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Radar sea clutters are echoes reflected from a patch of ocean surface, which may significantly interfere with the signals from
targets, and seriously degrade the performance of marine radar remote sensing. Thus, it is vital to eliminate the effects of sea
clutter. In this paper, we aim at normalizing sea clutter to a uniform level. Firstly, a detailed analysis about the characteristics
and differences of clutter and targets is presented; then, we present a heuristic processing scheme which works by solving the
task of sea clutter normalization as a classification problem followed by energy normalization. Multiscale and speed-up
strategies are incorporated into the dynamic clustering algorithm to found a robust real-time normalization method.
Finally, extensive experiments show state-of-the-art results on challenging sea clutter echoes, which demonstrate the
feasibility and robustness of the proposed adaptive clustering normalization method.

1. Introduction

Marine radar has played a pivotal role in the field of remote
sensing applications, especially for maritime navigation,
marine rescue, maritime surveillance, and national safety.
However, the radar data may be severely affected by sea clut-
ters, which significantly degrade the performance of the radar
system. The sea clutters are echoes reflected from the ocean
surface, which highly depend on radar frequency, grazing
angle, sea state, polarization, rain, wind velocity, and direc-
tion [1, 2]. Additionally, these parameters strongly couple
with each other, and the relationships between them are quite
complex [3]. Therefore, it is challenging to model the sea
clutters by a uniform function or eliminate them through
system design. Besides, sea clutter may severely interfere with
the signals from targets and seriously degrade the perfor-
mance of the target detection, particularly for the targets with
low speed and low radar cross-section (RCS) [4]. Thus, it is
critical to eliminate the effects of sea clutter.

Sea clutter suppression is one of the most significant
tasks in radar signal processing. However, it has been a hard
problem all the time. In recent years, researches about sea
clutter suppression have been shown to achieve improving
performance. An exhaustive review of sea clutter progress
is outside the scope of our research, but we refer the inter-
ested readers to three comprehensive papers [1, 5] and [6].
Related to our work, a brief review of sea clutter modeling,
filtering, and prediction approaches is presented in the latter
paragraphs.

Statistical sea clutter models were proposed basing on
the theories of electromagnetic scattering and empirical
measurements and observations [1, 7]. Sea clutter usually
behaves highly non-Gaussian or even spiky, particularly in
the case of heavy sea conditions [8]. Consequently, it is
tough to model the sea clutter; although, numerous efforts
have been devoted to it. The aim of these studies is to
improve the understanding of clutter characteristics, then
be applied to better eliminate the effects of sea clutter. These
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models include normalized clutter RCS, amplitude statistics,
clutter spikes, spatial correlation, and Doppler spectrum [1].
Amplitude statistic models such as Weibull, log-normal [9],
K-distribution [10, 11], non-Rayleigh [12, 13] Gaussian, and
compound-Gaussian [14] have attracted lots of attentions to
describe the amplitudes of sea clutter and also have been
confirmed and applied widely.

Besides, some researchers devoted to designing innova-
tive filters to eliminate the influence of sea clutter. In [5],
Lv et al. compared the sea clutter suppression performances
of four algorithms, which were developed on cycle cancella-
tion, and singular value decomposition, wavelet weighted
reconstruction and decomposition, respectively. In [15], a
particle Kalman filter has been used for target detection
using marine radar. [16] presented a time-frequency analysis
technique to detect target, [17] utilized wavelet for detection,
and [18] applied radial basis function (RBF) neural network
to detect small objects. Liu et al. proposed a spatial tracking
filter [19] to suppress sea clutter. Self-organizing map and
hierarchical agglomerative clustering algorithm [20] have
been found effective for marine radar clutter classification.
In [20], Chen et al. succeeded in identifying both rain con-
taminated and low backscatter regions. Radon transform
was applied to detect small target in [21], as well as fractal
analysis theory was employed in [22, 23]. Liu et al. developed
a generalized multichannel adaptive filter to cancellate sea
clutter for passive radar sensors and achieved sufficient clut-
ter suppression and target signal preservation [24]. Besides,
they proposed a multichannel normalized least-mean-
square algorithm to reduce the residual sea clutter using a
passive bistatic radar [25].

