the kernel parameter
into a weighted kernel parameter and introduces both the
L1 parameter and F-parameter to recover the unknown data
more accurately. Ma et al. [31] proposed a radio map recov-
ery method based on the inexact incremental Lagrange mul-
tiplier (IALM) algorithm, which accurately recovered the
RSS data in the radio map and effectively reduced the noise.
In addition, Ma et al. [32] proposed a radio map noise
reduction method using the Hankel matrix. The special
structure of the Hankel matrix is used to effectively separate
the noise from the signal. This method can achieve a better
noise reduction effect and thus improve the localization
accuracy. Zhang and Ma [33] proposed a method based on
sparse representation and low-rank matrix recovery in order
to update the radio map accurately. The method combines
the fingerprint correlation of sparse representation with the
low rank of the fingerprint matrix to update the radio map
more accurately.

3. System Model

The typical fingerprint-based WLAN positioning system
includes two phases. In the offline phase, the main task is
to construct a radio map to realize the mapping between
RSS data and position coordinates. In the online phase, the
user’s location is calculated using the radio map. The block
diagram of the WLAN indoor positioning system is shown
in Figure 1. Suppose m APs and n RPs are deployed in the
location area. In order to build the radio map, we collect
RSS values from all APs on each RP, and a 1 x m dimension
RSS vector RSS; = (X;;, X,5, -+, X},,) can be gotten after pre-
processing on each RP, where X, is the received signal
strength measured on the i-th RP from the k-th AP. The i
-th fingerprint (RSS;, C;) is obtained combining RSS; with
its corresponding coordinates C; = (c;;,¢;,). The set of all
fingerprints is the radio map, as shown in Figure 1. In the
online phase, the user’s location can be calculated by match-
ing the collected RSS with the RSS data in the radio map.
For this positioning system, in order to get accurate posi-
tioning results, we need to construct an accurate radio map.
Therefore, it is necessary to set as many RPs as possible in
the indoor positioning area to collect more RSS data. There-
fore, the positioning accuracy depends on the accuracy of
the radio map and the number of fingerprints in the radio
map. However, two problems hinder the establishment of
an accurate radio map. First, collecting RSS data on all RPs
takes a lot of time and labor costs. Secondly, due to the com-
plex indoor electromagnetic environment, the collected RSS
data contain a lot of noise. According to the signal
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FIGURE 1: Typical fingerprint-based WLAN indoor positioning system.

propagation model, WLAN signal strength decreases with
the increase in distance. The wireless signal propagation
model is shown in [34]

P.(d)=Pt—P(d0) - 10n log 10<%), (1)

where d denotes the distance between the location of the col-
lected signal and the AP, P,(d) represents the received signal
strength of AP, Pt is the transmit power of AP, and P(d0)
represents the received signal strength at a distance of d0.
n is a known parameter that represents the path loss.

Since the received signal strength decreases with the
increase in distance and the distance between the adjacent
reference point and AP is close, the adjacent reference
point has highly similar signal strength. As a result, there
is a spatial correlation between RSS data, and the RSS
matrix in the radio map has low-rank characteristics.
Using the low-rank characteristic of the RSS matrix, we
only need to collect a small amount of RSS data at some
reference points, and the complete RSS matrix can be
obtained by the low-rank matrix completion algorithm.
Then, the low-rank matrix recovery algorithm is used to
separate RSS data from noise, so as to reduce the noise
in the radio map and improve the accuracy of the radio
map. Therefore, the construction process of the complete
radio map is shown in Figure 2.

4. Methods

4.1. Low-Rank Matrix Completion with the F-Parameter.
With the explosive growth of data volume, the dimension
of data is increasing, and there is more correlation between
high-dimensional data. Therefore, the growth of informa-
tion content of the data itself is slower than that of the data
dimension. For example, after feature extraction, a large
number of the same features of the image will be discarded.
After the wave transformation, only a small number of coef-
ficients are relatively significant in numerical size. If the
image is regarded as a pixel matrix, after singular value
decomposition, a small number of singular values often con-

tain 90% of the information of the whole image. These
examples show that in high-dimensional data, there are
often varying degrees of correlation, which can greatly
reduce the storage space of data.

