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Intelligent diagnosis applies deep learning algorithms to mechanical fault diagnosis, which can classify the fault forms of machines
or parts efficiently. At present, the intelligent diagnosis of rolling bearings mostly adopts a single-sensor signal, and multisensor
information can provide more comprehensive fault features for the deep learning model to improve the generalization ability. In
order to apply multisensor information more effectively, this paper proposes a multiscale convolutional neural network model
based on global average pooling. The diagnostic model introduces a multiscale convolution kernel in the feature extraction
process, which improves the robustness of the model. Meanwhile, its parallel structure also makes up for the shortcomings of
the multichannel input fusion method. In the multiscale fusion process, the global average pooling method is used to replace
the way to reshape the feature maps into a one-dimensional feature vector in the traditional convolutional neural network,
which effectively retains the spatial structure of the feature maps. The model proposed in this paper has been verified by the
bearing fault data collected by the experimental platform. The experimental results show that the algorithm proposed in this
paper can fuse multisensor data effectively. Compared with other data fusion algorithms, the multiscale convolutional neural
network model based on global average pooling has shorter training epochs and better fault diagnosis results.

1. Introduction

A rolling bearing is an indispensable part of industry. In the
application process, in order to improve the safety and reli-
ability of machine operation, the state of rolling bearings
must be evaluated regularly [1–4]. The traditional fault diag-
nosis method is to process and analyze the fault signal in the
time and frequency domains by the signal processing
method and rely on certain expert experience to achieve
the purpose of fault diagnosis [5–7]. However, in the actual
diagnosis process, this fault diagnosis method is more com-
plicated. In recent years, with the development of machine
learning, some machine learning algorithms, such as ANN
[8], SVM [9–11], and KNN [12, 13], have been applied to
fault diagnosis. These machine learning algorithms have
been proved to solve classification problems. However, these
algorithms need to extract input features manually. In the
mechanical fault signal, especially in the early stage of faults
or in the presence of noise interference, it is difficult to
extract sensitive fault features effectively.

In recent years, deep learning based on the deep neural
network has developed rapidly and has been successfully
applied to computer vision [14, 15], natural language pro-
cessing [16], speech processing [17], sleep-arousal detection
[18], and other fields. Deep learning introduces the convolu-
tion kernel with variable weight into the deep network to
extract features adaptively, which simplifies the complex
work of feature extraction and avoids the inaccuracy of man-
ual feature extraction. The advantage makes deep learning
algorithms such as convolutional neural networks (CNN)
[19] and deep belief networks (DBN) [20] widely used in
the field of fault diagnosis. Fault diagnosis is expected to
become more intelligent and more suitable for modern
industrial trends. At present, signal preprocessing methods
based on CNN can be roughly divided into fault diagnosis
methods based on one-dimensional (1D) CNN and fault
diagnosis methods based on two-dimensional (2D) CNN.
The fault diagnosis method based on 1D CNN is to take
the collected 1D time-domain signal as the input of the net-
work directly. Ince et al. used a one-dimensional
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convolutional neural network model with adaptive feature
extraction for fault diagnosis [21]. Liu et al. constructed a
multitask one-dimensional convolutional neural network to
solve the problem of fault diagnosis [22]. Liu et al. combined
a denoising convolutional autoencoder with a one-
dimensional convolutional neural network for fault diagno-
sis in the noisy environment [23]. The fault diagnosis
method based on 2D CNN is to transform the one-
dimensional time-domain signal into a two-dimensional
form and inputs it into the network. Transforming the
one-dimensional time-domain signals into two-
dimensional time-frequency diagrams is a common method
[24–26]. Meanwhile, some researchers have also used inge-
nious ways to transform the time-domain signal in dimen-
sionality [27–29]. In terms of model improvement,
researchers have also adopted a variety of ways to improve
the diagnostic ability of the model. Wang et al. improved
the calculation speed and stability of the network by adding
a batch normalization layer [30]. Jiang et al. constructed a
1D multiscale model for fault diagnosis [31]. Wang et al.
constructed a joint attention module (JAM) and added it
to the diagnosis model, which effectively improved the diag-
nosis performance of the model [32].

