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Aiming at the problems of inaccurate interaction point position, interaction point drift, and interaction feedback delay in the
process of LiDAR sensor signal processing interactive system, a target tracking algorithm is proposed by combining LiDAR
depth image information with color images. The algorithm first fuses the gesture detection results of the LiDAR and the visual
image and uses the color information fusion algorithm of the Camshift algorithm to realize the tracking of the moving target.
The experimental results show that the multi-information fusion tracking algorithm based on this paper has achieved higher
recognition rate and better stability and robustness than the traditional fusion tracking algorithm.

1. Introduction

Target tracking [1] is one of the most important research
directions in the field of computer vision, and its application
areas include surveillance, medical imaging, and human-
computer interaction. Although target tracking has been
studied for many years and important progress has been
made, there are still many problems. Generally, the interac-
tion system based on LiDAR sensor is affected by the follow-
ing factors: such as occlusion, complex environment, and
illumination variation. In addition, it is crucial to improve
the real-time performance of LiDAR sensor for data
processing.

From the perspective of the sensor, target tracking algo-
rithms can be roughly divided into the following categories:
vision-based target tracking [2–4], LiDAR-based target
tracking [5–7], and target tracking based on the fusion of
vision and LiDAR [8–10]. For vision-based target tracking
methods, it often cannot provide distance information of
moving objects, and the effect is not good in object recogni-
tion and tracking [11, 12]. With the popularization of stereo
vision, we can obtain distance information of moving
objects, but the amount of calculation is relatively large

[13–15]. In recent years, due to the advantages of high-
ranging accuracy and real-time performance, LiDAR sensor
has attracted more and more attention in the target tracking
of interactive systems [16, 17]. LiDAR-based target tracking
usually uses traditional tracking methods, which can contin-
uously and accurately obtain measurement data and predict
the state of the target [8]. Furthermore, in order to improve
the accuracy of tracking, the LiDAR-based target tracking
combines statistics, random decision theory, and intelligent
control calculation methods to judge the tracking target
according to certain rules [18].

Since the methods of vision-based and LiDAR-based tar-
get tracking have their own advantages and disadvantages,
the fusion of the above two methods can further improve
the tracking effect. Therefore, Broggi et al. [19] used LiDAR
and stereo vision to draw raster maps and merged the infor-
mation of the two. However, the above method is limited to
a specific LiDAR sensor, and feature-based methods are used
in the tracking process to reduce the amount of calculation.
Subsequently, Petrovskaya and Thrun [20] proposed a
method to map the depth information of LiDAR to an image
sequence based on the polar coordinate system and detect
moving targets through the difference between two
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consecutive frames. However, this method only considers
the depth data information of the last few frames, and it
ignores the state prediction fusion and may not be able to
detect and track the target when facing some complex
scenes. Other typical methods include using Kalman filter
for target tracking [21].

In this paper, the tracking algorithm is based on the
LiDAR sensor and the visual tracking is integrated. As we
all know, once the target is blocked or interfered by environ-
mental changes, the LiDAR sensor will not be able to contin-
uously measure the distance of the object, which causes
problems such as inaccurate interaction point position, inter-
action point drift, and interaction feedback delay. In response
to the above problems, Guo et al. [22] developed a high-
throughput crop phenotyping platform that integrates LiDAR
sensors, high-resolution cameras, thermal imaging cameras,
and hyperspectral imagers. It combines LiDAR and traditional
remote sensing technologies to obtain higher-precision three-
dimensional data. Rossi et al. [23] studied the application of
differential absorption LiDAR in monitoring the abnormal
concentration of chemical substances in the atmosphere, by
using a multiwavelength method to improve the accuracy of
atmospheric gas concentration measurement. Chen et al.
[24] combined time-correlated single photon counting
(TCSPC) technology and LiDAR and proposed a three-beam
TCSPC LiDAR system, which effectively improves the ranging
accuracy of the TCSPC LiDAR system.

In addition, the real-time performance of data processing
in LiDAR sensor is also an important issue that must be
resolved. For example, Luo et al. [25] proposed a real-time
ground segmentation method based on probability occupancy
grids. When there is occlusion, the LiDAR sensor is used to
solve the environmental perception task, thereby reducing
the processing scale of data and reducing the calculation time.
Lyu et al. [26] proposed a field programmable gate array
design based on a segmented algorithm of convolutional neu-
ral network and applied this method to the segmentation of
the drivable area of autonomous driving. It has proved that
the algorithm can process LiDAR data in real-time.

