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Mixed defects have become increasingly popular in defect detection and one of the hottest research areas in wafer maps.
Postprocessing methods used to solve the overlapping problem in mass mixed defects have a poor detection speed, which is
insufficient for rapid defect detection. In this paper, the fast-soft nonmaximum suppression (fs-NMS) method is proposed to
solve this problem. The score of the detection box is updated by optimizing the penalty distribution function. Further, this
paper analyzes the performance of the fs-NMS method in wafer defect detection. As a penalty, the logistic function is used,
and experiments are conducted using single-stage and two-stage detectors. The final results show that, compared to the soft-
NMS, the efficiency for the single-stage and two-stage detectors is increased on average by 9.63% and 21.72%, respectively.

1. Introduction

Defect detection is an important application of object detec-
tion that has received a lot of attention. For the semiconduc-
tor industry, wafer map defect detection has become a major
defect detection problem. The semiconductor manufactur-
ing process involves tens of complex steps, which can lead
to defects due to numerous reasons [1, 2]. Visualizing and
identifying defect patterns is essential for preventing defect
generation. Defect pattern recognition (DPR) provides
engineers with a reference for dealing with manufacturing-
related problems by identifying wafer surface defects [3].
Currently, with a gradual reduction in wafer size and an
increase in the complexity of production processes, the
number of mixed complex defects (which combine multiple
basic defects) has been increasing. When mixed defects are
generated, defect detection becomes more complicated,
especially when testing tens of millions of wafer maps in
industrial production, which requires a high level of accu-
racy and speed, both online and offline.

Numerous approaches have been proposed in the litera-
ture to tackle the problem of hybrid wafer defect detection in

recent years, ranging from manual feature recognition to
deep learning networks for automatic feature recognition.
Deep convolutional neural networks have demonstrated a
very good performance in computer vision [4, 5]. When
applied to the field of industrial image detection, deep
learning-based object detection methods have proven to be
very beneficial since engineers do not have to develop
specific defect models and the data-driven approach does
not require domain-specific prior knowledge.

Among deep learning-based detectors, two-stage detec-
tors (e.g., R-CNN [6] series) improve accuracy while their
efficiency is lacking, and single-stage detectors (e.g., YOLO
[7], SSD [8], and RetinaNet [9]) redesign the overall network
structure but partly lose precision. In the stage of regression
of the candidate box, these approaches are subject to post-
processing. The main purpose of postprocessing is to
remove redundant candidate boxes. The extracted candidate
boxes will produce cluttered detections during the refine-
ment of localization, such as multiple extracted candidate
boxes will be regressed to the same region of interest (RoI)
in the postprocessing stage. The detector uses a greedy non-
maximum suppression (greedy NMS) algorithm to reduce
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the number of false-positive boxes. Greedy NMS was pre-
sented by Dalal and Triggs [10], and a bounding box with
maximum detection fraction is selected and suppresses its
neighboring boxes using a predefined intersection over
union (IoU) threshold. In detecting complex mixed wafer
defects based on deep convolutional neural networks, greedy
NMS drastically reduces the screening of false-positive boxes
in the postprocessing stage, but mixed defects are still diffi-
cult to detect. This causes the detector lose mass positive
boxes at a certain threshold, while causes a decrease in the
average precision. During mixed defect detection, soft-
NMS [11] can eliminate more false-positive boxes, increas-
ing accuracy enormously. In industrial detection, however,
detecting thousands of wafer defects is very inefficient and
often insufficient.

To solve this problem, this paper proposes an improved
fast-soft nonmaximum suppression (fs-NMS) postproces-
sing algorithm to improve detection efficiency by optimizing
the distribution of penalty terms in soft-NMS [11], so as to
better apply to large quantities of industrial production.
Experiments are performed on some baseline detectors.
The results show the effectiveness of object detection in
wafer map detection and the efficiency and precision of
the postprocessing stage after replacing fs-NMS. It is con-
cluded that our approach is effective for both single-stage
and two-stage detectors.

2. Related Work

This section mainly introduces the shortcomings of wafer
map detection based on deep learning and general object
detection algorithm (Section 2.1) and then expounds the
problems existing in the traditional NMS and its improved
algorithm (Section 2.2).

