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SPARX is a family of ARX-based block ciphers designed according to the long-trail strategy, which has 32-bit ARX-based SBoxes
and has provable bounds against single-differential and single-linear cryptanalysis. Since its proposation, some third-party
cryptanalysis methods have been presented. As far as we know, the best attacks against SPARX-64 covered 16 (out of 24)
rounds. In this paper, we propose zero-correlation linear attacks on SPARX-64. At first, we construct some new zero-
correlation linear distinguishers covering 14-round and 15-round SPARX-64. Then, 15,16,17 and 18-round versions can be
attacked using multidimensional or multiple zero-correlation linear attack models, under DKP(distinct known plaintexts)
settings. These are the best attacks against SPARX-64 up to now, regarding to the number of attacked rounds. Finally, we
transform the zero-correlation distinguishers into integral ones using existing methods, which are also longer than the ones
proposed by the designers.

1. Introduction

SPARX [1], introduced by Dinu et al. at ASIACRYPT’16, is
the first ARX based family of block ciphers with the aim of
providing provable security against single-trail differential
and linear cryptanalysis. To achieve this target, the designers
developed the long trail strategy which is different from the
well-studied wide trail strategy [2] used in the design of
AES. The long trail strategy advocates the use of large and
comparatively expensive SBoxes in conjunction with
cheaper and weaker linear layers. All the instances of
SPARX, (SPARX-64/128, SPARX-128/128 and SPARX-
128/128) use three or four rounds of SPECK [3] with sub-
keys as the big SBox, which can be specified using three sim-
ple operations: addition modulo 216 (⊞), 16-bit rotations
(≪<2 and ≫>7) and 16-bit Xor ( ⊕ ).

There have been some cryptanalysis results on the family
of SPARX. The designers gave the provable bounds on the
probability of differential characteristic and the bias of linear
trail. There is no differential or linear trail with significant
probability for 5 (or more) steps. Also, they made integral

attacks with the help of Todo’s division property [4]. For
SPARX-64/128, the attack covers 15 rounds and recovers
the key in time 2101 using 237 chosen plaintexts. Morever,
the integral attacks cover 22-round SPARX-128/128 and
24-round SPARX-128/256. Then Abdelkhalek et al. [5]
attacked 16-round SPARX64-128 using impossible differen-
tial attack, with the help of one 13-round distinguisher and
the dependencies between the subkeys. Later, Tolba et al.
[6] proposed multidimensional zero-correlation linear
attacks on up to 25 rounds of SPARX-128/256 and 22
rounds of SPARX-128/128. Recently, Ankele and List [7]
presented chosen-ciphertext differential attacks on 16-
round SPARX-64/128. Previous attack results on SPARX-
64/128 are compared in Table 1.

There is no zero-correlation cryptanalysis results on
SPARX-64/128 from the literatures and we focus on this
method in this paper. Zero-correlation [8] is one powerful
tool in the cryptanalysis of block ciphers. Similar to that
the impossible differential distinguisher uses a differential
with probability zero, the zero-correlation distinguisher uses
a linear hull with correlation zero. Then this technique

Hindawi
Journal of Sensors
Volume 2021, Article ID 2193543, 11 pages
https://doi.org/10.1155/2021/2193543

https://orcid.org/0000-0002-3435-9201
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2193543


develops a lot and some new models have been proposed,
such as the multiple zero-correlation linear cryptanalysis
[9], the multidimensional zero-correlation linear cryptanaly-
sis [10] and some improved versions [11, 12]. In particular,
Sun et al. [12] removed the approximation from the χ2

-distribution to the normal distribution during the construc-
tion of multiple and multidimensional zero-correlation lin-
ear attack (MPZC and MDZC) models, which released the
restriction on the number ‘ℓ’ of zero-correlation linear hulls,
i.e., ‘ℓ’ sholud be large enough. The new models were called
χ2-MPZC and χ2-MDZC.

To improve the time complexity of linear attacks using
algorithm 2, FFT technique was proposed in [13]. When
the target bit for the linear distinguisher is a function of x
⊕ k where x, k are both n-bit values, the time can be
improved from 22·n to 3 · n · 2n simple calculations.

Our Contributions.We evaluate the security of SPARX-
64/128 using the zero-correlation cryptanalysis in this paper:

(1) We find some new zero-correlation distinguishers.
By extending the existing simple zero-correlation
distinguisher proposed in [6], we construct several
multidimensional zero-correlation distinguishers
covering 14-round SPARX-64. Morever, with careful
selection of the input mask, we can extend some dis-
tinguishers by one more round and get three 15-
round zero-correlation distinguishers. These are the
longest zero-correlation linear distinguishers of
SPARX-64 as we know

(2) Using the new zero-correlation distinguishers, we
make zero-correlation linear attacks with the help
of multiple/multidimensional zero-correlation linear
cryptanalysis model in [12]. The multidimensional
zero-correlation attack covers 15-round and 16-
round using 14-round distinguishers. Then the
zero-correlation attack with one single 15-round lin-
ear hull covers 17-round. What’s more, with the help
of FFT technique, we also can attack 18-round