Moreover, deep neural network (DNN) has been widely
used in the radar signal processing field. To predict the
amplitudes of sea clutter, Ma et al. [6] taken the advantage
of a long short-term memory (LSTM) neural network to
found a sea clutter prediction system, which was composed
of a preprocessing module followed by a prediction module
and could learn the long-term variation characteristics of sea
clutter. These approaches eliminated the effects of sea clutter
to some extent and achieved improving performance. Never-
theless, sea clutter suppression is not yet a closed problem.

Different from the abovementioned sea clutter modeling,
filtering, and prediction methods, our approach is a heuristic
processing scheme and works by solving the task of sea clut-
ter normalization as a classification problem followed by
energy normalization. The rest of this paper is organized as
follows. First, we analyze the amplitude characteristics of
sea clutter and targets. Then, we put forward an adaptive
clustering method and an energy normalization scheme.
For validation, we then test our method with extensive data
at different sea states and present the experiment results.
Finally, we revisit the major findings of this paper and pres-
ent some potential applications.

2. Data Analysis

In this paper, the datasets were collected on the East China
Sea by a civil navigation radar system. Figure 1 illustrates
the intensities of sea clutter echoes with respect to four dif-

ferent sea states, where the x-axis represents the radial dis-
tance, and the y-axis indicates the echo amplitude. The left
column of Figure 1 illustrates the amplitudes of sea clutter
without targets in four different sea states. The right column
of Figure 1 illustrates the likely targets in sea clutter, which
are indicated by the red curves. Through analysis, we obtain
the following intuitive but important characteristics:

(i) Both the intensity and fluctuation of sea clutter
gradually decrease with respect to the distance. This
law is exploited to promote the adaptive clustering
task

(ii) Targets may vary from large ships and islands to
small submarine periscopes and floating debris,
which results in producing different amplitudes
and widths, as shown in the right column of
Figure 1. Thus, a multiscale strategy is proposed to
address this issue

(iii) The pattern of sea clutter is irregular and time-
varying. It is hard to model the sea clutter amplitude
by an accurate mathematical model

(iv) The sea clutter amplitude is spatially correlated in
the high sea states, which may degrade the perfor-
mance of the known cell-averaging constant false
alarm rate (CA CFAR) detector algorithm, as the
cell under test is no longer statistically independent
of the surrounding cells

Besides, the data in Figure 1 shows that sometimes the
amplitude data close to the radar is invalid and sometimes
is large enough to saturate the receiver, especially in high
sea states. To simplify this problem, in subsequent sections,
we substitute the frontal 100 samples by the mean of the
samples between positions 100 and 150. Since one interval
corresponds to 2.4m, the minimum detection distance for
our system is about 240 meters. Illuminated by the above
characteristics, we consider the sea clutter normalization as
a classification process and strive to normalize the sea clutter
in a machine learning manner, regardless of the radar
parameters and marine environmental parameters.

3. Methodology

Clustering is an unsupervised classification method that
classifies different categories. Motivated by statistical
machine learning theories, we develop a multiscale cluster-
ing method to adaptively predict whether there is a likely
target in the corresponding bins and then eliminate the
effects of sea clutter by normalizing the energy of the data.

Analyzing the sea clutter normalization problem from
the perspective of energy normalization, the background
means and variances, respectively, describe the potential
energy and fluctuation energy of sea clutter. To make an
analogy, the energy of sea clutter corresponds to the energy
of an object with nonzero altitude accompanied by vibration,
and then the potential energy and fluctuation energy corre-
spond to the gravitational potential energy and vibration
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energy, respectively. The primary purpose of our research is
to normalize the radar sea clutter to a uniform level: for arbi-
trary distance, the mean of sea clutter amplitudes equals