2.1. Wafer Map Detection and General Object Detection.
Wafer map detection. Recently, many studies have attempted
to classify wafer maps based on convolutional neural net-
works (CNNs). Nakazawa and Kulkarni [12] proposed a
CNN method for wafer map pattern classification and image
retrieval and studied the classification of 22 types of mixed
defects. Mixed defects have a large degree of mutual occlu-
sion, and the average recognition accuracy only reached
91%. However, the accuracy used in defect detection is far
from adequate. Kyeong and Kim [1] applied CNNs to classify
mixed defect patterns of wafer maps and established a sepa-
rate model for each single defect pattern (whether there is a
corresponding model when multiple defect patterns are
mixed on a wafer), which contains 16 defect types. On the
test set of mixed defects, the detection efficiency of each wafer
map is 0.13 s and the accuracy is 98%. However, for the defect
detection of a large number of wafer maps, Kyeong’s method
improves accuracy and reduces detection efficiency.

General object detection. In recent years, object detection
is popularized by both two-stage and single-stage detectors.
Two-stage detectors divide a detection task into two phases,
namely, the extraction RoI phase and the classification and
regression phase for RoIs. R-CNN [8] used a selective search
method [13] to locate RoIs in the input image and then a

classifier to classify them. SPP Net [14], Fast R-CNN [15],
and Faster R-CNN [16] are gradually developed. With the
emergence of the region proposal network (RPN) [16], the
efficiency of the detector has been greatly improved, and
the detector can be trained end-to-end. The anchor-based
approach is widely used in object detection, and the
proposed R-CNN is a milestone. Since then, FPN [17] com-
bined ResNet [18] and ResNeXt [19], which is essential for
small object detection, and the performance of small object
recognition has been greatly improved, the detection effi-
ciency can reach 5 fps under a single GPU. R-FCN [20]
replaces the full-connection layer with a position-sensitive
fraction graph, doubling the detection efficiency compared
with [16]. Cascade R-CNN [21] explored the cascade archi-
tecture of R-CNN and extended it to multistage detectors,
which train a series of detectors with increasing IoU thresh-
olds to tackle the problem of overfitting in training and qual-
ity mismatch in inference. However, such cascade detectors
generate more parameters, resulting in a decrease in detec-
tion efficiency. Mask R-CNN [22] added the mask branch
based on [16], refined the detection results using multitask
learning, and predicted its mask while detecting the bound-
ing box, so that its detection efficiency can still reach 5 fps
with a single GPU.

On the other hand, single-stage detectors (such as YOLO
[7, 23] and SSD [8]) reduce the stage of RoI extraction and
directly predict the bounding box and classification proba-
bility with the deep convolutional neural network, which is
simpler and faster than the two-stage detector. After the
introduction of focal loss [10], its precision is improved. At
the same time, it is aimed at solving the problem of a serious
imbalance between positive and negative samples, but the
overall network detection efficiency of RetinaNet is far infe-
rior to that of the YOLO series and SSD.

2.2. Nonmaximum Suppression. NMS is widely used in com-
puter vision postprocessing algorithms. In the general object
detection methods (Section 2.1), manual processing and
greedy NMS are still used as postprocessing methods.
Recently, soft-NMS [11] proposed an improved NMS, which
reduces the score of the adjacent candidate box by adding a
penalty rather than discarding the candidate box whose
score is lower than the threshold. The algorithm is satisfac-
tory in improving AP, but there are still candidates with high
overlap false positives, and the algorithm efficiency is insuf-
ficient. Learning NMS [24] designed a complex deep neural
network, which requires only box and score as input to
implement NMS. Fitness NMS [25] proposed the regression
loss of the object box matching IoU maximization, which is
combined with [11] to improve precision, and the loss con-
verges well. Adaptive NMS [26] considered the relationship
between sparse and dense objects in crowd detection.
Increasing the NMS threshold to retain neighboring detec-
tion boxes with high overlap based on [11] is an effective
solution for crowded scenes, and a module for density pre-
diction is designed for learning density scores. KL loss [27]
presented a bounding box regression loss for learning the
difference between transformation and location of bounding
boxes, estimated the confidence of localization as well as the
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location on the baseline, and predicted its complex probabil-
ity distribution to guide the NMS to retain more accurate
localized bounding boxes.