The above fault diagnosis problems are dealt with by
the fault signal measured by a single sensor. In practice,
unilateral information is often one-sided, and the informa-
tion of a single sensor may not fully reflect the fault fea-
tures due to the installation location, installation
direction, and other factors. Using more comprehensive
multisensor signals can further improve the diagnostic
capability of the deep learning model. At present,
researchers have adopted a variety of methods to diagnose
faults with multisource data. Wang et al. constructed time-
domain multisensor signals at different locations into a
two-dimensional matrix and used improved two-
dimensional CNN for diagnosis and classification [33].
Xu et al. proposed an integration model based on multi-
sensor information fusion [34]. Shan et al. fused the
extracted feature factors of multiple sensor signals and
used CNN for fault classification [35]. Wang et al. con-
verted multisensor data into color images and constructed
an improved CNN based on LeNet-5 for classification
[36]. Xia et al. input multisensor data into the CNN model
through multiple channels to solve the composite diagno-
sis problem [37]. Gu et al. proposed a multisensor fault
diagnosis model based on discrete wavelet transform
(DWT) and long short-term memory (LSTM) [38]. Kou
et al. fused the monitoring information of multisensors
after normalization and classified it by CNN [39]. Li
et al. proposed a fault diagnosis method based on multi-
scale permutation entropy (MPE) and multichannel fusion
convolutional neural network (MCFCNN) [40]. Peng et al.
extracted features from multisensor information through
short-time Fourier transform (STFT) and input the fused
features into the depth residual neural network to solve
the problem of fault diagnosis [41].

The above method combines multisensor information to
provide more comprehensive signal features for the deep
learning model to improve the representation capability.

However, in the actual signal acquisition process, there is
often noise interference, which will reduce the significance
of fault features to a certain extent, weaken the feature differ-
ences between various fault categories, and make the train-
ing process of the deep learning model more difficult.
When a certain sensor data is greatly affected by noise, add-
ing it to the training sample will reduce the quality of the
input sample. In this case, only the multisensor data is fused,
but the model is not improved in a targeted manner, which
will reduce the performance of the overall model.

In order to solve the problem mentioned above, this
paper proposes a multiscale CNN model based on global
average pooling (MSCNN-GAP). First, a data preprocessing
method without expert experience is used to transform the
one-dimensional time-domain signal into a two-
dimensional form. Then, the processed data is input into
the model. In this model, multiscale convolution kernels
are introduced to extract sample features in diversity. Multi-
feature extraction makes the deep learning model more suit-
able for fault diagnosis with noise. The parallel feature
extraction method in the multiscale structure is also better
adapted to data fusion. In the fusion part of the network,
in order to maintain the feature space of each branch chan-
nel, the global average pooling (GAP) layer is used to replace
the traditional fully connected layer in the dimensionality
reduction method, which further improves the performance
of the network. Finally, the effectiveness of MSCNN-GAP is
verified by data comparison.

The innovations and main contributions of this article
are described as follows:

(1) For the multisensor fusion model, the influence of
noise factors that may exist in the process of signal
acquisition on the performance of the model is fur-
ther considered

(2) In order to improve the adaptability of the model to
noise, an MSCNN-GAP model with a parallel struc-
ture is established
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Figure 1: Schematic diagram of the convolution process.
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Figure 2: Schematic diagram of the maximum pooling process.

2 Journal of Sensors



(3) In the feature fusion process, the GAP layer is used.
The GAP layer reduces the number of network
parameters and preserves the spatial structure of
each feature during feature fusion to further improve
the performance of the model

(4) A comprehensive experiment is designed and exe-
cuted to verify the effectiveness and robustness of
the proposed MSCNN-GAP comprehensively

This article is organized as follows. Section 2 introduces
the basic theory of multiscale CNN and global average pool-
ing. Section 3 introduces the diagnosis method of MSCNN-
GAP. In Section 4, the experimental verification is carried
out, and the experimental results are discussed. Finally, the
conclusion is given in Section 5.

