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Linearity is an important index for evaluating the performance of various sensors. Under the Villari effect, there may be some
hysteresis between the input force and the output voltage of a force sensor, meaning that the output will be multivalued and
nonlinear. To improve the linearity and eliminate the hysteresis of such sensors, an output compensation method using a
variable bias current is proposed based on the bidirectional energy conversion mechanism of giant magnetostrictive material.
First, the magnetization relationship between the input force, bias current, and flux density is established. Second, a nonlinear
neural network model of the force-magnetization hysteresis and a neural network model for the compensation control of the
force sensor are established. These models are trained using the magnetic flux density-force curve and the magnetic flux
density-current curve, respectively. Taking the optimal linearity as the objective function, the bias current under different input
forces is optimized. Finally, a bias current control system is developed and an experimental test platform is built to verify the
proposed method. The results show that the proposed variable bias current hysteresis compensation method enables the
linearity under the return of the force sensor to reach 1.6%, which is around 48.3% higher than under previous methods. Thus,
the proposed variable bias current method effectively suppresses the hysteresis phenomenon and provides improved linearity
for giant magnetostrictive force sensors.

1. Introduction

Giant magnetostrictive materials (GMMs) are a new type of
functional material that offers a high Curie temperature,
high magnetic mechanical coupling coefficient, good fre-
quency response characteristics, and large magnetostrictive
strain. They are widely used in transducers [1–4], actuators
[5, 6], fuel injectors [7], sensors [8–11], energy collection
[12–14], and other fields [15, 16]. The characteristics of
GMMs are well suited to the development of high-
performance force sensors, especially their fast response
speed, high energy conversion efficiency, and high compres-
sive strength [17–19]. However, irreversible phenomena
such as domain rotation and domain wall movement in
the magnetization process of GMMs will cause energy loss
in the system and result in hysteresis, which is characterized
by multivalued and nonlinear characteristics in the flux den-
sity vector, magnetization vector, and magnetic field inten-

sity vector [20–23]. Different from the common nonlinear
links in nonlinear control theory, GMM nonlinearity
exhibits its own memory and single-input/multiple-output
mapping characteristics. These properties not only reduce
the detection accuracy of the system but also produce a
phase shift and harmonic distortion related to the amplitude
of the input signal, weakening the feedback effect in the
closed-loop system and causing system instability. It is these
complex factors that introduce great difficulties to the theo-
retical description of the nonlinear characteristics of GMMs,
severely restricting the practicality of force sensors that use
GMMs as the sensitive element.

Nonlinear feedforward compensation is a very effective
method for solving hysteresis nonlinearities [24–27]. Refer-
ence [28] compensated the output displacement error of a
GMM-based positioning table drive system using a dynamic
recurrent neural network feedforward control strategy. The
experimental results showed that this control strategy has
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an excellent error compensation effect. Reference [29]
designed an active disturbance rejection control scheme
based on a radial basis function neural network and pro-
posed a dual-channel composite controller scheme using
an adaptive neural network for feedforward inverse control
and an active disturbance rejection controller for closed-
loop feedback control. This scheme is able to estimate and
compensate the delayed disturbance, and the effectiveness
of the control method was verified through MATLAB simu-
lations. In a recent study [30], an inverse model is formu-
lated to seek real-time compensation of rate-dependent
and asymmetric hysteresis nonlinearities of a giant magneto-
strictive actuator. The proposed compensator is applied as a
feedforward compensator to the actuator can substantially
suppress the hysteresis and output asymmetry nonlinearities
in the entire frequency range considered in the study. Refer-
ence [31] studied the GMM nonlinear compensation prob-
lem based on different methods, but only provided general
qualitative analysis in terms of iterative compensation and
adopted a fixed step size Δu for the iterations. To satisfy
the control accuracy requirements, the step size Δu cannot
be too large, but very small values will reduce the execution
efficiency of the program. Solving the contradiction between
the system convergence rate and the steady-state error is a
key issue for GMM nonlinear compensation control.