SPARX-64. These are the best attacks from the view
of number of rounds attacked

(3) Also, we transform the zero-correlation linear distin-
guishers into integral distinguishers. As a result, we
can get some 14-round and 15-round integral distin-
guishers with balanced properties. The balanced
property means that the numbers of each value in
the output sets are equal for the integral distin-
guisher, while the zero-sum property means the
Xor-sum is zero

Outline. First, we describe the target block cipher
SPARX-64/128 and the zero-correlation linear attack models
in Sect.2. In Sect.3, we show how to construct the 14-round
and 15-round zero-correlation linear distinguishers for
SPARX-64. Then we give the multidimensional zero-
correlation and multiple zero-correlation linear cryptanaly-
sis against SPARX in Sect.4 and 5. Sect.6 describes some
new integral distinguishers and finally, Sect.7 concludes this
paper.

2. Preliminaries

2.1. Notations. The following symbols and notations are
used throughout this paper:

(i) ⊞: addition modulo 216

(ii) ⊕ : bit-wise Xor

(iii) ≪<: 16-bit rotation to the left

(iv) ≫>: 16-bit rotation to the right

(v) ‖: concatenation of two bit strings

(vi) xL: left half (16-bit) of the word x (32-bit).

(vii) xR: right half (16-bit) of the word x (32-bit).

(viii) SPECKEY-3R: three rounds of SPECKEY

Table 1: Attacks on SPARX-64/128.

#rounds Attack types Data Time Ref.

15 Integral 237CP 2101:0 [1]

15 Impossible differential 251:0CP 294:1 [5]

16 Impossible differential 261:5KP 294:0 [5]

16 Truncated differential 232CC 293 [7]

16 Rectangle 259:6CC 2122 [7]

16 Yoyo 264CP 2126 [7]

15 Multidimensional zero-correlation 258:6DKP 2106 Sect. 4.1

16 Multidimensional zero-correlation 262:5DKP 2101 Sect. 4.2

17 Zero-correlation 263:6DKP 2127 Sect. 5.1

18 Zero-correlation 263:6DKP 2127:2 Sect. 5.2

∗ CP: Chosen Plaintext; KP: Known Plaintext; ∗ CC: Chosen Ciphertext; DKP: Distinct Known Plaintext. ∗ In KP settings, the samples are obtained randomly
while in DKP settings there is a restriction that the plaintext-ciphertext samples are non-repeating.
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(ix) K2i, K2i+1: the subkeys used in the left and, respec-
tively, right SPECKEY-3R of the i-th step of
SPARX-64. Each has three 32-bit words K∗,1, K∗,2

, K∗,3, used in three rounds of SPECKEY-3R,
respectively

(x) 1xb(0xb,?xb): x-bit of ‘1’(‘0’,’?’).’?’ is one undetermined
bit

(xi) x½i�: the i-th bit of bit string x. x½0� is the least sig-
nificant bit

(xii) x½j ~ i�: the concatenation of x½j�, x½j − 1�,⋯, x½i�, j
> i

2.2. Brief Description of SPARX-64/128. SPARX-64/128 is
the lightest instance of the SPARX family. It operates on
two 32-bit words and uses a 128-bit key. There are 8 steps
and 3 rounds per step. A high level view of SPARX-64/128
and the general structure of a step is shown in Figure 1. Both
branches have non-linear operations SPECKEY-3R, which
means three rounds of SPECKEY, involving three 32-bit
subkeys. SPECKEY splits the state into two 16-bit branches
and xor the left and right half key bits, i.e., Ki,j

L and Ki,j
R , in

each branch before the non-linear operations. The linear
layer L operates 32-bit value as follows,

L xð Þ = xL ⊕ xL ⊕ xRð Þ≪<8ð Þ xR ⊕k xL ⊕ xRð Þ≪<8ð Þ: ð1Þ

In the i-th step of SPARX-64, six 32-bit subkeys K2i,1,
K2i,2, K2i,3, K2i+1,1, K2i+1,2, K2i+1,3 are involved. In particular,
K2i,1, K2i,2, K2i,3 are used in the left SPECKEY-3R and
K2i+1,1, K2i+1,2, K2i+1,3 are used in the right SPECKEY-3R.

The 128-bit permutation used in the key schedule is sim-
ple, which is shown in Algorithm 1. For more details, please
refer to [1].