2. Basic Theory

2.1. Multiscale Convolutional Neural Network. CNN is a
common network form in deep learning. It was first pro-
posed by Lecun et al. and applied to classify handwritten
digits [42, 43]. The basic CNN consists of three parts: convo-
lution, activation, and pooling [44]. Convolution is the most
basic and essential operation in CNN. The convolution
operation adopts a fixed-size convolution kernel to slide on
its input to extract the input features. The schematic dia-
gram of the convolution operation is shown in Figure 1.
The output result of the n-th feature map of the m-th layer
can be expressed as

Xm
n = 〠

K

k=1
xm−1
k ⋅ ωk + bmn , ð1Þ

where xm−1
k represents the k-th output feature map of the

previous layer, ωk represents the weight of the convolution
kernel corresponding to the k-th feature map, bmn represents
the bias term, and K represents the total number of channels
in the previous layer.

After the convolution operation, the activation function
will process the convolution output nonlinearly. Adding a

nonlinear activation layer can make the model nonlinear
so that the network can be used to solve more complex non-
linear problems. The common nonlinear activation func-
tions include the sigmoid function, tanh function, ReLU
function [45], and PReLU function [46]. The output result
after nonlinear activation can be expressed as

z = h Xm
nð Þ, ð2Þ

where hð⋅Þ represents the nonlinear activation function, Xm
n

represents the output of the previous convolution layer,
and z represents the output term.

Pooling is a way of downsampling. Adding a pooling
layer after the activation function can reduce the number
of parameters and extract the key features. The schematic
diagram of the maximum pooling process is shown in
Figure 2. Meanwhile, the pooling operation can also be used
as a nonlinear operation to improve the representation capa-
bility of the model.

With the development of deep learning, CNN is used to
deal with more complex problems. In the face of these prob-
lems, stacking deeper neural networks is a common solution.
However, due to the excessive number of parameters of the
deep neural network, the problem of gradient instability is
prone to occur in the training process, which makes training
more difficult. To solve this problem, the Google team first
proposed a multiscale structure [47]. The multiscale struc-
ture uses multiple parallel CNN structures to replace the
deep network and finally merges the feature extraction
results of each branch. Multiscale CNN can also use diverse
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Figure 3: Schematic diagram of the multiscale CNN structure.
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Figure 6: Fault diagnosis method based on MSCNN-GAP.

Table 1: Network parameters.

Layer Input Output Batch normalization

C1 1 × 64 × 64 16 × 64 × 64 Yes

P1 16 × 64 × 64 16 × 32 × 32 —

C2 16 × 32 × 32 32 × 32 × 32 Yes

P2 32 × 32 × 32 32 × 16 × 16 —

C3 32 × 16 × 16 64 × 16 × 16 Yes

P3 64 × 16 × 16 64 × 8 × 8 —

C4 64 × 8 × 8 128 × 8 × 8 Yes

P4 128 × 8 × 8 128 × 4 × 4 —

GAP 128 × 4 × 4 128 × 1 × 1 —

1

2

3

K

K1 2 31 2 3 K-1 K K+1 K+2 K×K-1K×K

Figure 5: Data conversion process.
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convolution kernels to extract input features at the same
time, which further improves the performance of CNN.
The schematic diagram of the multiscale structure is shown
in Figure 3. For the multiscale structure of three branches,
the fusion process can be expressed as

x = Concatenate σ1, σ2, σ3ð Þ, ð3Þ

where σ1, σ2, and σ3 represent the feature vectors extracted
from each scale and Concatenate ð·Þ represents the fusion
process of one-dimensional vectors.

2.2. Global Average Pooling. Normally, CNN will reshape the
feature maps into a set of one-dimensional feature vectors
after the feature extraction and output the final classifica-
tion results by using several fully connected layers. In the
case of a large number of channels, there will be more
parameters in the fully connected layer, and the model will
be more complicated. In the reshaping process, the fully
connected layer will also lose the spatial position informa-
tion of the feature maps between the channels. GAP
replaces the feature maps of each channel with a feature
number. The GAP layer can reduce the amount of data
in the model significantly, lower the risk of overfitting in
the fully connected layer, and retain the spatial position
information of each channel effectively. The global average
pooling with c channels can be expressed as

xc = Avgpool ycð Þ = 1
P ×Q

〠
P

i=1
〠
Q

j=1
yc i, jð Þ, ð4Þ

where x is the output of GAP, y is the input of GAP, and
P and Q are the width and height of the channel feature
maps. The schematic diagram of GAP is shown in
Figure 4.