The above postprocessing methods are effective means
in general object detection, but as the complexity of the
parameters or network structure increases, the inference effi-
ciency will instead reduce. At present, most networks still
use greedy NMS as the postprocessing method, which
requires a fast postprocessing algorithm to solve the effi-
ciency problem and ensure that accuracy is not lost.

3. Proposed Fast-Soft Nonmaximum
Suppression Algorithm

In this section, the proposed wafer map postprocessing algo-
rithm is presented in detail. For the problem faced, the prob-
lems of soft-NMS are first analyzed (Section 3.1), then
improvement ideas and methods are elaborated (Section
3.2), and finally, the training and inference processes are
introduced (Section 3.3).

3.1. Problems with Soft-NMS. In the wafer map detection
task, the postprocessing stage is essential, and the detection
effect is unsatisfactory because the greedy NMS pruning
branch is very strict. As shown in Figure 1, when the object
overlaps, the score of Scratch will be insufficient. Although
some of the extracted detection boxes cover the parts that
are not covered by the highest-scoring box, they can still
extract the object and the scores of the extracted detection
boxes are very low. Then, some positive samples of Scratch
will be filtered by the greedy NMS threshold.

To solve this problem, the soft-NMS [11] algorithm
presents a rescoring formula as shown below [26].

si =
si, iou M, bið Þ <Nt ,

si f iou M, bið Þð Þ, iou M, bið Þ ≥Nt ,

(
ð1Þ

f iou M, bið Þð Þ = 1 − iou M, bið Þ, ð2Þ

f iou M, bið Þð Þ = e−iou M,bið Þ2/σ: ð3Þ
The penalty is added to the score in greedy NMS when

the IoU is greater than the threshold Nt . The score of other
detection boxes bi with high overlap with the highest scoring
box M needs to be reduced, which is a promising way to
improve greedy NMS, and the scores of detection boxes with
higher overlap with M should be decayed more because they
have higher false alarm rates. In soft-NMS, a linear attenua-
tion term (2) and a Gaussian attenuation term (3) are
designed. Since the IoU is not a continuous value, the linear
attenuation term generates an abrupt penalty, while the
Gaussian attenuation term adds redundant parameters, and
the algorithm time complexity reaches Oðn2Þ. Wafer map
detection that produces dense stacking will be very
unfriendly to the detector, especially that it will cause the
false detection rate to be very high and the detection rate
of positive samples does not meet certain requirements,
which will have a greater impact on industrial production.
Soft-NMS effectively solves the problem of dense overlap

in wafer maps. However, when it is applied to industrial pro-
duction, the efficiency of soft-NMS in the test phase may be
far more enough. The computational complexity increases
with the increase of parameters, resulting in the inefficiency
of processing a large number of samples. For this problem,
the following requirements are imposed on the postproces-
sing process:

(1) The number of wafer map defects in industrial
inspection is too large, and the detection speed is
improved under the premise of ensuring the detec-
tion precision

(2) The sample elimination process cannot affect the
distribution of positive and negative samples, where
a noncontinuous penalty will lead to sudden changes
in the ranking queue, to ensure that the penalty
imposed on the score needs to be a continuous
penalty value

(3) For the imposed penalty, when the overlap between
the highest score extraction box within a range and
other boxes is high, the penalty needs to be increased
and vice versa

3.2. Improved fs-NMS. According to the above analysis, the
logistic function is used to solve this problem, as in
Equation (4).

si =
si, iou M, bið Þ <Nt ,

sig iou M, bið Þð Þ, iou M, bið Þ ≥Nt ,

(
ð4Þ

where in Equation (1), f ðiouðM, biÞÞ = 1/1 + e−iouðM,biÞ is
set here, gðiouðM, biÞÞ = 1 − f ðiouðM, biÞÞ = 1 − 1/1 +
e−iouðM,biÞ = 1/1 + eiouðM,biÞ, from this transformation.