2.3. χ2 − Multiple/Multidimensional Zero-Correlation
Cryptanalysis. We start this section with the introduction
of MPZC and MDZC models. Suppose that there are N
plaintext-ciphertext samples and ℓ zero-correlation linear
approximations for an n-bit block cipher. For the i-th
approximation, the adversary counts the samples which
make the linear approximation hold and gets the corre-
sponding counter Ti. Under the model of MPZC cryptanal-
ysis, the adversary evaluates the following statistic:

TMP =N〠
ℓ

i=1
2Ti

N
− 1

� �2
: ð2Þ

For MDZC model, the ℓ zero-correlation linear
approximations form a linear space (considering the zero
vector in) with dimension m and then ℓ = 2m − 1. For each
plaintext-ciphertext sample, the adversary evaluates the m
base linear approximation and obtains an m-bit value z.
By iterating all N samples, the adversary would get a
counter vector V ½z� with z = 0, 1,⋯, 2m − 1. The statistic

used in MDZC is:

TMD = 〠
2m−1

z=0

V z½ � −N2−mð Þ2
N2−m : ð3Þ

To estimate the data complexity and success probabil-
ity, researchers [14] considered two sampling models, i.e.,
KP and DKP. In KP settings, the samples are obtained
randomly while in DKP settings there is a restriction that
the plaintext-ciphertext samples are non-repeating. In [14],
Blondeau and Nyberg proved TMP and TMD followed the
same distribution when the same sampling method are
applied. They gave the estimation method of data com-
plexity under these two sampling models for MPZC and
MDZC. Later, Sun et al. proposed the χ2-MPZC and
MDZC, in which they use the χ2-distributions to model
the statistics [12], instead of the normal distributions.

Considering two types of errors:

(i) Type-1 error: made by wrongfully discarding the
cipher (false negative) and suppose the probability
is α0. This is related to the success probability PS
and PS = 1 − α0

(ii) Type-2 error: made by wrongfully accepting a ran-
domly chosen permutation as the cipher (false posi-
tive) and suppose the probability is α1. This is related
to the time complexity TS of the exhaustive search
phase and TS = 2k · α1 where k is the length of the
main key

Then the χ2-MPZC and MDZC evaluate the data com-

plexity as follows.where χðlÞ
1−α0 and χðlÞ

α1
are the respective

quantiles of the χ2-distribution with l degrees of freedom
evaluated on the points 1 − α0 and α1.In the attacks, the
threshold value to distinguisher the cipher and randomly

chosen permutation is calculated as τ = χðlÞ
1−α0 .

Theorem 1. in ([12])
Suppose that the linear approximations involved satisfy

the hypotheses in [14]. The number NKP of KPs requires in
a MPZC or MDZC linear attack is

NKP ≈
2n χ

lð Þ
1−α0 − χ

lð Þ
α1

� �
χ

lð Þ
α1

, ð4Þ

and the number NDKP of DKPs required in a MPZC or
MDZC linear attack is

NDKP ≈
2n χ

lð Þ
1−α0 − χ

lð Þ
α1

� �
χ

lð Þ
1−α0

, ð5Þ
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3. Zero-Correlation Linear Hulls of SPARX-64

The 12-round zero-correlation linear hull of SPARX-64 pro-
posed in [6] is shown in Figure 2, which is ðα, 0Þ⟶ð0, βÞ,
α ≠ 0, β ≠ 0. α1, α2 are linear masks derived from the input
mask α, while β1, β2 are linear masks derived from the out-
put mask β. The contradiction appears in the second linear
permutation L , where the corresponding input mask is zero
while the output mask is non-zero value α2ð= β2Þ . This dis-
tinguisher is like the 5-round zero-correlation linear hull of
Feistel structure [8] with bijected F functions, which only
takes advantage of the properties of the structures. In the fol-

lowing subsections, we will study the detailed property of
linear mask’s propogation in SPECKEY and construct longer
zero-correlation linear hulls.

Since there are only Xor ( ⊕ ), Modulo Addition (⊞),
Branch (⊢) and Rotation (≪< or >≫), we review how the
linear masks propogate through these operations. Let x, y, z
be values and Γx, Γy, Γz be the corresponding masks.

a 0

a1 0
SPECKEY-3R SPECKEY-3R

0 a1

0 a2

⊕
⊕L

SPECKEY-3R SPECKEY-3R

0⊕0=0 𝛼2=𝛽2≠0

Contradiction!

𝛽2 0

𝛽1 0

⊕
⊕L

SPECKEY-3R SPECKEY-3R

0 𝛽1

0 𝛽

⊕
⊕L

SPECKEY-3R SPECKEY-3R

Figure 2: 12-Round Zero Correlation Linear Hull of SPARX64.

KL
i,1

KR
i,1

⋘2

⋙7

⊕

⊕

⊞

(a) SPECKEY

⋘8

⊕⊕

⊕

(b) L

SPECKEY

SPECKEY

SPECKEY Ki, 3

Ki, 2

Ki, 1

(c) SPECKEY-3R

SPECKEY-3R SPECKEY-3RK2i K2i+1

⊕
⊕

(d) The i-th step of SPARX-64

x

Figure 1: (a) The SPECKEY function; (b) The linear layer L ; (c) SPECKEY-3R; (d) The i-th step of SPARX-64.