3. Intelligent Diagnosis Method of MSCNN-
GAP

3.1. Data Preprocessing. Data preprocessing is an essential
part of the fault diagnosis process. An excellent preprocess-
ing method can show the fault features better to improve
the performance of the deep learning model. The most com-
mon preprocessing method is to transform time-domain sig-
nals into time-frequency graphs. However, this processing
method is more complicated and requires a certain amount
of expert experience. In this paper, one-dimensional time-
domain data is transformed into two-dimensional matrices
by dimension transformation [25]. The conversion diagram
is shown in Figure 5. For a one-dimensional signal, K × K
sampling points are taken as a sample, and each K sample
point are taken as a row and arranged in columns in turn
to form a two-dimensional matrix of K × K . This prepro-
cessing method does not require expert experience. Further-
more, it reduces the complexity of preprocessing.

3.2. Fault Diagnosis Method Based on MSCNN-GAP. In
order to reflect the fault features more comprehensively, this
paper uses multisensor data for fault diagnosis. The multi-

sensor data will be input to the network model as multichan-
nels. When the signal sample collection process is disturbed
by noise factors, the fault features will be covered by the
noise information, which will greatly impact the feature
extraction process and reduce the diagnostic capability of
the model. In order to weaken this influence and improve
the robustness of the model, this paper constructs an
MSCNN-GAP model. Compared with the single convolu-
tion kernel CNN, the multiscale CNN can select the convo-
lution kernel size more flexibly to extract input features,
thereby improving the noise tolerance of the model. Mean-
while, the multiscale CNN is a parallel structure. When fac-
ing training sample sets with noise, the multiscale structure
can update the parameters of each branch more flexibly to
better adapt to the multisource fusion dataset. In traditional
CNN, the extracted feature maps will be reshaped into a set
of one-dimensional feature vectors, and the final classifica-
tion result will be output through the fully connected layer.
This reshaping method will change the spatial structure of
the feature maps. In the multiscale fusion process, maintain-
ing the spatial structure of the feature maps of each branch is
more helpful for training the network model. Therefore, the
global average pooling is selected at the end of each branch
instead of the traditional method of reshaping the

Figure 7: Experimental facility.

Table 2: Description of the bearing health condition.

Condition description Fault degree

NO Normal condition None

REF Rolling element fault Obvious

ORF Outer ring fault Obvious

IRF1 Inner ring faults Obvious

IRF2 Inner ring faults Serious

Table 3: Description of the fault diagnosis task.

Group
Vertical
SNR

Horizontal
SNR

Training
sample

Test
samples

A 0 0 500 500

B -3 0 1000 500

C -5 0 1000 500

D 0 -3 1000 500

E 0 -5 1000 500

F -3 -3 1500 500

G -5 -5 1500 500
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convolution layer into a one-dimensional vector. This makes
the output results maintain the spatial structure of the fea-
ture maps in the fusion process and better adapt to the mul-
tiscale fusion process.

In order to contain as many signal features as possible,
4096 sampling points are selected as a group of signal sam-
ples. In the convolution process, three different sizes of con-
volution kernels are used to extract input features from the
diversity. After each convolution and pooling calculation,
nonlinear activation is performed by the ReLU function,
and the batch normalization layer is added to improve the
calculation speed. Finally, a hidden layer with 100 neurons
is used to reduce the dimensionality of the fused one-
dimensional vector, and the final classification result is out-
put through the output layer. Table 1 shows the specific
parameters of the convolution process of each branch.
Figure 6 shows the structure diagram of the overall diagnosis
model.