si =
si, iou M, bið Þ <Nt ,

si
1

1 + eiou M,bið Þ , iou M, bið Þ ≥Nt ,

8<
: ð5Þ

When the IoU score of the candidate box falls into a
certain threshold range, this distribution belongs to an
exponential distribution, which is a generalized linear
model, such as the Bernoulli distribution and the Poisson
distribution. The logistic function based on the generalized
model is used as a penalty term. The logistic function is a
continuous function with a range of 0 to 1. This property of
the logistic function ensures that the probability estimated
by the logistic model will never be greater than 1 or less than
0, which can be used as a penalty function. It is worth noting
that, as stated in Section 3.1, IoU is not a continuous func-
tion, but rather a nonlinear function composed of explana-
tory variables iouðM, biÞ. If it is nonlinear, then imposing a
sudden penalty can lead to a change in the ranking list, which
can be transformed into a linear function. It would be trans-
formed into a linear function, the resultant variable and inde-
pendent variable would be transformed into a linear
relationship, and the penalty value would become a
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continuous value, which would not affect the rankings. If
the highest extraction box M in each candidate range
has a high degree of overlap with bi in this range, the
penalty needs to increase gradually, and the penalty term
is close to 0.5, lim

Nt≤iouðM,biÞ⟶1
gðiouðM, biÞÞ = 0:5. The high-

est score box M in the candidate range has a low rate of
overlapping with bi in this range. On the contrary, the pen-
alty should be reduced and the penalty tends to be 0. As a
result, the positive samples with low scores and difficulty to
detect cannot be easily removed from the ranking queue.

In addition, when the variance reaches a certain degree,
the results of the standard normal distribution become sim-
ilar to the logistic function in [29]. When compared with
Gaussian penalty, the logistic function has fewer parameters.
At the same time, the dimension of the distribution function
is reduced, as is the number of calculations. Especially in
inference for object detection, it will have good results as
well as an improved speed.

Algorithm 1 shows the fs-NMS algorithm. D represents
the final detection set, which means that the detection boxes
screened by the algorithm will be sorted in D, and the final
output target box and score S will be obtained. Starting from
a set of extracted boxes B with corresponding scores, the top
scoreM is chosen first and moved from set B to set D. Then,
we calculate the overlap between bi (in set B) and M, and
compare it with Nt . A penalty is set to the score si of extrac-
tion box with degrees of overlap greater than Nt . Other
scores remain unchanged, and all extraction boxes can be
sorted in D. Among them, gðiouðM, biÞÞ of fs-NMS opti-
mizes the penalty distribution of soft-NMS according to
(5), which causes it to be more efficient. The overall algo-
rithm flowchart is shown in Figure 2.

3.3. Implementation Details. This subsection elaborates on
datasets, evaluation metrics, and experiment-specific param-
eters and describes in detail the training and inference
processes of the network. A model pretrained on ImageNet
[30] is used in the experiments to initialize the detection
network. The complete training and testing code was built
on Pytorch [31] and mmdetection [32]. The settings of
mmdetection are followed if some hyperparameters are not
mentioned in this experiment.

Loc 0.96

(a)

Loc 0.99

(b)

Figure 1: Hybrid wafer map defects detected by Mask R-CNN with
the traditional greedy NMS as the postprocessing method. Each
map includes two objects, one for “Loc” and one for “Scratch”
(these two categories belong to six basic wafer maps, as defined in
[28]). When the image passes through the detector network, a
category score is obtained, and postprocessing is performed based
on the score. (a) “Loc” score 0.96 and (b) “Loc” score 0.99.

Input: B = fb1 ⋯ , bNg, S = fs1 ⋯ , sNg,Nt
B is the list of initial detection boxes
S contains corresponding detection score
Nt is the NMS threshold

begin
D⟵ fg:
while B ≠ empty do

m⟵ argmax S
M⟵ bm
D⟵D ∪M ; B⟵ B −M
for bi in B do
if iouðM, biÞ ≥Nt then

si ⟵ sigðiouðM, biÞÞ
end

end
end
return D, S

end

Algorithm 1: fs-NMS algorithm.