Input:MK = ðk1, k2, k3, k4Þ
Output: SKi = ðSKi,1, SKi,2, SKi,3Þ, i = 0, 1,⋯, 16
SK0 = ðk1, k2, k3Þ,r⟵ 0
For i⟵ 1to 16do

r = r + 1
k1 = SPECKEYðk1Þ
k2L = k2L⊞k

1
L

k2R = k2R⊞k
1
R

k4R = k4R⊞r
ðk1, k2, k3, k4Þ⟵ ðk4, k1, k2, k3Þ
SKi = ðk1, k2, k3Þ

Algorithm 1: Key schedule of SPARX-64/128
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Suppose the position of the first bit ‘1’ from the MSB is M
SB1ðxÞ for x. Then the masks’ relations are shown in Table 2.

Only the Modulo Addition (’⊞’) is non-linear and the
corresponding correlation may be not one. However, when
Γx = Γy = Γz = 0x0000 or Γx = Γy = Γz = 0x0001, the correla-
tion at’⊞’ is equal to 1.

3.1. Expand the Linear Hull with Input Mask ðα, 0Þ
Backward with Correlation One. In fact, by limiting the
values of α and β, we can expand the number of rounds of
zero-correlation linear hull. The main idea is to make the
input mask (or output mask) go back (or forward) one more
round with correlation one. The only non-linear operation
in one SPECK round is’⊞’, so we hope the corresponding
input mask or output mask of’⊞’ is 0x0000 or 0x0001, which
leads to linear approximations with correlation one.

For the case of input mask α, we expect that Γ1, Γ2 be
0x0001 or 0x0000, where Γ1, Γ2 are the output masks of
the ‘⊞’ in Figure 3. It’s easy to know that Γ2 = αL ⊕ αR and
Γ1 = ðLTαÞL ⊕ ðLTαÞR where LT is the transform of the linear
layer. So we can get the following four equations:

1ð Þ
αL ⊕ αR = 0x0000
LTα
� �

L
⊕ LTα
� �

R
= 0x0000

(
2ð Þ

αL ⊕ αR = 0x0000
LTα
� �

L
⊕ LTα
� �

R
= 0x0001

(

3ð Þ
αL ⊕ αR = 0x0001
LTα
� �

L
⊕ LTα
� �

R
= 0x0000

(
4ð Þ

αL ⊕ αR = 0x0001
LTα
� �

L
⊕ LTα
� �

R
= 0x0001

(

ð6Þ

According to LTα = ððLTαÞL, ðLTαÞRÞ = ðαL ⊕
ðαL ⊕ αRÞ>≫8, αR ⊕ ðαL ⊕ αRÞ>≫8Þ, we know that only the first
and forth equations have possible solutions.

(i) Equation Equation (4). holds when αL = αR

(ii) Equation Equation (7) holds when αL = αR ⊕ 0x0001

We set the condition αL = αR (See the left part of
Figure 3) and then we can derive that the linear mask
becomes

Γin1
1 , Γin1

2 , Γin1
3 , Γin1

4
� �

= 0, αRð Þ>≫2, 0, αRð Þ>≫2
� � ð7Þ

after one decrypted round. In a further step, there is Γ3 = ð
αR>≫2Þ = Γ4: To expand one more round with correlation
one, we hope the corresponding masks Γ3, Γ4 also be 0x
0000 or 0x0001. Then we obtain the only non-zero solution

αL = αR = 0x0004. At last, we get the linear mask

Γin0
1 , Γin0

2 , Γin0
3 , Γin0

4
� �

= 0x0080, 0x4001, 0x0080, 0x4001ð Þ:
ð8Þ

after two decrypted rounds.
Similarly, when the condition is αL = αR ⊕ 0x0001 (See

right part of Figure 3), we can derive that

Γin1
1 , Γin1

2 , Γin1
3 , Γin1

4
� �

= 0x0080, αRð Þ>≫2 ⊕ 0x0041, 0, αRð Þ>≫2 ⊕ 0x0001
� �

ð9Þ

Then there is Γ3 = ðαR>≫2Þ ⊕ 0x00c1, Γ4 = ðαR>≫2Þ ⊕
0x0081: In this situation, there is no value of α satisfying
Γ3, Γ4 ∈ f0x0000, 0x0001g at the same time. This means that
when αL = αR ⊕ 0x0001, we can only expand the linear hull
backward one more round and can not expand the linear
hull two more rounds backward with correlation one.

3.2. Expand the Linear Hull with Output Mask ð0, βÞ
Forward with Correlation One. For the output linear mask
ð0, βÞ, we follow the similar method. See Figure 4. At first,
we hope that the linear masks Γ5, Γ6 taking value 0x0000
or 0x0001. So we can list the following equations.

1ð Þ
βL>≫7 = 0x0000
LTβ
� �

L
>≫7 = 0x0000

(
2ð Þ

βL>≫7 = 0x0000
LTβ
� �

L
>≫7 = 0x0001

(

3ð Þ
βL>≫7 = 0x0001
LTβ
� �

L
>≫7 = 0x0000

(
4ð Þ

βL>≫7 = 0x0001
LTβ
� �

L
>≫7 = 0x0001

(

ð10Þ

According to LTβ = ððLTβÞL, ðLTβÞRÞ = ðβL ⊕
ðβL ⊕ βRÞ>≫8, βR ⊕ ðβL ⊕ βRÞ>≫8Þ, we know that only the
solutions are as follows.