In order to take into account both the accuracy and effi-
ciency of LiDAR sensor data processing, this paper proposes
a target tracking algorithm, and the main contributions of
this paper are listed as follows:

(1) A fusion strategy that combines the depth image
information of LiDAR with color images, and put
forward a fitting factor that varies with the degree
of occlusion

(2) An improved Camshift tracking algorithm based on
Kalman filter, which improves the robustness of
tracking in a complex environment through the
method of linear fit

2. Gesture Detection Information
Fusion Framework

In this paper, LiDAR sensor operation recognition is used
for data interaction. At the same time, we use a computer

to accurately capture the users’ command actions and pro-
vide real-time and accurate feedback to achieve human-
computer interaction. The system interaction frame struc-
ture diagram is shown in Figure 1. The user stands in front
of the interactive screen and the LiDAR sensor, slides (with-
out contact) on the front of the screen, and clicks on the rel-
evant interactive content, which can replace and implement
most of the functions of the mouse, including clicking, slid-
ing, and dragging. The proposed system supports multiple
users for real-time gesture interaction.

Before performing target tracking, this paper first proposes
a gesture detection fusion method, which combines the ges-
ture detection results of LiDAR and visual images. On the
one hand, the LiDAR is continuously measured and calculated
to realize the distinction of moving regions; on the other hand,
the camera uses the continuous frame difference method to
realize the detection of moving targets; then, the detection
results of the two are integrated. Finally, the gesture detection
result is given by the two sensors and the detection results of
multiple frames of images. The specific implementation
method will be described in detail below.

Based on the moving target t = fobji = ð f , bL, bcÞ, i = 1,
2,⋯,Ng, for each image frame bci, a score sci is given with
reference to the gesture detector. The multiframe detection
result of the gesture detector is Sc = fsci, i = 1, 2,⋯,Ng. If
the tracking target is more stable, the probability that it is
a target independent of the background is greater. The cost
Γ associated with the preceding and following frames is used
as the basis SL for judging whether it is a gesture, SL = fsil
= 1 − Γi, i = 1, 2,⋯,Ng. When i = 1, it is considered that
there is no associated cost during initialization, so sil = 1.
When the association fails, sil = −1.

For the detection results of the fusion image, we propose
a voting fusion mechanism. The gesture tracking score result
is obtained based on formula (1). When SF > Γ1, it is deter-
mined as a gesture.

SF =W σ Scð Þ, SL½ �T : ð1Þ

In the above formula, W is the weight, and σ is a func-
tion that projects Sc into ½−1, 1�, which can be expressed as
the following formula.

σ sð Þ = 2
1 + exp −s/4ð Þ − 1: ð2Þ

Finally, the exit rules are defined. We define the exit con-
ditions for the score SF and the number of survival frames of
the tracking target Nbirth, as shown in formula (3). If the
tracking image frame number is greater than the maximum
defined number of frames, the tracking target still cannot be
determined as a gesture, then, exit the tracking list.

Nbirth > τn,
SF < τ2,

(
ð3Þ

where τ is the defined maximum number of frames.
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3. LiDAR Depth Information and Visual Image
Information Fusion Algorithm

LiDAR is used to construct position coordinates by scanning
data from the target surface. In an interactive system, if the
tracking target is blocked or disappears from the effective
laser plane instantly, the scan often fails. When the above sit-
uation occurs, the information obtained by the LiDAR is not
comprehensive, which will cause the problems of the inter-
action point drift and the unsmooth interaction. Therefore,
in this section, we propose a method that combines the color
information of the Camshift algorithm to track moving tar-
gets. Figure 2 is a flow chart of Camshift algorithm informa-
tion fusion control.

As shown in Figure 2, first, we fused the data obtained by
the LiDAR and the camera. Second, we transformed the
space coordinates of the LiDAR to pixel coordinates and
ensure time synchronization. Finally, we completed the ges-
ture detection through feature extraction and fusion. Fur-
ther, we performed noise reduction processing and used
the back projection method to obtain the color histogram
of the target area. After completing the above steps, the
Meanshift algorithm was used for calculation, and then con-
tinuous tracking was achieved through window iteration.

In order to facilitate understanding, this article further
explained the object tracking process. When the image infor-
mation was denoised, the window initialization processed
was performed, and the color space of the image in the area
was converted from RGB to HSV, then the H value of each
pixel was sampled and counted. On this basis, the method
of histogram statistics was used to replace the pixel value
with the color probability distribution, thereby obtaining
the centroid position of the target. In order to track the
object, the window size needed to be adjusted until the
search area was at the center of mass.