Input: b1, s1, Nt

Start

No

No

No

Yes

Yes

Yes

B ≠ empty

b1 in B

Output: D, S

End

iou (M, b1) ≥ Nt

m argmax S↓

M bm

↓

D

B M–
DU M;↓

si sig (iou(M, b1))↓

↓B

Figure 2: Flowchart of the proposed fs-NMS algorithm.
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Datasets. Experiments on the 6 category wafer map data-
sets [28] used 2 k training images and 382 validation sets and
429 test images. There are 3.1 k wafer bin maps (WBMs),
including 6.2 k objects. In wafer testing, the final test results
on the wafer are stored in the WBMs, which consist of
binary values, and the WBM has six classical defect patterns
(a–f) in our experiment. According to [33], these generally
divided into these categories, i.e., “Center,” “EdgeLoc,”
“Loc,” “Donut,” “Scratch,” and “EdgeRing.” The size of each
wafer map is 52 × 52, and some specific image information is
shown in Figure 3.

Evaluation metrics. Two evaluation metrics are used in
our experiments. The AP and time are used to evaluate the
applicability of the network and apply a statistical parameter
of precision (P) to our experiment. Next, if the defect detec-
tion effect is evaluated and the detection positioning perfor-
mance is evaluated, the detection index and four parameters
are defined as follows:

True positive (TP): predicting positive, the actual is
positive.

False positive (FP): predicting positive, the actual is
negative.

False negative (FN): predicting negative, the actual is
negative.

True negative (TN): predicting positive, the actual is
negative.

(i) AP. P is the ratio of the number of correctly predicted
WBMs to the number of WBMs tested, and R is the
ratio of the number of correctly predicted WBMs to
all ground truths of WBMs. After each object is clas-
sified, a confidence level is an output, and a confi-
dence level threshold is set to obtain a pair of P-R.
Taking different confidence level thresholds, more
pairs of P-R can be obtained, and the maximum value
of P corresponding to all the recall R greater than the
specified recall r is used as the maximum P under the
currently specified recall r.

P = TP
TP + FP

, ð6Þ

R =
TP

TP + FN
ð7Þ

Next, the WBM classification task is a multiclassifica-
tion task, and mAP is the average precision for all cate-
gories. Thus, the mAP is used to evaluate the overall
effect as follows:

mAP =
1
N
〠
N

i=1
APi: ð8Þ

With AP being the APi in the i-th class and N is the total
number of classes of WBMs being evaluated. The average
precision (AP) metric averages the AP across IoU thresholds
from 0.5 to 0.95 with an interval of 0.05. For box AP, AP50,
AP75 (AP at different IoU thresholds), and APS, APM (AP

at different scales, where small (S) size is 32 × 32 and medium
(M) size is 52 × 52) are also reported.

(ii) Time. Time to detect all wafer map test sets. The
runtime is measured on a single NVIDIA Tesla
P100 GPU.

Experimental setting. Experiments use a single GPU to
train the detector for 24 epochs, and the other model param-
eters are listed in Table 1. For the two-stage detectors, the
baselines in the experiments are to use heuristic methods
for model initialization and optimization. To avoid the
model oscillation caused by a large learning rate (lr), a
warm-up strategy is used in the initial 500 iterations, which
caused the model to stabilize slowly. After the model is rela-
tively stable, a preset lr of 0.02 is used for training. Among
them, the initial lr for Cascade Mask R-CNN [21] and Grid
R-CNN [34] is set to 0.002 because of the divergence of the
loss function caused by the gradient explosion in the training
process. After the 16th and 22nd epochs, the lr is reduced by
0.1, respectively. For each type of detector, the image size is
adjusted to 52 × 52, and the aspect ratio uses the same design
parameters. The detectors use a stochastic gradient descent
(SGD) optimizer with a weight decay of 0.0001 and momen-
tum 0.9. The batch size of the dataset is set to 8. For single-
stage detectors, the specific parameters of the baseline are
listed in Table 1. Due to the nature of the feature extraction
part of the network, the image size and aspect ratio follow
the setting of mmdetection.