(i) Equation Equation (4). holds when βL = βR = 0x
0000

(ii) Equation Equation (5) holds when βL = 0x0000, βR
= 0x8000

(iii) Equation Equation (7) holds when βL = 0x0080, βR
= 0x8080

(iv) Equation Equation (8) holds when βL = 0x0080, βR
= 0x0080

Figure 4 gives the detailed propogation of output linear
mask ð0, βÞ when βL = 0x0000, βR = 0x8000 or βL = 0x0080
, βR = 0x8080. The output mask after one more round is

Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0002, 0x0002, 0x0207, 0x0206ð Þ, Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0207, 0x0206, 0x0002, 0x0002ð Þ,
ð11Þ

Table 2: Linear Masks’ Relations among Some Simple Operations.

Operation Values’ relation Masks’ relation

⊕ z = x ⊕ y Γx = Γy = Γz

⊢ y = x, z = x Γx ⊕ Γy ⊕ Γz = 0.
≪< y = x≪ <i Γy = Γx ≪ <i
>≫ y = x >≫i Γy = Γx >≫i

⊞ z = x⊞y MSB1 Γxð Þ =MSB1 Γy

� �
=MSB1 Γzð Þ
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Figure 3: Expand the input mask (α, 0) by two more rounds. Red signals represent the variable names and the blue are the corresponding
values.
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Figure 4: Expand the linear hull with output mask (0, β) by one more round. Red signals represent the variable names and the blue are the
corresponding values.
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respectively. Otherwise, when βL = 0x0080, βR = 0x0080,
there is

Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0205, 0x0204, 0x0205, 0x0204ð Þ:
ð12Þ

We list the zero-correlation linear hulls in Table 3. #R
denotes the number of rounds of the distinguishers.

4. Multidimensional Zero-Correlation
Cryptanalysis of SPARX-64 Using 14-
round Distinguishers

In this section, we give 15-round and 16-round multidimen-
sional attacks with 14-round zero-correlation distinguishers
in DKP sampling setting.

4.1. 15-Round Multidimensional Zero-Correlation Attack
with One 14-round Distinguisher. Wu use one 14-round
multidimensional zero-correlation distinguisher

0, γ, 0, γð Þ⟶ 0x0207, 0x0206, 0x0002, 0x0002ð Þ ð13Þ

to mount the attack. By adding one round at the top, the
attack would cover 15 rounds. The symbols Xi, Yi denote
the corresponding states derived from the plaintexts or
ciphertexts (See Figure 5). For enough plaintext-ciphertext
samples, we need to guess the corresponding subkeys and
get the numbers of all possible values of

X1,1 ⊕ X1,3, 0x0207, 0x0206, 0x0002, 0x0002ð Þ · Y1½ �: ð14Þ

Since the MSB of X1,1, i.e., X1,1½15�, is linear with K2i,2
L ½

15� and K2i,2
R ½15�, in the attack there is no need guessing

these two key bits. For simplicity, we can set them as 0. Sim-
ilarly, we can also set K2i+1,2

L ½15� and K2i+1,2
R ½15� as constant

values. So in the round before the distinguisher, the keys
need to be guessed are k1 = ðK2i,2

L ½14 ~ 0�, K2i,2
R ½14 ~ 0�Þ and

k2 = ðK2i+1,2
L ½14 ~ 0�, K2i+1,2

R ½14 ~ 0�Þ. Since Y1 is linear with

K2i+10,2 and K2i+11,2, no key bits need to be guessed in the
backward rounds.

Suppose the number of samples in the attack is N , the
attack procedure is as follows.

(i) Step 1. For N values of ½X0, Y0�, suppose K2i+10,2,
K2i+11,2 = 0, then Y0 = Y1. We can compute

tout = 0x0207, 0x0206, 0x0002, 0x0002ð Þ · Y0: ð15Þ

We get N values of ½X0, tout�.

Table 3: Zero Correlation Linear Hulls of SPARX.

#R Input mask(s) Rounds covered Output mask(s)

12 αL, αR, 0, 0ð Þ SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

0
BB@

1
CCA 0, 0, βL, βRð Þ

14
0, γ, 0, γð Þ,
0, γ, 0, γð Þ ⊕

0x0080, 0x0040, 0x0000, 0x0000ð Þ
SPECKEY − 1R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207, 0x0206, 0x0002, 0x0002ð Þ,

0x0002, 0x0002, 0x0207, 0x0206ð Þ,
0x0205, 0x0204, 0x0205, 0x0204ð Þ

15 0x0080, 0x4001, 0x0080, 0x4001ð Þ SPECKEY − 2R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207, 0x0206, 0x0002, 0x0002ð Þ,

0x0002, 0x0002, 0x0207, 0x0206ð Þ,
0x0205, 0x0204, 0x0205, 0x0204ð Þ

γ : any 16-bit non-zero linear mask.