To date, there have been many studies on the hysteresis
compensation of GMM. Most research has focused on the
actuator based on the magnetostrictive effect, with little
attention to the hysteresis compensation of sensors based
on the inverse magnetostrictive effect. Therefore, from the
realization of force sensing application and the demand for
giant magnetostrictive device application technology, there
is a lack of compensation method suitable for improving
the accuracy of a giant magnetostrictive force sensor. There-
fore, in this paper, a force sensor based on giant magneto-
strictive material is developed. The traditional control
strategy is organically combined with intelligent material
sensors. Starting from the mechanism of the Villari effect
and the magnetization constitutive model under external
force, using the magnetization mechanism under magnetic
field (current), a compensation idea of variable bias current
is proposed to compensate the output signal error of the
force sensor. Using machine learning theory [32] and a
backpropagation (BP) neural network method based on the
beetle antennae search (BAS) algorithm [33], a magnetiza-
tion hysteresis model and a current compensation model
for the GMM under the combined action of a magnetic field
and a force are established. The obtained models are trained
to optimize the optimal bias current under different input
forces, and numerical simulations are carried out. The simu-
lation results show that, compared with other optimization
algorithms, BAS-BP has a short runtime and fast conver-
gence speed, thus providing a new approach for describing
the hysteresis characteristics of force sensors. The proposed
variable bias current compensation idea is effective for
improving the linearity of the force sensor. In addition, an
experimental platform is built to further verify the perfor-
mance of the force sensor and the proposed compensation
method. The experimental results show that the proposed

variable bias current feedforward compensation method
effectively reduces the output hysteresis and nonlinearity of
the force sensor and improves its linearity. The research
results provide a theoretical and technical foundation for
high-performance force sensors in the field of industrial
detection.

2. Structural Design and Nonlinear
Magnetization Model of Force Sensor

2.1. Structural Design. A structural diagram of the force sen-
sor is shown in Figure 1, and a photo is shown in Figure 2.
When the external force acts on the push rod, it is transmit-
ted to the GMM rod made of Terfenol-D through the mag-
netic block. The distribution of magnetic flux density
changes under the action of the external force. The changed
magnetic flux density is detected through the Hall element
installed in the air gap of the magnetic structure, allowing
the external force applied to the force sensor to be deter-
mined. An aluminum alloy support ring structure is added
around the Hall element. As the material has a permeability
of close to 1, similar to that of the surrounding air and Hall
element, the magnetic flux density passes through the Hall
element and its surrounding structure evenly, resulting in
improved sensitivity. The magnetic field provided by current
excitation can be adjusted by modifying the current. This
has the advantages of producing an adjustable bias magnetic
field and enabling relatively simple repeated experiments,
but does result in coil current heating. Because any change
in temperature will cause thermal expansion in the GMM
and reduce its magnetic mechanical coupling efficiency, a
water-cooling tank is used. The built-in water circulation
structure effectively prevents the temperature change from
influencing the magnetization and is conducive to the
assembly and fixation of the giant magnetic rod.

2.2. Magnetization Model of Force Sensor. For different
GMMs, the linear segment and slope of their characteristics
will be different, although there is generally an optimal linear
segment. Therefore, according to the required force-
measuring range and the size, sensitivity, and linearity of
the designed force sensor, the GMM needs to be analyzed
in detail to determine the optimal bias magnetic field under
given working conditions. An excitation current that is too
small or too large will cause serious nonlinearity and
reduced sensitivity. The proposed force sensor uses a
GMM rod made of Terfenol-D as the sensing element. Based
on the Jiles-Atherton model, the force-magnetization model
of giant magnetostrictive force sensor (the relationship
between magnetic parameters and external force F) is estab-
lished, and the relevant expression is as follows [34–36]:

dM
dF

=
c dMan/dFð Þ + 9λsM/2δkeAgMs

2� �
1 − cð Þ Man −Mð Þ

1 − μ0/δkeð Þ 1 − cð Þ Man −Mð Þ α + 9λsσ/2μ0Ms
2� �� � ,

ð1Þ

B = μ0 H +Mð Þ, ð2Þ
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whereM,Man, c, λS,Ms, δ, ke, Ag, μ0, B, α, and σ are total mag-
netization, nonhysteresis magnetization intensity, flexible coef-
ficient of the magnetic domain, saturation magnetostriction
coefficient, saturation magnetization, directional coefficient,
effective pinning coefficient, effective force area, permeability
of vacuum, magnetic flux density, Weiss molecular field cou-
pling coefficient, and stress. The magnetic field intensityH pro-
duced by an N-turn bias coil when the current is I.