In summary, the flow of the Camshift algorithm includes
three parts: obtaining the color histogram, calculating the

Meanshift algorithm, and setting the initial value of the next
frame of image sequence.

3.1. Get the Color Histogram. Due to the changes in lighting
brightness in the interactive environment, the RGB color
space is very susceptible to interference. Compared with
the RGB color space, the HSV color space has a more stable
performance on the changes in lighting brightness, so we
change and convert the color space of the image accordingly.

Formula (4) is used to calculate the H component in the
pixel and obtain the color histogram.

pu yð Þ = 〠
n

i=1
δ b xið Þ − u½ �, ð4Þ

where δ represents the statistical function, and i is the fea-
ture value of the image, bðxÞ is the number of pixels with

Interactive
screen

Display
output

Control
host

Feedback
data

Track
motion

Gesture
instuction

Contactless
interaction

Data
fusion

LiDAR
& camera

Figure 1: Schematic diagram of system structure.
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Figure 2: Camshift algorithm information fusion control flow
chart.
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characteristic value i in the image, and u represents
normalization.

Finally, the color probability replaces the pixel value of
the image. In a back-projected grayscale image, the larger
the pixel value, the larger the original H value in the original
image, and the higher the probability of the target pixel.

3.2. Meanshift Algorithm. Set the pixel in the search area as
ðx, yÞ and the pixel value as Icðx, yÞ. The algorithm process
is as follows.

Step 1. Initialize the search window.

Step 2. Calculate the centroid position of the fusion.
Zero moment:

M00 =〠
x

〠
y

Ic x, yð Þ: ð5Þ

First moment:

M10 =〠
x

〠
y

xIc x, yð Þ,

M01 =〠
x

〠
y

yIc x, yð Þ:

8>><
>>: ð6Þ

Centroid ðxc, ycÞ of the search window:

xc =
M10
M00

,

yc =
M01
M00

:

8>>><
>>>:

ð7Þ

Step 3. Adjust and set the size of the search window to s and
the length to 1:2s.

s =
ffiffiffiffiffiffiffiffi
M00
256

r
: ð8Þ

First, we move the setting of the search window position
to the centroid and use the value of M00 to adjust the size of
the search window. If the window moving distance is greater
than the set threshold, we repeat the above steps 2 and 3.
When the distance between the center position of the search
box and the center of mass is less than the set threshold, we
perform a new round of target search on the next frame of
image.

3.3. Set the Initial Value of the Next Frame of Image
Sequence. Meanshift algorithm is the basis of Camshift algo-
rithm, and the specific steps are as follows: first, the Mean-
shift operation was performed on each frame of image;
second, the window information result of the previous frame
was used as the initial value of the average shift operation of
the next frame; finally, the above settings were repeated. The
above steps constitute the Camshift algorithm.

However, the Camshift fusion tracking algorithm is very
suitable for target tracking in a stable environment. When

the background becomes complex, such as large-scale inter-
ference of similar colors or the case that the target is severely
occluded, the algorithm is easy to lose the target. The reason
is that this method is only based on the color space model
and does not consider other characteristics of the target
(such as the direction of movement). In response to the
above problems, we consider incorporating motion estima-
tion to ensure the stability of target tracking.

4. Multi-Information Fusion Algorithm Based
on Kalman Filter

When there is occlusion in the scene, the tracking algorithm
based on Camshift fusion is easy to lose the target. In order
to solve the above problems, we proposed an improved
tracking algorithm with Kalman motion estimation in this
section. The algorithm used the Bhattacharyya distance to
measure the degree of occlusion of the target, and the
dynamic factor can vary with the interactive environment
changes, so the tracking result of linear fitting can maintain
a certain degree of robustness.

As shown in Figure 3, the content contained in the blue
dashed box is the flow chart of the algorithm we proposed. It
can be seen that the final output result of the algorithm is a
linear fit of the adaptive mean shift algorithm and Kalman
prediction results. Different weighting factors were adjusted
according to the Bhattacharyya distance, so that even if the
target of the interactive system is blocked, it can be main-
tained the function of predictive tracking. The improved
combination algorithm in this paper was shown in Figure 4.

The calculation formula of the fitting result is shown as
below.