4. Experimental Verification

4.1. Experimental Dataset. In this paper, the fault data mea-
sured by the bearing fault experimental platform is used to
verify the effectiveness of the algorithm. The experimental
platform is shown in Figure 7. The platform is mainly com-
posed of an AC motor, support bearing, base, rotating shaft,
test bearing, and loading system. The model of the faulty
bearing is SKFNU205. The fault types of the faulty bearing
are shown in Table 2.

During the signal acquisition process, the loading system
exerts a certain radial force on the faulty bearing. A horizon-
tal sensor and a vertical sensor are used to collect signals in
different directions, respectively. The sampling frequency of
the signal is 16384Hz, and the speed of the motor is
1487 r/min. In order to better verify the capability of the
model to extract features, the collected fault signals are nor-
malized in amplitude, which weakens the feature gap

between the categories and further improves the difficulty
of classification.

In order to better simulate the signal data in the case of
noise, white noise with different signal-to-noise ratios
(SNR) is added to the signals collected in different direc-
tions. The SNR can be defined as

SNR = 10 log10
Psignal
Pnoise

� �
, ð5Þ

where Psignal and Pnoise are the power of the signal and noise.
Every 4096 sampling points of signal data are taken as a

sample, and several groups of sample sets for training and
testing are constructed by resampling. Among them, Group
A has a relatively simple sample because there is no noise
factor, and 500 training samples will be used to train the
model. Group B, Group C, Group D, and Group E have cer-
tain noise factors, and 1000 training samples will be used.
Group F and Group G are most affected by noise, and
1500 training samples are used for training. The specific
parameters of several sample sets are shown in Table 3.

4.2. Selection of the Convolution Kernel. The size of the con-
volution kernel is one of the important hyperparameters in
CNN. Convolution kernels of different sizes are adapted to
different types of datasets. In order to maximize the
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Figure 8: The influence of different sizes of convolution kernels on the model.

Table 4: Comparison of results of different algorithms.

Number Algorithm
Accuracy

(%)
Standard
deviation

1 CNN (vertical) 99.08 0.858836

2 CNN (horizontal) 97.62 1.157411

3 MCCNN (combination) 98.6 0.758947

4 MSCNN (combination) 99.14 0.732393

5
MSCNN-GAP
(combination)

99.93 0.149071
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diagnostic performance of CNN, this paper first tested the
effect of different sizes of convolution kernels on the results.
The signal data collected in the vertical direction is selected
as the experimental sample. MSCNN-GAP with single-
sensor information was chosen as the experimental algo-
rithm. The experimental results are shown in Figure 8. The
training set of Figure 8(a) uses 500 training samples. The
training set in Figure 8(b) uses 1500 samples with SNR-5.

The results show that the smaller convolution kernel has
a poor feature extraction effect due to the smaller receptive
field for this dataset. To a certain extent, the performance
of CNN is enhanced with the widening of the convolution
kernel size. The convolution kernel with the size of 9 is the
best when the sample has no noise interference. In the case
of noise interference, the convolution kernel with the size

of 13 has the best effect. After reaching the optimal value,
with the gradual widening of the convolution kernel size,
the diagnostic ability of CNN has a downward trend. The
reason is that a large convolution kernel size is weak for local
feature extraction. The comparison results of the two groups
of data show that when the signal is disturbed by noise, the
local features of the sample are weakened, and the larger
convolution kernel that can better extract global features is
more suitable for noisy datasets.

4.3. Comparative Analysis of Algorithms. In this section, we
will verify the computational complexity of the proposed
algorithm and its performance in multidata fusion. In order
to better reflect the superiority of MSCNN-GAP, three other
different algorithms are compared:
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Figure 9: Model loss and classification accuracy for different algorithms.
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CNN (single sensor). This model uses a single-sensor sig-
nal as the input of CNN. The CNN model consists of four
convolution modules and two fully connected layers. Each
group of convolution modules is composed of a convolution
layer, a pooling layer, and a normalization layer. At the end
of convolution, the feature map is reshaped into a one-
dimensional vector, and the dimension is reduced by a fully
connected layer. Finally, the classification results of CNN are
output [25].