Using Equations (1) and (2), the variation in the mag-
netic flux density with respect to the input external force
under different bias currents can be obtained. Using the
mathematical model, the relationship curve between mag-
netic flux density and input external force with bias currents
of 0.8A, 1.0A, 1.2A, 1.4A, and 1.6A is shown in Figure 3, in
which the input external force cycle goes from 0N to 1500N
and back to 0N.

The magnetization curve under the action of the force
shows that the nonlinear phenomenon of magnetization

mainly exists in the initial stage of the force increase (lift)
and force decrease (return) phases. In other stages, there is
a good linear relationship between the magnetic flux density
of the material and the input external force. The wide linear
force region is the basis for the better application of GMMs in
force sensors. The application of different bias currentsmodifies
the linear region and magnetic flux variation range of the sen-
sor, which is conducive to the design of a suitable measuring
range and improving the sensitivity of the force sensor. How-
ever, the relationship between magnetic flux density and input
external force is multivalued and exhibits a “butterfly” shape.
This reduces the electromechanical conversion efficiency, which
seriously restricts the practicability of force sensors that use
GMMs as the sensitive elements. As the current increases, the
scale of the hysteresis phenomenon decreases, but the variation
range of the magnetic flux also decreases. Because the hysteresis
phenomenon can be compensated by adjusting the current and
changing the magnetic flux density, the current with the largest
variation range of magnetic flux density is selected as the opti-
mal bias current. When the bias current is 1.2A, the sensor
exhibits the maximum variation in magnetic flux. Nonlinear
characteristic control methods generally use the least-squares
method or other regression-based techniques to fit the nonlin-
ear curve into a function, but this makes it difficult to achieve
high control accuracy. To realize more precise control of the
output performance of the force sensor, the hysteresis nonline-
arity must be accurately modeled and compensated.

In the process of external force application, the main
factors determining the internal magnetic flux density are
the force and the rate of change of force. Let kf = 1 and
kf = −1 represent the lift and the return, respectively.
The magnetization relationship of this process can be
described as follows:

B = f F, kf
� �

: ð3Þ
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Figure 1: Schematic diagram of the structure of the force sensor.

Figure 2: Photo of the force sensor.
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When the hysteresis loss of the GMM is in the ideal
state, there is no energy loss, and the total magnetization
M is equal to the nonhysteresis magnetization Man. This
can be written as follows [37]:

M =Man =Ms coth He
a

� �
−

a
He

� �
: ð4Þ

In Equation (4), Taylor expands and ignores higher-
order terms, which can be obtained after finishing:

M = Ms
3a − �αMs

H: ð5Þ

Using Equations (4) and (5), we have a model for the
change in magnetic flux density with respect to the bias
current under the input external force. According to this
mathematical model, the relationship between the mag-
netic flux density and bias current under different input
forces is shown in Figure 4.

It can be seen from the figure that the magnetic flux den-
sity curve is approximately linear for bias currents in the
range [0.8A, 1.3A], and the rate of change of the magnetic
flux density decreases as the input force increases. We take
the position of the optimal bias current (1.2A) to calculate
the rate of change of the magnetic flux density. The results
are presented in Table 1.