Xk+1 = α�Xk+1 + 1 − αð ÞY : ð9Þ

Among them, Xk+1 is the tracking position of the target
at time k + 1, �Xk+1 is the predicted position of the Kalman
filter, and Y is the optimal position obtained by the Camshift
algorithm. The two results are linearly fitted through the
adjustment of the weight coefficient α. The method we pro-
posed combines the advantages of the KF and Camshift
algorithm.

As you know, Bhattacharyya distance was generally used
to measure the correlation between histograms. In this
paper, we introduced Bhattacharyya distance to measure
the degree of occlusion of the target. Before calculating the
Bhattacharyya distance, we first needed to calculate the coef-
ficient. The Bhattacharyya coefficient is as follows.

BC p, qð Þ = p p yð Þ, qð Þ = 〠
m

u=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pu yð Þqu

p
: ð10Þ

Among them, PuðyÞ is the color histogram of the target
model, and qu is the color histogram of the current track-
ing target subimage. According to the coefficient, the
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Bhattacharyya distance can be calculated, which is as
follows:

d yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BC p, qð Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 〠

m

u=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pu yð Þqu

ps
: ð11Þ

Based on experience, we set the threshold T as 0.85. If
dðyÞ < T , the change of the interactive environment is not
too serious, indicating that the tracking target is less
occluded. If dðyÞ ≥ T , a large deviation change occurs in
the interactive environment, indicating that the tracking
target is more blocked.

Finally, the algorithm steps are summarized as follows.
First, the LiDAR and vision camera are fused, and the fused
image is processed for noise reduction; second, the feature
extraction and gesture detection are performed, and the tar-
get position is calculated according to the adaptive mean
shift algorithm. Finally, the position is used as the initial
information for Kalman filter. Specific steps are as follows:
the distance dðyÞ and the threshold T are compared, if dðy
Þ < T , a smaller weight coefficient α is selected to linearly
fit the Kalman filter prediction result and the Camshift algo-
rithm calculation result; otherwise, a larger weight coefficient
α is selected, which means the prediction result of Kalman
filtering has a larger weight. Finally, the optimal position is

obtained and updated to Kalman filtering. Through the
above steps, the optimal estimation and prediction of target
motion under complex interference background (such as
occlusion) are realized.

5. Experimental Results

This paper analyzed the two sets of experiments of gesture
trajectory tracking and moving target tracking. In addition,
we also verified the tracking characteristics of the system,
the accuracy of interactive point positioning, the gesture rec-
ognition rate, and the tracking time.

5.1. Experiment 1: Gesture Trajectory Tracking Experiment.
This article compared and analyzed the proposed tracking
algorithm on the gesture tracking trajectory. After the trajec-
tory curve passed the information fusion and filtering algo-
rithm of the control host, the third-party interactive
software Ventuz finally displayed the motion trajectory
curve on the splicing large screen. In Figure 5, we visualized
the tracking effects of the three algorithms.

Compared with the traditional adaptive drift algorithm
and the original algorithm of the system, the tracking algo-
rithm we proposed has obvious advantages, which can be
seen from the results of experiment 1. The results showed
that the tracking trajectory is continuous, accurate, and less
interference.

5.2. Experiment 2: Positioning and Tracking Experiment of
Moving Target. In order to further verify the algorithm, we
continued to study the problems of occlusion and disappear-
ance of interactive targets in complex environments. Based
on the VC2016 compiler and OpenCV vision function
library, the video image is collected by the CCD camera in
real-time, and the position and movement information cap-
tured by the LiDAR sensor is fused to realize the positioning
and tracking of the moving target. In order to compare the
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tracking effect, the red box is used for marking in Figures 6
and 7. The specific experimental process is as follows.

(1) Comparison of Book Occlusion Tracking Effect. Start-
ing from the 25th frame, recording was performed
every 25 frames. When it reached the 100th frame,
four different states of the experimental tracking
were captured. The sequence contained four states:
from far to near, partially covered, completely cov-
ered, and appear completely. To ensure objectivity,
we conducted a total of three repeated experiments.
In Figure 6, the results of Camshift algorithm with-
out Kalman filtering were shown. For comparison,
in Figure 7, the results of the algorithm proposed
in this paper were shown

In Figure 6, at frame 25, the experimenter’s hand
approached the book from a distance, and the search red
box could keep accurate tracking. At frame 50, the experi-
menter’s hand was partially obscured by the book, and the
search box still had no offset but was obviously smaller. At
frame 75, the experimenter’s hand was completely covered

by the book. At this time, the red search box was obviously
larger and tried to find the target. At frame 100, the experi-
menter’s hand reappeared, but we can no longer locate and
track. Experimental results showed that when the tracking
target was occluded, the Camshift algorithm without Kal-
man filtering was not robust enough.