Training. Experiments are trained on some baseline
detectors, as shown in Figure 4. For the backbone part of
the object detection network in two-stage (RPN in the RoI
extraction stage and the classification localization stage)
using a model pretrained on ImageNet [30] by ResNeXt-
101 [19], the experiments are compared to the performance
of ResNet [18] and ResNeXt [19] network, and the ResNeXt
network is higher than ResNet in terms of accuracy. For the
extraction of the RoI phase, the experiment explores the fea-
ture pyramid network (FPN) [17]. The R-CNN network
with FPN backbone can extract RoI features from different
levels of the feature pyramid. The backbone of ResNeXt
based on ResNet-FPN is used for feature extraction, which
has better improvement in precision and speed [22]. In
the training stage, greedy NMS is used for postprocessing
after RPN extraction, and the threshold value is 0.7 [32]
in the RPN extraction stage. All detectors are trained for
24 epochs, and the average accuracy of baseline detector
classification reached 98.89% on the validation sets of the
wafer map. For the backbone part of the single-stage
detector, Darknet [23], VGG [8], and ResNet [9] are used
for feature extraction.

Inference. In inference, the greedy NMS is replaced with
soft-NMS and fs-NMS for postprocessing, respectively.
Compared with the two-stage network structure, it is worth
noting that in the two-stage shown in Figure 4, the NMS
with a threshold of 0.7 is used in the RoI extraction stage
(RPN) and the fs-NMS with a threshold of 0.5 in the classi-
fication and localization stage (after fully connectional
layer). On the same amount of wafer map test sets, the
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detection speed will be improved compared to soft-NMS
[11], and the precision will not be affected. For single-stage
detectors, the threshold of 0.45 for NMS in inference is bet-
ter. Since the standardGaussian penalty considered in Section
3.2 is similar to the logistic function to some extent, the
imposed penalty will have the same effect, and the AP is unaf-
fected. Secondly, compared with the linear function, the logis-
tic function has the same efficiency as the general linear
function, and the time complexity of our algorithm reaches
OðnÞ, which is the same as that of the linear penalty in (3).

4. Experimental Results

This section mainly describes the results of the comparative
experiments, including the comparison of detection effi-
ciency in inference of soft-NMS and fs-NMS (Section 4.1)
and the comparison of detection precision between greedy
NMS and fs-NMS (Section 4.2). The experiments are carried
out on some baseline detectors.

4.1. Efficiency Comparison Test. Our algorithm is first tested
against some baseline detectors to better understand how it
affects efficiency. In inference, since the time efficiency of
soft-NMS is far more enough, the processed method
improves the detection efficiency by optimizing the distribu-
tion model of penalty. As shown in Figure 5, for the two-
stage detector, comparison experiments are performed on
Mask R-CNN [22], Mask scoring R-CNN [36], Cascade
Mask R-CNN [21], Grid R-CNN [34], and Libra R-CNN
[35]. The performance of the proposed method is validated
by replacing the postprocessing component. In inference,
the greedy NMS is used in the RoI extraction stage, while
the fs-NMS is used in the classification and localization
stages. Regardless of the relative position or angle of the
object or different image features, the detector can find accu-
rate objects in the key area. The detection precision would
not be affected; this method improved the detection speed.
As shown in Figure 5, the efficiency of the two-stage detector
based on the extraction box increases by 21.72% on average,
especially in the Mask R-CNN [22] detector by 25.8%. For
the single-stage detector, the experiment was carried out
on YOLO v3 [23], SSD 300 [8], and RetinaNet [9]. The
filtering thresholds were set to 0.45, 0.45, and 0.5, respec-
tively. The detection efficiency of single-stage detectors
based on extraction box improved by 9.63% on average.

The overall time of the single-stage detectors using the
improved algorithm is increased compared with that of the
two-stage detector. Due to a large number of extraction
boxes of the single-stage detector, the postprocessing algo-
rithm of rescore will cause the detector efficiency not as
good as that of the greedy NMS of the strict pruning
branch, and the efficiency of detection (Figure 5) and the
detection effect (more clutter extraction boxes will be

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3: Basic types of wafer maps. (a–f) and mixed defect types (g–l). (a) “Center”; (b) “EdgeLoc”; (c) “Loc”; (d) “Donut”; (e) “Scratch”; (f)
“EdgeRing”; (g) “Loc”+“Scratch”; (h) “Donut”+“Loc”+“EdgeLoc”; (i) “Center”+“EdgeLoc”+“Scratch”+“Loc”; (j) “Loc”+“EdgeLoc”+“Scratch”;
(k) “Loc”+“Scratch”; (l) “Loc”+“Scratch”.