It can be seen from the table that the input force has little
effect on the rate of change of the magnetization curve.
Increasing the input force decreases the rate km of change
of the magnetic flux density curve, and there is a nonlinear
relationship between the rate of change and the external

force. The relationship between the two can be described
as follows:

km = g Fð Þ: ð6Þ

3. Nonlinear Feedforward Compensation
Control of Force Sensor

3.1. Variable Current Feedforward Compensation Principle.
According to its working principles, the giant magnetostric-
tive force sensor preadds a magnetic field and realizes real-
time adjustment of the bias magnetic field by providing
current to the excitation coil. To overcome the problem of
output hysteresis compensation by the force sensor, a
variable-current hysteresis nonlinear compensation method
is proposed in this paper. A schematic diagram of this
method is shown in Figure 5. According to the input exter-
nal force F, the material flux density is compared with the
expected flux density curve, and the system compensation
current is calculated inversely according to the flux density
error signal. The compensation circuit is controlled by a core
module that superimposes the compensation magnetic field
and the external magnetic field, so that the actual output B
ðFÞ of the system under the action of the compensation sig-
nal is as close as possible to the expected output BnðFÞ. From
the relationship between the input external force and the
material target magnetic flux density, the actual input exter-
nal force can then be accurately calculated.

3.2. Magnetization Model and Hysteresis Compensation
Model Based on BAS-BP. According to the variable-current
compensation principle of the force sensor, the force
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Figure 3: Magnetic flux density curve under external force.
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magnetization and current compensation need to be mod-
eled. At present, the main methods for describing GMM
hysteresis include experimental approaches [38], the J-A
model [39, 40], the Preisach model [41], and other intelli-
gent models [42, 43]. The experimental method requires
large amounts of data, which are difficult to obtain. In this
study, a mathematical method based on the J-A model is
used. The process of establishing the sensor output hystere-
sis model is complex, requiring an iterative numerical
method. The hysteresis loop cannot be obtained under an

arbitrary step length, so it is difficult to adjust the model to
any specific working point. Neural networks provide an
effective black box tool for establishing the nonlinear rela-
tionship between an input and an output. They have rela-
tively simple mathematical formulations and require few
parameters to describe the nonlinear hysteresis behavior.
However, the data involved has the characteristics of small
sample size, dynamic and nonlinear data, so the real-time
and high prediction accuracy requirements are put forward
for the modeling algorithm.
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Figure 4: Magnetic flux density curve under current.

Table 1: Influence of preload on flux density change rate.

F (N) 0 150 300 450 600 750 900 1050 1200 1350 1500

Km (T/A) 0.38 0.377 0.375 0.371 0.366 0.361 0.356 0.349 0.342 0.338 0.335
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Figure 5: Variable current feedforward compensation principle.
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Based on this, this paper combines the BAS optimization
algorithm with the traditional BP neural network to model
the force-magnetization model and the current compensa-
tion model and gives the BAS-BP feedforward compensation
system structure schematic diagram of the giant magneto-
strictive force sensor, as shown in Figure 6. To quantify
and fit the output of the force sensor, the force magnetiza-
tion hysteresis model is trained by the BAS-BP neural net-
work. Similarly, to compensate the hysteresis nonlinearity
of the force sensor, the inverse current magnetization model
is trained using BAS-BP. As the method should allow the
bias current to be adjusted, the total current entering the
force sensor is the sum of the preapplied current I and the
feedback control current; the preapplied current is selected
as the optimal bias current of the force sensor, i.e., 1.2A.

3.2.1. Principle of BAS Algorithm. The BAS algorithm [44] is
a new technique for multiobjective function optimization
based on the beetle foraging principle. Its biological principle
is that a foraging beetle does not know where the food is, but
can identify the strength of the food’s odor. The beetle has
two long antennae. If the odor intensity received by the left
antennae is greater than that received by the right antennae,
the beetle will fly to the left in the next step, and vice versa.
According to this simple principle, the beetle can effectively
find food. Similar to genetic algorithms (GA) and particle
swarm optimization (PSO), BAS automatically realizes the
optimization process without knowing the specific form of
the governing equation or gradient information. As BAS
considers only one individual, its optimization speed is sig-
nificantly improved over other optimization algorithms.
Therefore, the combination of the BAS optimization algo-
rithm and traditional BP neural network has high prediction
accuracy and fast training speed, which is in line with the
modeling requirements of relevant data in the article. The
principle of BAS is illustrated in Figure 7, where d is the dis-
tance between the two antenna coordinates; xl and xr repre-
sent left and right contact angles, respectively.