zero, and the corresponding variance equals unit one.
Figure 2 illustrates the pipeline of the proposed adaptive
clustering-based normalization (ACN) algorithm.
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Figure 1: Amplitudes of the marine radar echoes with and without targets. (a1), (a2), (a3), and (a4) are sea clutter amplitude data without
targets recorded in four different sea states (L1, L2, L3, L4), respectively, and the corresponding sea states satisfy L1 < L2 < L3 < L4. (b1), (b2),
(b3), and (b4) are amplitudes of the radar data with different targets in the four sea states as well. red curves indicate the likely targets.
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As shown in Figure 2, the proposed adaptive clustering-
based sea clutter normalization scheme consists of four
blocks: (i) rough clustering roughly tells apart the targets
from sea clutter in a fast manner, the resulting mask denotes
by C, and the corresponding element Cd ∈ f0, 1g denotes the
class label at distance d, where 0 stands for clutter and 1
stands for the suspected targets; (ii) multiscale amplitude
clustering takes C as the prior and dynamically classifies
the targets and clutter using Algorithm 1 and then estimate
the mean value at each distance d, denoted byM∗

d ; (iii) mean
normalization subtracts the effect of background mean by
Ed = Ad −M∗

d , where Ad denotes the sea clutter amplitude
at distance d, and Ed denotes the data normalized by mean;
(iv) multiscale fluctuation clustering takes the classification
results in (ii) as the prior, employs Algorithm 1 to separate
targets from sea clutter again, and computes the correspond-
ing variance at each distance d, denoted by V∗

d ; (v) variance
normalization eliminates the effect of background variance
by Êd = Ed/V∗

d , where Êd denotes the data further normal-
ized by variance. We maintain the mask C through the
whole normalization process, which helps to accelerate the
clustering and enhance the robustness of the proposed algo-

rithm. Meanwhile, the resulting mask C also indicates the
possible targets, which can be taken as the prior for maritime
target detection algorithms; although, it may contain false
alarm and false dismissal.

3.1. Dynamic Clustering. In this section, we dynamically esti-
mate two statistical characteristics of sea clutter echoes, the
background means, and variances. For the sake of time-con-
suming, first, we employ a rough clustering to roughly
exclude the targets from sea clutter. Then, we take the clas-
sification results as the prior and utilize a fine dynamic clus-
tering to estimate the statistical ones at each distance.
Algorithm 1 describes the pseudocode of the basic clustering
algorithm performed in both rough and fine clustering.

The rough clustering process is devoted to roughly telling
apart the targets from sea clutter in a fast manner. For this
purpose, we divide the one-dimensional amplitude data A
into several bins biði = 1, 2,⋯,nÞ and compute the integral
data of A. Each bin consists of mi samples, and bijðj = 1, 2,
⋯,miÞ denotes the amplitude of the sample. y ∈ f0, 1g
denotes the class label, which depicts a binary classification
problem, 0 stands for clutter, and 1 stands for likely target.
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Figure 2: Detailed block diagram of ACN framework.

Inputs: one-dimensional sea clutter amplitude data A in a certain direction.
For each bin bi do

Initialize the clustering centers by Ci
0 = min ðmeanðbiÞ, Ci−1

0 Þ and Ci
1 = η × Ci

0;
Iterations τ = 0, τmax; η denotes proportional factor;
While sumðcτi Þ ≠ sumðcτ−1i Þ and τ ≤ τmax do

For each sample bij compute Manhattan distance with clustering center

Dy
ij = jbij − Cyj;

If ŷij =min
y

½Dy
ij�

Then bij ∈ ŷij and update classification results cij = ŷij;
End for
Update clustering centers respectively:
Ci
1 = sumðci ⊙ biÞ/½sumðciÞ + 1�, Ci

0 = sum½ð1 − ciÞ ⊙ bi�/½mi − sumðciÞ + 1�
+1 for divide protection, ⊙ explicitly denotes the element-wise multiplication;
τ = τ + 1;

End while
Integrate classification results ci and clustering centers Ci

0, C
i
1 in C, C0, and C1, respectively.

End for
Outputs: classification results C and clustering centers C0, C1.