Assume that the original data matrix is low-rank, but the
matrix contains many unknown elements. Completion of an
incomplete matrix into a complete matrix is called a low-
rank matrix completion problem. The low-rank matrix com-
pletion model is shown in Figure 3.

The matrix completion problem is aimed at estimating
the information of unknown elements through partial obser-
vation data of the matrix. Without other constraints, such
problems are completely unsolvable. However, if the data
matrix has some special properties, it will make the matrix
completion problem possible. Low rank is such a property.
If the matrix M is known to be low-rank in advance, the
matrix completion problem can be formulated as the follow-
ing optimization problem.

min rank (X)

. (2)
s.t.Xi)j = Mi'j, (i,j) €,

where Q is the set of observable sample subscripts, X is the
matrix filled by the low-rank completion algorithm, M is
the true matrix with missing elements, Xi, j is the element
of the i-th row and j-th column of the X matrix, and Mji, j
is the element of the i-th row and j-th column of the M
matrix.

If we set the data on the RP outside the coordinate set
to 0, we get

(i, 1) €Q,
[Mf,j<X>]={X”f ()€ 3)

0, otherwise.

The above problem is NP-hard. The complexity of the
problem increases with the increase in matrix dimension,
and the convex hull of function rank (X) is the kernel norm
IX|| of matrix X, that is, the sum of all singular values of
matrix X, so the problem is converted into a convex
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optimization problem.

min|| ]|,

(4)

stX; =M, (i,j) € Q.

In Reference [35], the authors point out that the solution
of equation (4) is equivalent to the solution of rank (X)
under strong incoherent conditions. Reference [36] has
proven that the kernel norm is a convex hull with a spectral
norm of 1. Therefore, this is a convex relaxation problem of
NP-hard problems. If the position of m reference points of
the collected data is randomly uniformly distributed, then
when m > Cn6/5r log n, the observation matrix M has a
great probability to receive the optimal solution for the opti-
mization problem, where # is the constraint parameter, r is
the rank of the matrix M, satisfying 1< =r< =m<=n,
and C is a positive constant.

Although the model can produce low-rank solutions,
the kernel norm of the matrix to be filled is only consid-
ered by the model, which may lead to the instability of
the solution obtained by the completion problem of the
matrix with a strong correlation. Therefore, on the basis
of this model, the F-parameter of the matrix to be filled
is introduced as a new regularization term, and a joint
regularization term is formed with the original kernel
norm [22]. Therefore, the uniqueness and low rank of
the solution are controlled by the kernel norm, and the
stability of the solution is controlled by the F-parameter.

The regularized model is

mint|X], + 5 |X]/ 5
s.t.pQ(X) = pQ(M), (i, j) € O,

where 7>0. When 7 — 00, the optimal solution of the
above optimization problem converges to the optimal
solution of the kernel function. Define P,(X) as the pro-
jection operator; Pq(X) =M, ;(X). Construct the Lagrange
function of the optimization problem after the regulariza-
tion model:

LX. Y) = || X]|, + %IIXIIZF + (Y, Po(M=X)),  (6)

where the Lagrange multiplier Y €R,,,,. Let X€R,,,, be
defined by

X=USVT, (7)

where U and V are orthogonal matrices, X is a diagonal
matrix, and the elements on the diagonal are singular
values of the matrix X. There are three properties of sin-
gular values.

Property 1: nonnegativity, i.e., singular values ¢i > 0.

Property 2: the number of nonzero singular values of the
matrix is equal to the rank of the matrix.

Property 3: the maximum singular value of the matrix is
equal to the spectral norm, i.e., 0 max = || X||2.

For X=UZVT, X =diag ({oi}),1<i<r, and for each
7 >0, we have

D,(X)=UD,()V", (8)

where D, (X) = diag ({oi— 1} +) is the soft threshold opera-
tion, diag refers to the diagonal elements of the singular
value matrix, and + indicates that the singular value oi is
guaranteed to be nonnegative when it tends to 0. It is defined
as follows:

X—-T, X>T,
D.(X)={ x+1, x<T, (9)
0, otherwise.