The modeling steps are as follows:
Create a random vector to be oriented by the beetle and

normalize it:

b = rands k, 1ð Þ
rands k, 1ð Þk k , ð7Þ

where rands is a random function and k is the spatial
dimension.

Create spatial coordinates of the left and right neces-
saries of the beetle:

xr = x tð Þ + d tð Þ × b,
xl = x tð Þ − d tð Þ × b,

(
ð8Þ

where xðtÞ is the spatial position of the beetle in the t search
and dðtÞ is the length of the whisker in the t search.

Determine the odor intensity of left and right whiskers:

x t + 1ð Þ = x tð Þ + ω tð Þ ⋅ b ⋅ sign f xrð Þ − f xlð Þ½ �, ð9Þ

where ωðtÞ is the step length of the detected movement of
the t search and f ð·Þ is the fitness function.
3.2.2. Establishment of BAS-BP Neural Network Model.
Because the initial weight and threshold of the BP algorithm
are determined at random, and the gradient descent method
is used to dynamically adjust the weight and threshold in the
learning process, BP models can easily become trapped
around local optima and converge slowly. First, a model
combining BAS and a BP neural network is established to
optimize the initial weight and threshold of the BP network.
Learning and training is then conducted on the basis of opti-
mization. The proposed BAS-BP method speeds up the con-
vergence process, avoids becoming trapped around local
optima, and finally improves the accuracy of the prediction
model [45].

The modeling steps are as follows:

(1) Create a random direction vector representing the
BAS behavior. For the BP network with a nsr‐nyhc‐1
structure, the search space dimension is the sum of
the weight to be optimized and the number of
thresholds, k = nsr × nyhc + nyhc × 1 + nyhc + 1, where
nsr is the number of input layer units and nyhc is
the number of hidden layer units

(2) Determine the fitness function. The mean square
error (MSE) between the model output and the
expected output is taken as the fitness function,
and the weight and threshold corresponding to the
smallest value of the fitness function correspond to
the optimal solution:
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Figure 6: Structure principle of BAS-BP feedforward control system.
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Fitness =MSE = 1
N
〠
N

j=1
tsim jð Þ − yj

� 	2
, ð10Þ

where N is the number of training samples, tsimðjÞ is the
model output value of the j sample, and yj is the actual value
of the j sample

(3) Beetle position initialization. The random number
between ½−0:5, 0:5� is taken as the initial solution
set of the BAS, which is stored in bestX (the optimal
initial position of the beetle), and its fitness function
is calculated and stored in bestY (the optimal fitness
function value of the initial position)

(4) Update the position of the beetle’s left and right
antennas. Update the position of the beetle’s left
and right antennas using Equation (8)

(5) Update spatial location. According to the position of
the left and right antennas, the fitness function
values of the left and right antennas are calculated,
the strength is compared and the position of the bee-
tle is updated according to Equation (9); that is, the
weights and thresholds of the BP neural network
are adjusted, and the fitness function values at the
current position are calculated. If the fitness function
value at this time is better than bestY , then bestY
and bestX are updated

(6) Optimal solution generation. Whether the fitness
function value meets the accuracy requirement or
whether it meets the highest iteration number is
determined. If the algorithm terminates when any
condition is satisfied, otherwise step (3) is returned.
When the algorithm stops iteration, the solution in
bestX is the optimal solution of training, namely,
the optimal initial weights and thresholds of the BP
neural network. The above optimal solution is

brought into the BP neural network for secondary
training and learning, and finally, the BAS-BP neural
network model is formed

Perform the specific process of BAS-BP regression, as
shown in Figure 8.

3.3. Construction of Force Hysteresis Model and Current
Compensation Model. Figures 9 and 10 show the fitting
results of the BP neural network and BAS-BP neural net-
work prediction model training set, respectively. It can be
seen that the optimized model prediction curve is close to
the real values. Figure 11 shows the curve of best fit to the
BAS-BP model. It is clear that the optimal solution can be
found after 11 and 5 iterations, respectively, and the conver-
gence speed is significantly higher than that of other optimi-
zation algorithms.