Multichannel CNN (MCCNN). In order to apply multi-
sensor information, multisensor data is input to MCCNN
in the form of multichannel input. The specific structure of
the MCCNN model is the same as the CNN model in algo-
rithm 1 [34].

Multiscale CNN (MSCNN). Based on multichannel input
in algorithm 2, in order to further improve the performance
of CNN, this algorithm uses multiscale convolution kernel
diversity to extract the features of the input. After the convo-
lution operation of each branch, the feature map will be
reshaped into a one-dimensional vector and reduced by the
fully connected layer. Then, the one-dimensional vectors of
each branch are merged and reduced again by the fully con-
nected layer. Finally, the fully connected layer is used to out-
put the final classification results [29].

MSCNN-GAP. The algorithm proposed in this paper
uses multisensor data for fault diagnosis. Multisensor data
will be input into the model as multiple channels. Based on
CNN, a multiscale parallel structure is adopted to reduce
the impact of noisy data on the model and improve the
robustness of the model. After the convolution operation
of each branch, the feature map of each branch will be
reduced through the global average pooling layer, and the
reduced feature vectors will be fused. GAP not only reduces
the parameters of the model but also retains the spatial
structure of the feature map before fusion. The fused feature
vector will be reduced through a fully connected layer, and
finally, the classification results will be output through a fully
connected layer.

Computational complexity is a problem that must be
considered in the deep learning model. The smaller the com-
putational complexity, the shorter the computational time,
and the higher the computational efficiency. This paper ver-
ifies the complexity of the proposed model from two aspects:
time complexity and model parameters. For a convolutional
neural network, its time complexity can be expressed as

Time ∼O M2 ⋅ K2 ⋅ Cin ⋅ Cout
� �

, ð6Þ

whereM is the size of the output feature map, K is the size of
the convolution kernel, Cin is the number of input channels
of the convolution layer, and Cout is the number of output
channels of the convolution layer [48].

Thus, the time complexity of the fully connected layer
and the global average pooling layer can be deduced as fol-
lows:

Time ∼O 12 ⋅ X2 ⋅ Cin ⋅ Cout
� �

,
Time ∼O Cin ⋅ Coutð Þ,

ð7Þ

where X is the number of neurons in the fully connected
layer.

The algorithm proposed in this paper uses the global
average pooling layer to replace the traditional fully con-
nected layer at the end of the convolution operation. We
input the network parameters of the fully connected layer
and the global average pooling layer into the time complex-
ity calculation formula. The time complexity involved is

1282 ⋅ 42 ⋅ 42 ⇒ 1282: ð8Þ

The former represents the time complexity of traditional
multiscale CNN. The latter represents the time complexity
of MSCNN-GAP. The result shows that the proposed algo-
rithm is superior to the traditional multiscale CNN model
in time complexity. From the point of view of the parameters
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Figure 10: Comparison of results of different algorithms.
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of the model, K variable weights are needed to calculate the
final output for the fully connected layer containing K neu-
rons. The global average pooling layer outputs the final
result by obtaining the average value of its feature map and
does not need other parameters to participate in the calcula-
tion. Therefore, the algorithm proposed in this paper has
fewer parameters. In conclusion, the computational com-
plexity of the proposed algorithm is less than that of the tra-
ditional multiscale CNN model.

The performance of the algorithm will be verified below.
According to the results of the previous section, we use a
convolution kernel of size 9 as the feature extractor of

CNN to extract the input features of noiseless samples. For
noisy samples, we use a convolution kernel of size 13. For
the multiscale model, the best convolution kernel size and
its adjacent convolution kernel size are used for feature
extraction.

In order to avoid contingency, each model is cross-
validated ten times, and the average of the final results is
obtained. The results are shown in Table 4.