Since the above operation is an approximation of the



kernel function, the above equation can be converted to
1
D,(¥Y)=argmin - [X- Y| +7|X],.  (10)

The optimization problem is solved using alternating
iterations, and the specific iteration format of which can be
simply stated as follows:

Xk =D, (Yk-1),
Yk=Yk -1+ 8k PQ(M - Xk),

(11)

where Y is the auxiliary matrix, M is the measurement
matrix (containing missing values), P, is the position of
the known elements, and 8k is the iteration step. The object
of Dt(X) is the matrix which can be specifically described as
the following equation:

[usv] = svd(X),
D,(X)=¢ X=sgn .* max (abs(X) - 7,0), (12)
X'=UxzxV"

The final convergence discriminant is

|PQ(M - Xk)||F (13)
[P(M)[[F
4.2. Low-Rank Matrix Recovery. Large-scale data processing
is often accompanied by data missing, damage, and other
issues. For example, in the face recognition model, the face
images to be recognized in the training set contain shadows,
highlight, occlusion, deformation, etc. In structure from
motion (SFM) problems, large matching errors often exist
in feature extraction and feature matching. Correct and effi-
cient recovery of original data from damaged data is crucial
for the analysis and processing of modern large-scale data.
Assume that the original data matrix is low rank and the
matrix elements contain a lot of noise. To recover a complete
low-rank matrix from a matrix containing noise is a low-
rank matrix recovery problem. The recovery framework of
the low-rank matrix is shown in Figure 4.

When there is no noise or Gaussian noise in the data, the
classical data recovery method is principal component anal-
ysis [37].

X=A,+E, (14)

where X is the observation matrix, A0 is a low-rank matrix,
and EO is a Gaussian matrix with the independent identi-
cal distribution. However, when the matrix EO does not
satisfy the Gaussian distribution but a sparse noise matrix,
the principal component analysis method is no longer
applicable to solve this problem. In this case, the matrix
is decomposed into a low-rank matrix part A and a sparse
noise matrix part E.

X=A+E. (15)
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Because the noise is sparse, it can be characterized by
the LO norm. The original sparse noise problem can then
be modeled as the following optimization problem.

I%En rank (A) + A||E||,

(16)
s..Po(X) = Po(M), (i j) € O,

where X,A,E€Rm *n and X is the observation matrix.
Since this problem is NP-hard, the L0 norm of the matrix
is relaxed to the L1 norm, and the following equation is
obtained:

min [|A]|=+A[|E]|,
AE (17)
s.t.Po(X)=Po(A+E).

The method to solve this problem is called robust
principal component analysis. If the singular value distri-
bution of the low-rank matrix A is reasonable and the
nonzero elements of the coefficient matrix are evenly dis-
tributed, the original low-rank matrix A can be recovered
from any unknown error by the convex optimization
problem with the probability of close to 1.

The augmented Lagrangian function was constructed for
the optimization problem in equation (17).

L(A,E, Y, u) = ||A||, + A||E||,+ < Y,X—A—E>+;HX—A—E||2F.

(18)

When Y =Y, and u=uy,, the optimization problem is
solved using the inexact Lagrange multiplier method:

Igl}EnL(A, E, Y, u). (19)

Then, the update equation of A and E is

Apyr =arg minL(A, Eg,y, Yy, )
A

Y
=D, | X-E+1+—,
k ”k

Eyyy = arg minL(Ay,, E, Yy, uy)
E

Yy
=S1, X_Ak+1+u_k ,

where D, (*) is singular value operations, regarding equa-
tion (14). S, (*) are soft threshold operations as follows:

Sy (5) =g () (1= ). 1)

Then, the update equation of the matrix Y is

Yig =Y+ u(X = Ay — Epy)- (22)
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The formula for parameter u, is as follows:

Ui || Exr — Eill ce
X1 (23)

u,  otherwise,

Pl
U1 =

where p(p > 1) is a constant and &(e > 0) is a small positive
number.

4.3. Indoor Positioning System with Low-Rank Completion.
According to the above theory, if the matrix has low-rank
characteristics, the missing elements of the matrix can be
filled by the low-rank matrix completion algorithm. When
collecting data, due to personnel movement, mobile phone
orientation, and other reasons, the collected RSS value con-
tains a lot of environmental noise, and the internal sensors
of the equipment also produce equipment noise. Therefore,
the established radio map contains a lot of noise. Because
of the existence of noise, the low-rank matrix completion
algorithm cannot achieve ideal results. In order to solve the
above problem, we add a sparse noise term to the matrix
completion model, and the proposed algorithm combines
the completion and recovery algorithms of the low-rank
matrix, which is more stable and robust than the original
model. The indoor positioning system framework with the
low-rank completion and recovery algorithm is shown in
Figure 5.
The improved model is

ng’iEn rank (A) + A[|E||, + u||A||

(24)

s..Po(X) = Po(A +E).