In this paper, the average relative error (MAPE), the
determination coefficient (R2), and the CPU running time
during iteration (T) are selected to evaluate the performance
of the model, and the calculation formulas are as follows:

MAPE = 1
n
〠
n

i=1

yi ′ − yi


 



yi
, ð11Þ

R2 =
n∑n

i=1yi ′yi −∑n
i=1yi ′∑n

i=1yi
� 	2

n∑n
i=1yi ′

2 − ∑n
i=1yi ′

� 	2
� �

n∑n
i=1yi

2 − ∑n
i=1yið Þ2

h i ,
ð12Þ

where n is the number of samples and yi and yi ′are the pre-
dicted and real values.

From Equation (11) and Equation (12), it can be seen
that the smaller the value of MAPE, the closer the value of
R2 to 1, indicating that BAS-BP has a better prediction
performance.

Simplified model

x1 xr

x

d

Figure 7: The search principle of BAS.
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To further verify whether the BAS-BP prediction model
is superior to other intelligent optimization algorithms as a
force hysteresis model, GA-BP [46] and PSO-BP [47] neural
network models were established. In addition, ten groups of
different sample data sets are obtained offline, calculating the
different model prediction MAPE performance index as
shown in Figure 12, where the solid line represents the
force-magnetization hysteresis model, and the dotted line
represents the current compensation model. Finally, the
accuracy of the model is described by calculating the average
values of MAPE, R2, and T , respectively, as shown in
Table 2.

It can be seen from Figure 12 that the MAPE of BAS-BP
and PSO-BP prediction models under different samples is
close to 0, which indicates that BAS-BP and PSO-BP have
a high fitting effect. In addition, the MAPE values under dif-
ferent samples fluctuate to a certain extent. However, due to
the large order of magnitude of the data in the force-
magnetization hysteresis model and the current compensa-
tion model, the fluctuation error has little effect on the iden-
tification stability. It can be seen from Table 2 that the
average value of MAPE of BAS-BP and PSO-BP prediction
models is close to 0, and the average value of R2 is close to
1, which further indicates that BAS-BP and PSO-BP have a
high fitting effect. The error accuracy of the PSO-BP net-
work is not much different from that of BAS-BP, but the
training speed of the proposed BAS-BP network is much
higher than that of PSO-BP. Therefore, based on the overall

prediction accuracy and convergence speed, BAS-BP pro-
duces the best effect, indicating that BAS-BP regression has
good applicability in the force magnetization model and cur-
rent compensation model. Therefore, the neural network
model has certain practicability for a variable current com-
pensation strategy.

3.4. Analysis of Simulation Results. To reduce the hysteresis
nonlinearity of the force sensor output and reduce the return
error, the force magnetization model and current compensa-
tion model trained by the neural network were used to deter-
mine the relationship between the compensation current,
total current, and input external force. The results are shown
in Figure 13.

During the simulations, the input external force was
cycled from 0N to 1500N and back to 0N in steps of
10N. The input current of the force sensor was defined as
the total current after the addition of the preadded current
of 1.2A and the feedback control current. The BAS-BP feed-
forward control variable-current compensation method was
used to obtain the variation curve of magnetic flux density
with respect to external force before and after compensation,
as shown in Figure 14.

As can be seen from the figure, compared with the mag-
netization curve before hysteresis compensation, the line-
arity between the input and output after compensation has
improved, and the hysteresis phenomenon has been effec-
tively suppressed. In addition, the variation range of the
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Figure 8: The specific process of the BAS-BP regression prediction model.
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magnetic flux density has become larger, which means that
the sensitivity of the force sensor has improved. Compared
with the target flux density curve, the error in the initial
stage of the lift and return of the input external force is large,
because the nonlinearity in these areas is obvious. Therefore,
the variable-current compensation control method effec-
tively reduces the force magnetization hysteresis nonlinear-
ity of the force sensor and improves the output accuracy of
the force sensor.