Algorithm 1: Clustering algorithm.
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C0 and C1 denote the clustering centers, respectively. ci
denotes the corresponding classification results of bi, which
is produced by Algorithm 1 and the corresponding element
cij ∈ f0, 1g. Finally, all the rough clustering results are inte-
grated in the mask C. Besides, the original mask of rough
clustering indicates the prior, and all the elements are set
to 0 if there are no priors.

The fine dynamic clustering process aims at excluding
the targets from sea clutter in a precise manner. In this mod-
ule, we cluster at each distance d with the clustering width w.
To speed up the clustering process, we compute the mask-
based integral data of the sea clutter amplitude and take
the rough clustering results as a prior. Besides, since both
the intensity and fluctuation of sea clutter data gradually
decrease with respect to the distance, we exploit this law to

dynamically supervise the selection of clustering centers by
Equation (1):

C∗
0,d+1 = min ρ × C∗

0,d , C0,d+1
� �

, ð1Þ

where C0,d+1 denotes the clustering center of sea clutter at
distance d + 1, ρ denotes a proportional factor, and C∗

0,d+1
and C∗

0,d denote the supervised clustering centers of sea clut-
ter at distance d + 1 and d, respectively. The basic clustering
algorithm in this module is the same as Algorithm 1, except
for the supervision of clustering centers by Equation (1).

Clustering analysis consists of feature selection, similar-
ity measurement, and clustering cost function. For rough
clustering and multiscale amplitude clustering, we choose
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Figure 3: Clustering and normalization results of the sea clutter amplitude data. (a) The black curve exhibits the amplitude values of the
data, the red curve shows the classification results, the blue curve stands for mean values of sea clutter, and the green curve displays the
frontal 100 raw data. (b) shows the result of mean normalization. (c) and (d) are the fluctuation clustering and variance normalization
results, respectively. The green dotted curve displayed in (c) represents the global clustering results.
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intensity bij as the clustering feature, and the similarity
measurement is formulated by Manhattan distance as
Equation (2).

D bij1 , bij2
� �

= bij1 − bij2

���
���, ð2Þ

The clustering cost function is formulated by within
class distance, denoted by Equation (3). Then, the cluster-
ing results are found by minimizing the cost.

Jw = 〠
mi

j=1
cij bij − C0
�� �� + 1 − cij

� �
bij − C1
�� ��⇒min: ð3Þ

Algorithm 1 does not explicitly minimize clustering
cost Jw, but the procedure of classification and updating
trend to minimize it.

As shown in Figure 2, we successively utilize the results
of amplitude clustering and fluctuation clustering to normal-
ize the sea clutter, and the two processes are almost the
same. In the fluctuation clustering process, we choose the
absolute of the results produced by mean normalization as
clustering feature. The statistical mean and variance at
discrete distance d can be directly obtained based on the cor-
responding clustering results by Equation (4):

M∗
d = Cm

0,d , V∗
d = Cv

0,d: ð4Þ

Here, M∗
d is the desired background mean, V∗

d denotes
the approximate background variance, and Cm

0,d and Cv
0,d

denote the clustering centers of the sea clutter in amplitude
and fluctuation clustering, respectively. Figure 3 shows the
clustering and normalization results of sea clutter amplitude
data in a specific direction. Figure 3(b) illustrates the results
produced by mean normalization according to Ed = Ad −M∗

d
. Figure 3(c) indicates the fluctuation bias jEdj. Figure 3(d)
shows the final results Êd , which is computed by Êd = Ed/
V∗

d . The results illustrate that the proposed dynamic cluster-
ing scheme can separate the echoes with visual higher local
amplitude from the background and accurately estimate
the means and variances of sea clutter.