The nonconvex problem in equation (24) can be trans-
formed into the following convex optimization problem.

min || 4] ++A]|E], + [ A|[F2
’ (25)
s.t.X=A+E, Py (E)=0.

For the optimization problem in equation (25), the aug-
mented Lagrange function is constructed as follows:

L(A,E, Y) = ||A||*+A||E||1 + u||A||2F+<Y,X-A-E>
+§ IX - A-E|2.

(26)

The optimal solution of the problem is solved by using
the alternating direction multiplier method.

(A,E)=argmin L(A,E,Y).
AE,Ye€Rm*n

(27)

In order to facilitate the derivation of the formula, B is
used to replace the regularization term of the F-parameter
to distinguish the kernel parameter and the F-parameter.

We can get
) 2
min[A|, + Al|El, + u B}
stX=A+EPy(E)=0 (28)

s.t.B=A.

Since two constraints are added, the impact should be
divided into two parts. Therefore, the penalty factor is
divided into two parts. Let Y =(Y;,Y,) and p={(p;, p,)
and reestablish the Lagrange function as follows.

L(A,B,E, Y1, Y2) = ||A||++A[|E||1 + u||B|[2F+ < Y, X - A
—E>+%||X—A—EH2F+ <Y,B

—A>+%|\B—AH2.

(29)
Equation (29) was further rewritten as follows:
L(ABE Y, Yy) = |[Alls+A El|, + u|[B|2F
P1 1
+ —||X-A-E+ —Y,||2F
P1 : (30)
1
+P2llp_a+ —v,|2F
P2

The formulas are updated by alternating variables for
iterative solutions. The formulas for each variable are listed
below.

1 1 2 1
A=A+ |x-a-E+ —v1|2F+ P2|B- A+ v22F,
2 pl 2 p2

(31)

p2 1
B=u||B||2F+ —||B- A+ — Y2|]2F, (32)
2 p2
pl 1
E=}t||E||1+7 X—A—E+—1Y1 2F. (33)
p

The solution of A can be expressed by the singular value
threshold operator, so that the solution of A is

Ak+1=

D <p1(X—Ak—Ek+iY1k>
PitpPy PitP; P1

+p2<Bk+ PLY2k>).
2

The solution of B can be obtained optimally by finding
the partial derivative.

(34)

_ pAk+ Y2k
u+p,

Bk+1 (35)
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The solution of E can be expressed by the soft threshold
operator, so that the solution of E is

1
Ek+1:—Si(pl(X—Ak+1—Ek)+Y1). (36)
P Pl

Finally, update Y, and Y,.

Ylk+1=Ylk+p, (X—A"+1 —Ek“), (37)

Y2k+2=Y2k+p, (Bk“ - Ak“) . (38)

5. Experimental Results and Analysis

This section provides details on the experimental results of
the proposed method using both simulations and implemen-
tations. The positioning area is located in the 4th floor of
building 9 at Shandong University of Technology. In this
location area, we divide the whole location area into several
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FIGURE 9: The radio map calculated by the improved low-rank
completion method.
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Figure 10: Completion error diagram.

TasLE 1: Completion errors of different algorithms.

Algorithm Err (dBm)

Low-rank completion 9.83

Improved low-rank completion 6.52
25.48
11.69
50.13

Spline interpolation (x)
Spline interpolation (y)
Spline interpolation (0.0)

grids, and each grid spacing is 0.5 m, with a total of 342 ref-
erence points, as shown in Figure 6.

A total of 26 APs are installed in this positioning area,
and a Redmi K30 Pro mobile phone is used to collect RSS
values. In order to verify the effectiveness of our algorithm,
we construct a database without missing elements. We col-
lected 100 RSS data at each reference point, removed the sin-
gular values, and used the remaining RSS values to calculate
the average. Using the average value to establish the radio
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map can effectively improve the positioning accuracy. How-
ever, it took us weeks and a lot of manpower costs to build
the radio map. The complete radio map is shown in
Figure 7. In Figure 7, horizontal coordinates represent differ-
ent APs and ordinates represent different RPs, and different
colors represent the intensity of the RSS.