The results show that the diagnostic ability based on
the CNN algorithm can reach a high level in the absence
of noise, which proves the feasibility of the CNN algo-
rithm in fault diagnosis. In this experiment, because the

ORF

ORF

IRF1

IR
F1

IRF2

IR
F2

REF

REF

NO

NO

Tr
ue

 le
ve

l

Predicated label

97%

97%

97%

100%

100%

0%

0%

0%

0%

0% 0% 0% 0%

0%

0%

0%

0%

0%

0% 0%

0%0%

3%

3%

3%

1.0

0.8

0.6

0.4

0.2

0.0

(c) MSCNN (combination)

ORF

ORF

IRF1

IR
F1

IRF2

IR
F2

REF

REF

NO

NO

Tr
ue

 le
ve

l

Predicated label

1.0

0.8

0.6

0.4

0.2

0.0

100%

100%

98%

97%

100%

0% 0% 0% 0%

0%0%

0% 0%

0%

0%0%0%0%

0% 0% 0%

0%

0%

2%

3%

(d) MSCNN-GAP (combination)

Figure 11: Confusion matrix results of each algorithm.
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surrounding noise interference is weak when the signal is
collected, the fault features of each category are more
obvious, and the results’ gap between the algorithms is rel-
atively small. Under the influence of different fault forms,
fault locations, load directions, and other conditions, the
significant degree of signal features collected by each direc-
tion sensor is different. In this experiment, since the load
is applied in the vertical direction, compared with the hor-
izontal direction, the signal features in the vertical direc-
tion will be more obvious. Therefore, the model trained
by the signal collected by the vertical sensor has better
results. In order to fuse multisensor data, only using mul-
tisensor information as multichannel input will make the
result higher than the lower value trained by the single-
sensor information and lower than the higher value. The
reason is that for training samples with obvious features,
the addition of samples with insufficient features causes a

certain amount of noise interference and reduces the qual-
ity of the training set, which leads to the difficulty of fea-
ture extraction and reduces the performance of the model.
In order to weaken the influence of this factor, a multi-
scale feature extraction method is introduced to effectively
solve the problem of feature extraction difficulty and
improve the accuracy of diagnosis. On this basis, the mul-
tiscale fusion method of global average pooling is intro-
duced, which effectively retains the feature space
structure while fusing so that the model achieves higher
performance and more stable results.

Figure 9 shows the image of the accuracy and loss of
each algorithm varying with the training epoch. The results
show that CNN, MCCNN, and MSCNN all need more con-
vergence epochs to achieve convergence. The convergence
epoch of the MSCNN-GAP is greatly reduced. Meanwhile,
the loss of the algorithm proposed in this paper decreases

(a) MSCNN-GAP (single sensor) (b) MCCNN (combination)

(c) MSCNN (combination)

1
2
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5

(d) MSCNN-GAP (combination)

Figure 12: The t-SNE results of each algorithm.
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faster, and the convergence process is more stable than other
algorithms.

4.4. Comparative Analysis of Robustness. In the process of
fault signal acquisition, it is often interfered with by the
machine noise and surrounding noise. When there is much
noise in the fault signal, the fault features will be covered
by the noise information, which increases the difficulty of
extracting effective features from the model. Noise will affect
the quality of the dataset to a certain extent, thereby affecting
the training process and the performance of the model.
Therefore, the diagnostic model needs to have better
robustness.

In this section, Groups B, C, D, and E will be used for
comparative verification. The samples with noise factors
are used as the training set for the algorithm using single-
sensor data. Similarly, each algorithm is run ten times, and
the average values are counted. The results are shown in
Figure 10.

The results show that the diagnostic accuracy of the
CNN model with single-sensor data is lower than 95% when
the noise is weak. When the noise is serious, the diagnostic
accuracy is lower than 85%. It also shows that the perfor-
mance of the CNN model will be greatly affected by noise.
The multiscale structure can extract more features and
improve the diagnostic ability of the model. However, due
to the interference of noise factors, the fault features are
not obvious enough, and the diagnostic accuracy is relatively
low. Combined with multisensor data, this problem can be
alleviated effectively. In signal acquisition, due to the load
in the vertical direction, the fault features of the signal col-
lected in the vertical direction are more obvious. The feature
extraction process will be more difficult when this group of
signals is affected by the noise factors. This also makes the
overall accuracy of Group D and Group E higher than
Group B and Group C in the multisensor fusion algorithm.