⊞

⊕

⊕ ⊕KL
2i,2 KL

2i+1,2 KR
2i+1,2KR

2i,2

⊞

⊕

⊕ ⊕

0 𝛾 0 𝛾

0x0207 0x0206 0x0002 0x0002

14-round multidimensional ZC distinguisher
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X0,0 X0,1 X0,2 X0,3

X1,0 X1,1 X1,2 X1,3

Y1,0 Y1,1 Y1,2 Y1,3

Y0,0 Y0,1 Y0,2 Y0,3

⋙7 ⋙7

⋘2⋘2

KL
2i+10,2 KL

2i+11,2 KR
2i+11,2KR

2i+10,2

Figure 5: 15-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.

7Journal of Sensors



(ii) Step 2. Guess 30 valid bits of k1, encrypt X0,0, X0,1 by
one round and we can get X1,1. Store the numbers of
½X1,1, X0,2, X0,3, tout�.

(iii) Step 3. Guess 30 valid bits of k2, encrypt X0,2, X0,3 by
one round and we can get X1,3. Store the numbers of
½X1,1 ⊕ X1,3, tout�.

(iv) Step 4. For each guessed key, compute the statistic
value used in the multidimensional zero-
correlation attack, i.e.,

T = 〠
X1,1⊕X1,3,tout

V X1,1 ⊕ X1,3, tout½ � −N · 2−mð Þ2
N · 2−m , ð16Þ

where m = 17. When T is smaller than the threshhold value
τ, the key is supposed to be a right key candidate and can
then be checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−23, we can compute that
the data complexity N ≈ 258:616 and threshold τ = 131593.
The first three steps need

N · 1
15 + N · 230 + 249 · 230+30

� �
· 1
15 · 12 ≈ 2105 ð17Þ

encryptions. The last step needs 2128 · α1 = 2105 times encryp-
tion. So the total time complexity is about 2106 encryptions.

4.2. 16-Round Multidimensional Zero-Correlation Attack
with One 14-round Distinguisher. We can append one more
round at the bottom to attack 16 rounds (See Figure 6). To
control the time complexity, we use part of the above distin-
guisher. In detail, we only consider the input mask with
form γ = ð016−t∗tÞ, which means the distinguisher has
dimension t + 1. So k1 = ðK2i,2

L ½t − 2 ~ 0�, K2i,2
R ½t − 2 ~ 0�,

K2i+1,2
L ½t − 2 ~ 0�, K2i+1,2

R ½t − 2 ~ 0�Þ need to be guessed.
For the ouput mask ð0x0207, 0x0206, 0x0002, 0x0002Þ,

we expand it by one round. The mask pattern at Y0 would
become ð021?13, 021?1102, 031?12, 031?1002Þb. Only the non-
linear key bits need to be guessed for the last round, which
means we only consider k2 = ðK2i+10,3

L ½12 ~ 0�, K2i+10,3
R ½12 ~ 2

�Þ, k3 = ðK2i+11,3
L ½11 ~ 0�, K2i+11,3

L ½11 ~ 2�).
The attack proceudere is as follows.

(1) For N values of ½X0, Y0�, compress Y0 by one round
and get Yst1 = ðY0,0½13 ~ 0�, Y0,1½13 ~ 2�Þ and Yst2 =
ðY0,2½12 ~ 0�, Y0,3½12 ~ 2�Þ.

(2) Guess 4t − 4 bits of k1, encrypt X0 by one round and
get X1,1 ⊕ X1,3. Store the numbers of ½X1,1 ⊕ X1,3,
Yst1, Yst2�.

(3) Guess 24 valid bits of k2, decrypt Yst1 by one round
and we can get β1 = ð0x0207, 0x0206Þ · ðY2,0, Y2,1Þ.
Store the numbers of ½X1,1 ⊕ X1,3, β1, Yst2�.

(4) Guess 22 valid bits of k3, decrypt Yst2 by one round
and we can get βout = β1 ⊕ ð0x0002, 0x0002Þ · ðY2,2,
Y2,3Þ. Store the numbers of ½X1,1 ⊕ X1,3, βout�.

(5) For each guessed key, compute the statistic value
used in the multidimensional zero-correlation
attack, i.e.,

T = 〠
X1,1⊕X1,3,βout

V X1,1 ⊕ X1,3, βout½ � −N · 2−mð Þ2
N · 2−m , ð18Þ

where m = t + 1. When T is smaller than the threshhold
value τ, the key is supposed to be a right key candidate
and can then be checked using two plaintext-ciphertext
pairs.

By setting t = 8, α0 = 2−2:7 and α1 = 2−28, we can compute
that the data complexity N ≈ 262:531 and threshold τ = 543.