4. Experimental Study of Hysteresis Nonlinear
Feedforward Compensation Control

4.1. Construction of Experimental Platform. To verify the
performance of the force sensor and the effectiveness of
the proposed hysteresis compensation method, the exper-
imental platform shown in Figure 15 was constructed. An
it6332b three-channel programmable DC power supply
provides the current for the bias coil of the sensor. The
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Figure 9: The fitting results of force-magnetization model: (a) BAS-BP fitting results and (b) BP fitting results.
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temperature compensation system includes a water pump,
switching power supply, and water tank to prevent tem-
perature changes from affecting the GMM rod. A GMA
driver provides the input external force for the force sen-
sor, while two dynamometers (AT8203 and TDA08A)
calibrate the input force in real time. The computer uses
LabVIEW to detect the output voltage of the Hall
element.

In accordance with the Hall effect, the Hall output volt-
age of the force sensor is as follows:

Uha = KhaKcB +U0, ð13Þ

where Kha is the Hall coefficient, Kc is the magnetic flux den-
sity transfer coefficient, μ0 is the permeability of vacuum
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Figure 10: The fitting results of current compensation model: (a) BAS-BP fitting results and (b) BP fitting results.
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(μ0 = 4π × 10−7), and U0 is the static voltage of the Hall
element.

In the experiment, the output signal uses a standard volt-
age:

US =Uha −U0: ð14Þ

4.2. Output Characteristics under External Force. The output
variation in the external force is the main performance
index of a force sensor, and its linearity directly deter-
mines the accuracy and effectiveness of external force
detection. To evaluate the performance of the force sensor,
a bias coil current of 1.2A was applied to premagnetize
the giant magnetostrictive rod. As the output voltage of

the sensor has a nonlinear relationship with the force at
small magnitudes, mutual cooperation between the nut
and the disc spring is required to apply a certain preload
to the giant magnetostrictive rod and eliminate the nonlin-
ear phenomenon of the sensor output. The preload was set
to 150N. Due to the limitations of the experimental con-
ditions, the output characteristics of the force sensor were
only tested up to a 200N input external force. The input
external force cycled from 0N to 200N and back to 0N,
and the output voltage was measured. The results are
shown in Figure 16.

Under the bias magnetic field generated by the excitation
coil with a 1.2A current and a preload of 150N, the sensor
exhibits a relatively good voltage variation range and
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Figure 11: BAS-BP neural network fitness curve: (a) force-magnetization model and (b) current compensation model.

11Journal of Sensors



linearity. The linearity is expressed as the percentage of the
maximum deviation between the fitted curve and the real
working curve:

γs =
ΔUmax
U

× 100%: ð15Þ

The sensitivity of force measurement can be expressed as
follows:

S = dUS
dF

: ð16Þ

When the fitting curve is a linear target curve without
hysteresis, Equation (14) calculates the linearity of the
developed force sensor under lift and return to be 1.9%

and 3.1%, respectively, in the range of 0–200N. According
to Equation (15), the sensitivity of the developed force
sensor under lift and return is 0.36mV/N and 0.34mV/
N, respectively.

4.3. Output Characteristics under Bias Current. The magne-
tization model of the bias current is the main factor deter-
mining the magnetization hysteresis nonlinearity under a
variable current compensation force. Under a preload of
150N, the relationship between the output voltage and the
input current of the force sensor under different external
forces is shown in Figure 17. This relationship allows the
rate of change in the magnetic flux density to be calculated;
some results are presented in Table 3.

As can be seen from Figure 17, when the current is in the
range 1.1–1.3A, there is a good relationship between the
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Figure 12: The fitting results of the current compensation model.

Table 2: Comparison of effects of different models.

Forecasting model Algorithm type
MAPE (%) R2 T (s)

Testing set Training set Testing set Training set Training set

Force-magnetization model

BP 0.613 0.447 0.948 0.961 1.83

BAS-BP 0.067 0.054 0.997 0.998 15.4

GA-BP 1.467 1.159 0.785 0.856 195.5

PSO-BP 0.108 0.082 0.984 0.984 138.1

Current compensation model

BP 0.293 0.928 1.64

BAS-BP 0.183 0.965 13.7

GA-BP 0.496 0.882 174.3

PSO-BP 0.211 0.953 126.8
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output voltage and the bias current. Table 3 indicates that, as
the input force increases, the rate of change in the magneti-
zation decreases, which is consistent with the conclusion
obtained by the numerical simulations.