3.2. Adaptive Multiscale Strategy. The widths of target echoes
vary from one to hundreds. Thus, if we simply cluster and
estimate the characteristics of the background at one fixed
width, the results will not satisfy the normalization require-
ment or even worse. In this section, we propose an adaptive
multiscale clustering strategy to deal with different sizes of
targets. Figure 4 shows the schematic diagram of the multi-
scale clustering. For each distance, the corresponding back-
ground widths of sea clutter denoted by s ×w0, where w0
represents the basic width, and s = ½s1, s2,⋯,sz� represents
the scale factors. To integrate multiscale strategy with the
dynamic clustering algorithm, we do cluster at each scale
using the same clustering centers updated by Equation (5):

C0 = min Cs
0ð Þ, C1 = mean Cs

1ð Þ: ð5Þ

Here, Cs
0 and Cs

1 denote the clustering centers of back-
ground and targets at scale s, respectively. Similarly, the
multiscale statistical mean and variance at distance d can
be obtained by Equation (4). The values are then exploited
to normalize the amplitude data at this distance, as shown
by the red line in Figure 4.

4. Experiments

4.1. Radar System and Parameters. To validate our approach,
we have performed extensive experiments to analyze the
normalization performance in various sea states. The testing
data are recorded by a two-dimensional noncoherent civil
navigation radar system on the East China Sea. The experi-
mental radar system operates at the X-band and works in
circular scanning mode, azimuth range ½0, 360°�. The scan-
ning cycle is 2.5 seconds, during which this system emits
about 3300 pulses. Therefore, the azimuth resolution is
approximately 0:11°. The sampling frequency of our record-
ing instrument is 62.5MHz, which results in range resolu-
tion 2.4m. The distance range we discussed in this paper is
set to r ∈ ½0, 7488m�, corresponding to 3120 samples.

The approach proposed in this paper is implemented in
MATLAB. We perform the experiments on a laptop with
Intel(R) Core (TM) 2.60GHz CPU and 12GB RAM. The
size of the bins depends on target size and distance
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resolution. For rough clustering, the width of the bin is set to
mi = 200 except for the last bin to adapt to different targets
sizes; then, the amplitude data at a certain azimuth are
divide into 16 bins and m16 = 120. The proportional factor
presented in Algorithm 1 is set to η = 1:5 for rough cluster-
ing, η = 1:3 for multiscale intensity clustering. These two
proportional factors are set to build weak classifiers, which
are obtained from extensive experiments based on the echo
intensities. According to the 3-sigma principle of the indus-
try, we set η = 3 for multiscale fluctuation clustering. Besides,
the maximum iteration of dynamic clustering is initialized
by τmax = 5. For fine dynamic clustering, the proportional
factor in equation (1) is set to ρ = 1:1, and the basic width
w0 = 150 and the multiscale factors are set to s = ½1, 1:5, 2�;
yet, an adhoc scale strategy is needed for the head and tail
of sea clutter amplitude data. Additionally, a global cluster-
ing is performed before the fine multiscale fluctuation clus-
tering. The iteration of global clustering equals one with
clustering centers C0 = meanðEÞ and C1 = 3 × C0, and E
denotes the fluctuate bias in a certain azimuth. The green
dotted lines shown in Figure 3(c) and Figure 5(b3) illustrate
the global classification results. These parameters are tested
on extensive experiments.

To speed up the clustering process, we compute the
mask-based integral data of the sea clutter amplitude. The
idea of the integral data is precomputing. The advantage of
integral data is that the complexity is constant when calcu-
lating the mean of any bin. The complexity of computing
integral data increases linearly with the length of the data.
Besides, the computational complexity of the proposed
method increases linearly with the number of the clustering
and the maximum iteration of dynamic clustering. Let N
denotes the length of the data, n denotes the number of

the clustering, and τmax denotes the maximum iteration of
dynamic clustering. Then, the computational complexity
of the proposed normalization algorithm is approximately
Oððτmax × n + 1Þ ×NÞ.

4.2. Experimental Evaluation. The first set of experiments
aims to explain the pipeline of the presented ACN frame-
work and meanwhile evaluates the performance of the mul-
tiscale strategy and clustering centers supervising strategy.
As illustrated in Figures 3 and 5 , these tests provide intuitive
insights into the operation of adaptive clustering and energy
normalization. Figure 5(a∗) illustrates the results of fixed
width clustering and without utilizing Equation (1) to super-
vise the clustering center. Figure 5(b∗) show the results pro-
duced by the ACN. As shown in the left column of Figure 5,
clustering at a fixed width cannot tackle the target with large
size, even interfere the desired targets, which results in
reducing the signal-to-noise ratio of the targets. However,
the results produced by multiscale clustering accurately
describe the background mean and variance, and mean-
while, mitigates the effects of sea clutter. Thus, the results
demonstrate that the proposed ACN can robustly estimate
the sea clutter means and variances and adapts to different
sea states and targets.