By adding multiscale information and using the global pool-
ing method to save the feature space, the algorithm proposed
in this paper better adapts to the samples with difficult fea-
ture extraction. It improves the diagnosis ability of the
model.

Figure 11 shows the confusion matrix of each algorithm.
The results show that the two categories of inner ring faults
are most likely to be confused due to the same fault form.
After adding the noise, this category of NO also has a certain
degree of misjudgment. The diagnostic capability of CNN
has declined to a certain extent. Multisource data can
improve the representation capability of the network. How-
ever, it is difficult to extract features between similar fault
categories, and there is still a large degree of confusion
between the two inner ring faults. The multiscale model
can extract features better and reduce the confusion between
the two categories. The results show that this paper further
improves the performance of the model by the multiscale
fusion method using global average pooling.

In order to intuitively show the effectiveness of the
proposed algorithm, we use the t-SNE algorithm to reduce
the dimensionality and visualize the result of feature
extraction. Figure 12 shows the t-SNE visualization results
of the four algorithms. Among them, 1-5 represent the five
fault categories of ORF, IRF1, IRF2, REF, and NO. The
results show that with the continuous optimization of the
algorithm, the classification effect of each algorithm is
gradually improved, which corresponds to the results of
the confusion matrix. The proposed algorithm shows bet-
ter clustering performance. There is more excellent separa-
bility between features of different categories. It further
proves the effectiveness of the algorithm proposed in this
paper.

In extreme cases, multisensor signals may have noise
interference at the same time, which further improves the
difficulty of feature extraction. In order to further verify
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Figure 13: Comparison of diagnosis results of different algorithms.
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the robustness of the algorithm, Group F and Group G are
used to compare and verify the algorithms. Each algorithm
is run ten times, and the average values are counted. The
comparison results are shown in Figure 13.

The results show that under the influence of noise fac-
tors, the diagnostic accuracy of each algorithm is affected
to a certain extent. Among the algorithms that use single-
sensor data, MSCNN-GAP has a better classification effect
than traditional CNN. In terms of the data fusion algorithm,
the result of data fusion using multichannel input is slightly
lower than that of the model using the vertical signal. The
data fusion algorithm proposed in this paper can obtain bet-

ter results than MSCNN-GAP using single-sensor data.
Therefore, MSCNN-GAP can apply multisource data more
efficiently. The reason is that the multiscale model is a paral-
lel structure, and the parameters of multiple branches can be
adjusted to each other. Compared with the traditional CNN
algorithm, MSCNN-GAP is more flexible. Therefore, the
MSCNN-GAP has better robustness and can better adapt
to the fault diagnosis of multisource data under noise
factors.

Similarly, Figures 14 and 15 show the confusion
matrix and t-SNE visualization results of each algorithm.
The results show that under the influence of noise
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Figure 14: Confusion matrix results of each algorithm.
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factors, the result of the data fusion algorithm with only
multichannel input is confusing relatively. Meanwhile,
the visualization shows that the boundaries between cate-
gories are also blurred. The MSCNN-GAP model can dis-
tinguish the confusing categories better, and the
boundaries between the categories are more obvious than
other algorithms.

5. Conclusion

In order to use multisensor data more efficiently, this paper
proposes an MSCNN-GAP model. MSCNN-GAP uses mul-
tiscale convolution kernels to extract more diverse features,
which alleviates the problem of poor robustness of the
CNN model under noise factors effectively. The parallel
structure of the multiscale model is better adapted to the
data fusion process. In the fusion process, instead of reshap-
ing the feature maps into a one-dimensional vector, the

global average pooling method is adopted, which effectively
retains the spatial structure and position of the feature maps
in the fusion process. The proposed model is verified by the
bearing fault data collected from the experimental platform.
Experimental results show that, compared with other data
fusion methods, the algorithm proposed in this paper makes
more effective use of multisensor information and obtains a
higher diagnostic accuracy and a shorter convergence
period. The proposed algorithm has stronger robustness
and better classification results when the signal samples are
affected by noise factors.

Data Availability

The labeled datasets used to support the findings of this
study are available from the corresponding author upon
request.
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Figure 15: The t-SNE results of each algorithm.
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