⊞

⊕

⊕ ⊕

⊞

⊕

⊕ ⊕

0 𝛾 0 𝛾𝛾=016−t⨯t

0x0207 0x0206 0x0002 0x0002

14-round multidimensional ZC distinguisher

⊞

⊕

⊕ ⊕

⊞

⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕
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(031?1002)b
(031?12)b

X0,0 X0,1 X0,2 X0,3

X1,0 X1,1 X1,2 X1,3

Y1,0 Y1,1 Y1,2 Y1,3

Y0,0 Y0,1 Y0,2 Y0,3

⋙7 ⋙7

⋙7⋙7

⋘2 ⋘2

⋘2⋘2
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2i,2 KR

2i,2 KL
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KL
2i+10,3 KL

2i+11,3KR
2i+10,3

KL
2i+10,2

KR
2i+10,2 KL

2i+11,2
KR

2i+11,2

KR
2i+11,3

Figure 6: 16-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.
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The first four steps need

N ⋅
1
16 +N ⋅ 24t−4 ⋅ 1

16 + 24t−4 ⋅ 254 ⋅ 224 + 231 ⋅ 224+22
� �

⋅
1
16 ⋅

1
2 ≈ 2100

ð19Þ

encryptions. The last step needs 2128 · α1 = 2100 times encryp-
tion. So the total time complexity is about 2101 encryptions.

5. Zero-Correlation Cryptanalysis of SPARX-64
Using 15-round Distinguisher

In this section, we give 17-round and 18-round attacks with
15-round zero-correlation distinguisher in DKP sampling
setting. Notice that there is only one single zero-correlation
linear hull. However, we also can use the multiple zero-
correlation linear attack model to estimate the data complex-
ity, as shown in [12].

5.1. 17-Round Zero-Correlation Attack with One 15-round
Distinguisher. We use the 15-round zero-correlation distin-
guisher

0x0080, 0x4001, 0x0080, 0x4001ð Þ⟶ 0x0207, 0x0206, 0x0002, 0x0002ð Þ
ð20Þ

to attack 17-round SPARX64/128.
We add one round at the top and one round at the bot-

tom to make the attack which is similar to the 16-round
attack, except that the distinguisher here is 15-round (See
Figure 7). The key bits involved in this attack are k1 = ð
K2i,1

L ½15 ~ 7, 4 ~ 0�, K2i,1
R ½13 ~ 0�, K2i+1,1

L ½15 ~ 7, 4 ~ 0�, K2i+1,1
R ½

13 ~ 0�Þ and k2 = ðK2i+10,3
L ½12 ~ 0�, K2i+10,3

R ½12 ~ 2�Þ, k3 = ð
K2i+11,3

L ½11 ~ 0�, K2i+11,3
L ½11 ~ 2�Þ.

The attack procedure is as follows.

(1) For N values of ½X0, Y0�, compress Y0 by one round
and get Yst1 = ðY0,0½13 ~ 0�, Y0,1½13 ~ 2�Þ and Yst2 =
ðY0,2½12 ~ 0�, Y0,3½12 ~ 2�Þ.

(2) Guess 56 bits of k1, encrypt X0 by one round and get
β0 = ð0x0080, 0x4001, 0x0080, 0x4001Þ · X1. Calcu-
late the numbers of ½Yst1, Yst2� according to the sign
of β0 (+1 if β0 = 0, −1 if β0 = 1).

(3) Guess 24 valid bits of k2, decrypt Yst1 by one round
and we can get β1 = ð0x0207, 0x0206Þ · ðY2,0, Y2,1Þ.
Calculate the numbers of ½Yst2� according to the sign
of β1

(4) Guess 22 valid bits of k3, decrypt Y′st2 by one round
and we can get β2 = ð0x0002, 0x0002Þ · ðY2,2, Y2,3Þ.
Calculate the final counter C according to the sign
of β2

(5) For each guessed key, compute the statistic value
used in the multiple zero-correlation attack, i.e.,

T =N
C
N

� �2
: ð21Þ

When T is smaller than the threshhold value τ, the key is
supposed to be a right key candidate and can then be
checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−1, we can compute that
the data complexity N ≈ 263:634 and threshold τ = 2. The first
four steps need

N · 1
17 +N · 256 · 1

17 + 256 · 246 · 224 + 222 · 224+22
� �

· 1
17 · 12 ≈ 2121:15

ð22Þ

encryptions. The last step needs 2128 · α1 = 2127 times encryp-
tion. So the total time complexity is T ≈ 2127 encryptions.
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Figure 7: 17-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.
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5.2. 18-Round Zero-Correlation Attack with One 15-round
Distinguisher. By adding one more round before the 17-
round attack, we can extend the attack to 18 rounds. The
key bits involved in the first round are K2i−2,3 and K2i−1,3.
According to the key schedule, we know that

K2i−2,3 = K2i,1, K2i−1,3 = K2i+1,1: ð23Þ

Let P, Y0 be the plaintext-ciphertext pair. The attack
proceudere is as follows.