As a comparison, we also verified the algorithm pro-
posed in this article, as shown in Figure 7. At 25 frames
and 50 frames, the experimenter’s hand could be accurately
tracked; at 75 frames and 100 frames, the results were obvi-
ously different, though the experimenter’s hands are
completely covered by the book, but the red search box
was kept in a relatively close position without too much
shift. When the experimenter’s hand appeared from behind
the book, the search box quickly located the target and kept
tracking, and the result showed that the tracking was
successful.

Since the benchmark algorithm is the Camshift algo-
rithm, which was based on a single color histogram model,
the target was suitable for target tracking in a stable environ-
ment. When the target was severely occluded (for example,
in Figure 6, the hand was completely blocked by the book

(a) Original algorithm renderings (b) Traditional Camshift renderings (c) Algorithm renderings we proposed

Figure 5: System gesture trajectory tracking effect diagram.

Figure 6: Experimental results of Camshift algorithm without Kalman filtering.

Figure 7: The experimental results of the algorithm in this paper.
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at frame 75), the algorithm often could not adapt to this
change, resulting in the loss of tracking the target. The algo-
rithm proposed in this paper added Kalman filtering, which
integrated the motion estimation of the tracking target. The
Bhattacharyya distance was used to measure the degree of
target occlusion, and the dynamic factor that changed with
the environment was used for linear fitting to ensure the
robustness of the tracking result.

(2) The Experiment in which the Object Disappeared and
Reappeared. The experimenter made a circular
motion by hand, disappeared over the effective inter-
active area, and finally reappeared in the effective
area. To ensure objectivity, three repeated experi-
ments were carried out. The following was a set of
representative experimental results, which were
shown in Figures 8 and 9

In Figure 8, start from the 20th frame, we recorded the
tracking image every 30 frames and ended at 110 frames.
In Figures 8 and 9, we first compared the 20th frame and
the 50th frame. When the experimenter’s hand always
stayed in the effective interactive area, the above algorithm
could keep accurate tracking of the target. However, there
was a difference between frame 80 and frame 110. At frame
80 and frame 110 of Figure 8, the experimenter’s hand disap-
peared from the effective interaction area. At this time, the
search box is obviously shifted, and when the experimenter’s
hand reappeared in the effective interactive area, the search
box could not be located on the position of the user’s hand,
and the results showed that the tracking was not success. At
frame 80 and 110 in Figure 9, even if the experimenter’s
hand disappeared in the effective interactive area, the red
search box did not deviate too far and remained in place.
When the experimenter’s hand reappeared in the area close
to the target, our proposed algorithm could quickly find and
track.

Combining the results of experiments 1 and 2, it could
be concluded that the improved tracking algorithm in this

paper had a good tracking performance on moving targets,
especially when it encountered complex changes such as
occlusion or disappearance. Since the tracking algorithm
we proposed combined the Kalman filter, it proved that this
algorithm effectively solved the problems of interactive point
drift and target tracking failure.

According to the requirements of the interactive system,
we performed specific functional tests and user evaluation
scoring tests on the interactive system. Through these tests,
it can be seen that the previous work such as noise reduction,
calibration, tracking, and information fusion was very effec-
tive. The interactive effect demonstration effect was shown
in Figure 10.

5.3. Tracking Algorithm Performance Comparison. For target
tracking, accuracy is the most basic evaluation index. In
order to obtain the recognition accuracy of gesture actions,
we compared the Camshift algorithm, KF algorithm, and
the improved algorithm we proposed, as shown in Table 1.
In the experiment, we selected a total of five gestures, mainly
including moving the hand up, moving the hand down,
moving the hand to the left, moving the hand to the right,
and doing arc motions. Each experiment was repeated 100
times.

From the analysis of a single indicator, compared to the
Camshift and the KF algorithms, when the hand moves up,
the recognition rate of ours reaches 90%, an increase of 7%
and 2%, respectively; When the hand moves down, the rec-
ognition rate of ours reaches 91%, an increase of 6% and
4%, respectively. When the hand moves left, the recognition
rate of ours reaches 94%, an increase of 13% and 4%, respec-
tively. when the hand moves right, the recognition rate of
ours reaches 93%, an increase of 16% and 3%, respectively.
And when the hand makes arc movement, the recognition
rate of ours reaches 92%, an increase of 14% and 1%, respec-
tively. In summary, the average recognition success rate of
ours can reach 92.0%, which is a significant improvement
compared to other algorithms. The reason for a small

Figure 8: Experimental results of Camshift algorithm without Kalman filtering.