Table 1: The basic experimental parameter settings of the baseline.

Baseline Learning rate Weight decay

[22, 35, 36] 0.02 0.0001

Cascade Mask R-CNN [21] 0.002 0.0001

Grid R-CNN [34] 0.002 0.0001

SSD 300 [9] 0.002 0.0005

YOLO v3 [23] 0.001 0.0005

RetinaNet [10] 0.01 0.0001

Bounding
box

Bounding
box

Mask branch

Mask

NMS

RoI pooling FC

NMS

Backbone

Backbone

Feature map

RPN

One-stage

Two-stage

Class

Class

Figure 4: Network structures of the single-stage and two-stage
detectors. These include the overall network structure of the
general single-stage (e.g., YOLO [23], SSD [8], and RetinaNet [9])
and two-stage (e.g., Faster R-CNN [16] and Mask R-CNN [22])
detectors.
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generated) is not as good as the two-stage detector using
the improved algorithm.

4.2. AP Comparison Test. In terms of the overall detector
precision, the experiment replaced only the postprocessing
of inference, comparing the detector precision using tradi-
tional greedy NMS and fs-NMS, where threshold settings
remain the same. The ablation study is shown in Figure 6,
where the postprocessing algorithm is charged to perform
the comparison experiments. The abscissa of Figure 6 repre-
sents the time of fs-NMS, and the ordinate represents the
growth of mAP. From the perspective of inference time,
the time of the two-stage detector is almost within 60ms.
The overall efficiency is greater than one-stage detector.
On the test sets, according to Section 3.3, AP evaluates the
correct positioning of the object. The regression of AP75
relative to AP50 is more accurate, and APs and APm find
different details of the object for the boxes of different scales.
In postprocessing, the precision of the baseline detector is
improved, as well as the location of the object at different
scales. According to (8), the fs-NMS algorithm improves
the average precision of the detector for each category of
object location, and the two-stage detector on average
mAP is increased by 1.76%.

Some recent single-stage detectors all have better detec-
tion precision and efficiency compared with the two-stage
detectors, showing a 2.7% improvement in mAP. RetinaNet
extracts a large amount of anchor in the extraction stage,
reaching 100 k [9]. For such two-stage detectors [16], the
total number of extracted boxes is only 20 k, and only a small

fraction of them eventually coincide with the ground truth
box. Therefore, anchor-based single-stage detectors are
dependent on the postprocessing algorithm, and the
improvement in precision will be higher than the two-stage
detectors. Overall, the fs-NMS algorithm is effective in both
the single-stage and two-stage detectors and achieves the
same effect as soft-NMS in improving precision.
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Figure 5: Efficiency improvement (compared to soft-NMS) versus the average precision (mAP) on the baseline and wafer map test sets.
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According to Table 2, Mask R-CNN uses two types of
postprocessing methods (i.e., greedy NMS and fs-NMS).
And fs-NMS obtains an improvement of 0.014 on mAP
compared to greedy NMS. Secondly, the experimental
results show that some hard-to-detect (e.g., too much over-
lap between ranges) objects appear with lower scores, as
shown in Figure 7. At the same time, it can be clearly seen
that the algorithm rescores the results after imposing penal-
ties on scores.

5. Conclusion

This paper proposed a novel fs-NMS algorithm for the post-
processing stage of wafer map detection. Firstly, we dis-
cussed several key issues relating to the inefficiency of the
traditional NMS algorithm and proposed an improved fs-
NMS algorithm to solve this problem. The algorithm
rescores the score of the detection box by optimizing the
penalty distribution model of soft-NMS, with the objective
of improving the detection efficiency of inference and ensur-
ing the stability of the precision. Meanwhile, the object
detection method was explored and applied to the defect
detection of the wafer map to improve the efficiency of
industrial detection.

The experiments used base on wafer map datasets. The
results show that in inference, the fs-NMS algorithm outper-
forms traditional NMS in anchor-based detection precision.
From the test results, highly overlapped defect objects will
produce many false-positive boxes (Figure 7) that cannot
be completely eliminated. This provides a direction for our
future research.
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The original data are https://github.com/Junliangwangdhu/
WaferMap.
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