In order to quickly establish the radio map, we reduce
the scale of data collection and only collect RSS data at
40% RPs. The obtained incomplete radio map is shown in
Figure 8. Then, the low-rank matrix completion method is
used to expand the RP data, and the complete radio map is
obtained. The experimental results are shown in Figure 9.

To demonstrate the completion effect after completion,
we define the difference between the complete radio map
and the radio map filled from the 40% data using the pro-
posed completion algorithm as the completion error, and
the definition equation is

0=x"-X, (39)

where X' denotes the complete radio map and X denotes the
result of completion of the radio map constructed from 40%
data using the proposed completion algorithm. 0 denotes the
completion error. That is, the smaller the value is, the closer
the completion result is to the ideal radio map and the better
the completion effect is. The completion error result is
shown in Figure 10. As illustrated in Figure 10, most com-
pletion errors are less than 3 dBm.

As shown in Figure 10, the RSS values at unmeasured
RPs can be filled effectively by the improved low-rank matrix
completion algorithm, and the completion effect is satisfac-
tory. In order to further show the completion effect of the
algorithm, we use a cubic spline interpolation method to

interpolate the incomplete radio map and calculate the com-
pletion error. The results are shown in Table 1.

It can be seen from Table 1 that since the interpolation
algorithm is greatly affected by the data arrangement, the
completion effect is not ideal by using the interpolation
method. When the low-rank completion algorithm is used
to fill the reference point, the inherent relationship between
the low-rank characteristics of the RSS matrix and the RSS
value between adjacent reference points is used, so the radio
map obtained has high accuracy and small completion error.
In order to show the influence of the algorithm on the actual
positioning results, the complete radio map, the incomplete
radio map, and the radio map filled with the proposed algo-
rithm and the cubic spline interpolation algorithm are used
as the fingerprint database in the offline training phase. In
the online positioning phase, we use the classic KNN algo-
rithm (K = 3) to calculate the user location, and the cumula-
tive distribution function curves of positioning error for
different algorithms are shown in Figure 11.

It can be seen from Figure 9 that when the incomplete
radio map is directly used for positioning, the probability
of error within 2 m is 63%, and the positioning accuracy can-
not meet the actual requirements. When the reference points
are arranged according to the distance from the x-axis, the y
-axis, and the distance from the origin, the interpolation
method is used to expand the reference point, which can
improve the positioning accuracy to a certain extent. The
probability of error within 2m is increased to 78%, 77%,
and 67%, respectively. When the reference points are
arranged according to the distance from the x-axis, the y
-axis, and the origin, the interpolation method is used to fill
the radio map, and the filled radio map is used to analyze the
positioning error. The probability of error within 2m is
increased to about 78%, 77%, and 67%, respectively.
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However, the completion effect of the radio map is affected
by the order of RPs. Since it is impossible to know how to
arrange before completion to ensure the strongest correla-
tion between RSS data, it is difficult to achieve the best com-
pletion effect and positioning accuracy. The improved low-
rank completion algorithm uses the low-rank characteristics
of the RSS matrix and the correlation between RSS data to
fill the radio map, and the completion result has a unique
solution. Therefore, the probability of positioning error
within 2 m is increased to more than 90%, and the position-
ing accuracy is higher than that of the interpolation method.

In summary, the low-rank matrix completion algorithm
proposed in this paper can significantly reduce the workload
of building a radio map while ensuring high positioning
accuracy.

6. Conclusions

In this paper, an improved low-rank matrix completion
method is proposed to realize the rapid establishment of
the radio map. To reduce the workload of building the radio
map in the offline phase, the matrix completion algorithm is
introduced to build the radio map by using the low-rank
characteristic of the RSS matrix. The F-parameter is intro-
duced to the traditional low-rank matrix completion model
to improve the stability of the algorithm, and the sparse
noise term is also introduced to solve the noise interference
due to environmental factors. The experimental results show
that under the premise of ensuring the same positioning
accuracy, the time and labor cost of radio map establishment
in the offline phase can be effectively reduced and the influ-
ence of noise on the radio map is eliminated simultaneously.

Data Availability

The radio map data used to support the findings of this
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