4.4. Output Characteristics before and after Current
Compensation. The output of the force sensor before and

after compensation is compared in Figure 18. The experi-
mental results show that the nonlinear feedforward compen-
sation control achieves a high level of accuracy, and the
linearity of the force sensor under the return is 1.6%. Com-
pared with the output characteristics before compensation,
the linearity under the return has improved 48.3%, and the
sensitivity has improved 1.4%. In addition, the hysteresis
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Figure 13: Relationship between compensation current and external force.
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phenomenon is effectively suppressed. This is consistent
with the numerical simulations, which demonstrates that
the proposed compensation method using a variable bias
current is a reasonable and effective means of improving
the hysteresis nonlinearity and linearity of the force sensor.
However, the sensitivity and linearity under lift have not

been significantly improved because of the characteristics
of the target output curve.

The error curve between the compensated output voltage
and the ideal output voltage is shown in Figure 19. The max-
imum error between the actual output voltage and the ideal
output voltage is 1.9mV.

Switching power supply PC

High precision
current source

NI capture card
GMA stressor

Ergograph

Force sensor

Force indicator

Water pump

Signal transmitter

Figure 15: Experimental platform of force sensor.
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Table 3: Influence of input force on output voltage change rate.

F (N) 0 20 40 60 80 100 120 140 160 180 200

K (V/A) 1.085 1.084 1.082 1.078 1.074 1.073 1.071 1.068 1.064 1.058 1.054
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Figure 18: Output voltage comparison curve before and after compensation.

15Journal of Sensors



Repeatability generally refers to multiple measurements
of the same object under the same conditions to measure
the degree of consistency between the measurement results.
For the force sensor, repeatability is one of its important per-
formance indicators. If the repeatability is higher, the detec-
tion performance of the sensor is better and the use-value is
higher. To further verify the proposed variable bias current

compensation method, the giant magnetostrictive force sen-
sor was measured five times under the same test conditions,
and the results are shown in Figure 20.

According to the calculation of the test results, the max-
imum output voltage error of the developed magnetostric-
tive force sensor for five measurements is 0.64mV, which
has high repeatability. It further verifies that the
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compensation idea of variable bias current proposed in this
paper is reasonable and effective for improving the hysteresis
nonlinearity and linearity of the force sensor. In addition,
the following work needs to add a feedback control method
to improve the compensation idea of variable bias current to
further improve the accuracy of compensation.

5. Conclusions

Based on the material characteristics and magnetostrictive
inverse effect of GMMs, a force sensor that uses Terfenol-
D as the sensing element has been designed.

(1) In view of the hysteresis and nonlinearity between
the input external force, bias current, and flux den-
sity of the force sensor, the magnetization hysteresis
model and current compensation model have been
optimized using the BAS algorithm. Identification
and prediction of the output results of the J-A model
showed that the proposed BAS-BP algorithm
achieves better identification accuracy and faster
identification speed than GA- and PSO-based algo-
rithms. These results demonstrate that the BAS-BP
regression prediction model has good applicability
for modeling the force magnetization and current
compensation

(2) Based on the hysteresis nonlinearity of the GMM
and the BAS-BP controller, a variable bias current
feedforward compensation method for hysteresis
was proposed. Simulation results showed that the
linearity between the input and output after com-
pensation had improved and the hysteresis phenom-
enon was effectively suppressed. In addition, the
variation range of the magnetic flux density became
larger and the sensitivity of the force sensor was
enhanced

(3) An experimental platform was constructed to verify
the performance of the force sensor and the pro-
posed method. Using the hysteresis compensation
method under a variable bias current, the linearity
under the return of the force sensor was found to
be approximately 1.6%, which is around 48.3%
higher than before, the sensitivity was calculated to
be 0.345mV/N, and the maximum repeat error is
only 0.64mV. In addition, the hysteresis phenome-
non was effectively suppressed. The experimental
results show that the proposed method using a vari-
able bias current is effective, providing a new method
for the development of high-linearity sensors. In
future work, the accuracy of force sensor control will
be further improved by adding feedback control
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