The second set of experiments exhibit the ensemble per-
formance from a whole scanning cycle before and after nor-
malization. We integrate the amplitude data of one scanning
cycle into a two-dimensional image, of which the horizontal
axis indicates distance and the vertical axis represents orien-
tation. Figure 6 shows the performance comparison between
raw amplitude data, mean normalized data, and mean vari-
ance normalized data. As shown in Figure 6, we recorded
the data at six different marine areas, and the sea states of
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Figure 7: Morphological filtering results of the normalized amplitude data shown in Figure 6.
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the upper rows are lower than that of the bottom column.
Intuitively, the left column of Figure 6 indicates that there
is a huge patch of strong scattering points, mixed by targets
and sea clutters, and the echo intensity is very strong nearby
the radar system. However, the middle column of Figure 6
shows that mean normalization has mitigated most of the
strong sea clutter. One step further, the right column of
Figure 6 exhibits that the effects of fluctuation has been elim-
inated by variance normalization, with only a few weak
points left.

Furthermore, a target detector can be employed to detect
targets from the normalized amplitude data. First, we limit
the minimum intensity of the normalized data to 0 by setting
the negative data to 0. Besides, to eliminate the influence of
the scattering points on target detection, we utilize a mor-
phological filter on the normalized data. Figure 7 shows
the corresponding results by corrosion morphological filter-
ing, and the kernel of the morphological filter is a circle with
radius of 3. Since radar sea clutters are normalized to a uni-
form level: for arbitrary distance, the mean of sea clutter
amplitudes equals zero, and the corresponding variance
equals unit one, then the normalized sea clutters can be
approximately modeled as a standard normal distribution.
According to the 3-sigma principle of the industry, we
directly segment the eroded amplitude data shown in
Figure 7, by a threshold 3, and results are shown in
Figure 8. As shown in Figure 8, a simple segmentation can
effectively detect the likely targets; though, the segmentation
results contain false alarms and false dismissal. More scans
are needed to finally confirm the targets and thoroughly
eliminate the sea clutter, especially for the scattering points
and spiky clutters. Besides, sea clutters severely interfere
with the signals from targets, which weaken the relative
intensities of target signals, particularly for the targets with

low RCS. Therefore, an energy accumulation method should
be applied to detect small targets in the target detection task.

5. Conclusions

The primary purpose of our research is to eliminate the
effects of sea clutter. In this paper, we first analyze the char-
acteristics of sea clutter and targets. Then, we propose an
intuitive, simple, but high-quality normalization method,
which exploits a dynamic clustering algorithm to classify tar-
gets and sea clutter in terms of echo amplitude and fluctua-
tion, then estimates the statistical means and variances of sea
clutter by utilizing the classification results, and finally,
employs the estimated means and variances to normalize
sea clutter to a uniform level. In addition, we integrate multi-
scale and speed-up strategies with the dynamic clustering
algorithm to form a robust adaptive clustering approach in
handling different sizes of targets. Two sets of experiments
show state-of-the-art results on challenging sea clutter ech-
oes, which demonstrate the effectiveness and robustness of
the proposed ACN algorithm.

The high quality and efficiency of our method make it
suitable for real-time object detection and tracking applica-
tions. Thus, the proposed ACN can be considered as a pre-
processing technique for these radar remote sensing
applications. Besides, similar data have also been captured
in many different fields. Hence, the method proposed in this
paper could be employed to normalize signals in those fields.

Data Availability

The marine radar data used to support the findings of this
study have been deposited in the GitHub repository
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Figure 8: Segmentation results of the morphological filtered amplitude data shown in Figure 7, by threshold 3.
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