(1) For N values of ½P, Y0�, guess 64 bits of K2i−2,3, K2i−1,3

and encrypt P by two rounds and get

β0 = 0x0080, 0x4001, 0x0080, 0x4001ð Þ · X1 ⊕ Y0,0 13½ � ⊕ Y0,1 13½ � ⊕ Y0,2 12½ � ⊕ Y0,3 12½ �:
ð24Þ

Calculate the numbers of ½Y ′� according to the value of
β0 (+1 if β0 = 0, −1 if β0 = 1), where

Y ′ = Y0,0 12 ~ 0½ �, Y0,1 12 ~ 2½ �, Y0,2 11 ~ 0½ �, Y0,3 11 ~ 2½ �ð Þ:
ð25Þ

(2) It’s clear that the target bit, i.e., is a function of Y ′
⊕ k, where k = ðK2i+10,3

L ½12 ~ 0�, K2i+10,3
R ½12 ~ 2�,

K2i+11,3
L ½11 ~ 0�, K2i+11,3

L ½11 ~ 2�Þ. So the target coun-
ter C can be computed using FFT techniques for all
possible keys

(3) For each guessed key, compute the statistic value
used in the multiple zero-correlation attack, i.e.,

T =N
C
N

� �2
: ð26Þ

When T is smaller than the threshhold value τ, the key is

supposed to be a right key candidate and can then be
checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−1, we can compute that
the data complexity N ≈ 263:634 and threshold τ = 2. The first
step needs N · 264 · 2/18 = 2124:464 encryptions. The second
step needs 264 · 3 · 46 · 246 = 2117:109 simple calculations. The
last step needs 2128 · α1 = 2127 times encryption. So the total
time complexity is T ≈ 2127:2 encryptions.

6. Integral Distinguishers on SPARX

Zero-correlation linear distinguishers can be transformed
into integral distinguishers according to the known results
in [10, 15]. Theorem 6 describes the result given in [15].

Theorem 2. (Corollary 4, [15])
Let F : Fn

2 ⟶ Fn
2 be a function on Fn

2 , and let A be a sub-
space of Fn

2 and b ∈ Fn
2 \ f0g. Suppose that A⟶ b is a zero

correlation linear hull of F, then for any λ ∈ Fn
2 , b · Fðx ⊕ λÞ

is balanced on A⊥.

As a result, we can transform the linear hulls in Table 3
to some integral distinguishers. Partial integral distinguisher
are geven in Table 4.

Suppose the state of SPARX64/128 is represented as ð
x0, x1,2, x3Þ where xi is a 16-bit word. The 12-round integral
distinguisher means if we set the value at x0 and x1 to consts
and let the value at x2, x3 take all possible values, the values
at x2, x3 after 4 steps (minus the last linear layer) will take all
possible values. This is the same with that proposed in [1].

The 14-round distinguisher means that when letting the
values at x0, x1, x2 take all possible values and setting x3 = x1,
after one SPECKEY round, four full steps and one SPECKEY
round, the one bit result of ð0x0207 · y0Þ ⊕ ð0x0206 · y1Þ ⊕ ð0
x0002 · y2Þ ⊕ ð0x0002 · y3Þ will be active, where ðy0, y1, y2, y3
Þ means the value after 14-round encryption. We can expand
this distinguisher one more round forward with probability 1
to get one 15-round distinguisher. The input set has 263 ele-
ments ðx0, x1, x2, x3Þ which satisfy ð0x0080 · x0Þ ⊕ ð0x4001 ·
x1Þ ⊕ ð0x0080 · x2Þ ⊕ ð0x4001 · x3Þ =‘0’ (or= ‘1’).

Table 4: Integral Distinguishers of SPARX.

#R Input sets( x0, x1, x2, x3ð Þ ∈ S) Rounds covered(f ) Active bit(s)( y0, y1, y2, y3ð Þ ∈ f Sð Þ)

12 C0, C1, A0, A1ð Þ SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

0
BB@

1
CCA ∗,∗,A3, A4ð Þ

14 A0, A1, A2, A1 ⊕ Cð Þ SPEKEY − 1R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207 · y0ð Þ ⊕ 0x0206 · y1ð Þ ⊕

0x0002 · y2ð Þ ⊕ 0x0002 · y3ð Þ

15
0x0080 · x0ð Þ ⊕ 0x4001 · x1ð Þ ⊕

0x0080 · x2ð Þ ⊕ 0x4001 · x3ð Þ = ‘0’
(or =‘1’)

SPECKEY − 2R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207 · y0ð Þ ⊕ 0x0206 · y1ð Þ ⊕

0x0002 · y2ð Þ ⊕ 0x0002 · y3ð Þ
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7. Conclusion

We have given zero-correlation cryptanalysis results against
SPARX-64/128 in this paper. 14 and 15-round zero-
correlation linear distinguishers have been proposed, which
are the longest distinguishers as far as we know. Then, with
the help of χ2-MTZD and MPZC models, we have given 15,
16, 17 and 18-round key recovery attacks of SPARX-64/128
with post-whitening key. Our attacks cover the most rounds,
while the existing attack on SPARX-64/128 covers 16
rounds. Also, we have transformed the new zero-
correlation linear distinguishers into integral distinguishers.
The longest one is 15-round, which is three rounds longer
than the existing 12-round zero-correlation distinguisher.
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