Figure 9: The experimental results of the algorithm in this paper.
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number of inaccurate recognition results may be related to
the inconsistency of the frame rate of the fused image, or it
may be related to the number of templates in the
experiment.

In order to further verify the effectiveness of the algo-
rithm proposed in the paper, we repeated the occlusion
experiment described above several times and added track-
ing time as an evaluation indicator, as shown in Table 2.
When there is no occlusion, the tracking effect of the three
methods is better, and the success rate is above 80%. When
partial occlusion occurs, the success rate of the three
methods has decreased to varying degrees, but ours can still
reach 89%. As the occlusion becomes severe, the success rate
of the Camshift algorithm is only 54%, so the tracking target
is often lost, while the KF algorithm is relatively good, which
can reach 69%. It is worth mentioning that our algorithm
has the highest tracking success rate, which can reach 80%.
Compared with the previous two algorithms, the tracking
time of ours is increased to 62ms, but it still has a high
real-time performance.

In summary, the experimental results show that the
improved tracking algorithm based on Camshift in this
paper further improves the overall interactive accuracy of
the interactive system under different environmental condi-

tions and has a relatively good large-screen interactive effect.
Furthermore, the interactive system based on the combina-
tion of LiDAR and camera has high practical value.

5.4. The Actual Test of the Interactive System. In order to
understand the user’s actual experience of the system, we
invited 30 students to participate. The system’s scoring indi-
cators mainly included system total score, command recog-
nition, and interactive content. The students evaluated the
system from four aspects: image fluency, recognition accu-
racy, real-time performance, and interactive fun. The highest
score for each aspect was 100, and the lowest score was 1.
We scored each content of 30 students and took the average
and summary methods for statistics, as shown in Figure 11.

In Figure 11, the evaluation content scores correspond-
ing to each dimension were all above 70 points, indicating
that the user had a good overall experience of the system.
However, the feedback real-time score of the system was
slightly lower, so we could also optimize the algorithm to
reduce the amount of calculation and shorten the feedback
time. The experience scoring results of the students showed
that some aspects of the system still needed to be improved.

According to the operating results of all the above exper-
imental tests and analysis systems, the following conclusions
can be drawn:

(1) The system interaction point is accurate. Even if the
user moves beyond the effective LiDAR emission
area and then returns to the effective area again,
the positioning point remains at a relatively accurate
position without interaction drift and inaccurate
positioning

(2) The system runs stably, the interactive image is clear
and stable, and the improved denoising algorithm

Table 1: Gesture recognition success rate comparison experiment.

Algorithm Move up Move down Move left Move right Arc movement Average value

Camshift 83% 85% 81% 77% 78% 80.8%

Kalman filter 88% 87% 90% 90% 91% 89.5%

Ours 90% 91% 94% 93% 92% 92.0%

Table 2: Occlusion comparison experiment results.

Algorithm
No

occlusion
Partial

occlusion
Severe

occlusion
Tracking
time

Camshift 83% 75% 54% 28ms

Kalman
filter

88% 82% 69% 53ms

Ours 91% 89% 80% 62ms

(a) (b)

Figure 10: Interactive effect demonstration ((a) multitouch diagram; (b) gesture tracking effect diagram).
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retains the details and depth information such as
brightness and texture. Even if the external environ-
ment changes after the denoising algorithm process-
ing, the system can still operate stably and achieve
better results

(3) The operation result may be disturbed. If the dis-
tance between the display screen and the LiDAR
emitting surface is too close, the image detection will
be affected, and it is difficult for the system to keep
stable tracking of the target. Therefore, the installa-
tion position of the LiDAR and vision camera should
be selected in a suitable location. Besides, the interac-
tive system must be tested and adjusted in the early
stage, so we can ensure that the appropriate interac-
tive effective area is used

(4) The system has a rapid response speed. The time
from data signal collection to command output is
less than 50ms, which can meet the real-time
requirements of the interactive system. The sensor
collection information is basically consistent with
the projection scene, which combines image denois-
ing and target tracking. Technical improvements
have effectively improved the performance of the
interactive system and can maintain good robustness
in the face of complex and changing interactive
environments

6. Conclusion

This paper proposed a gesture detection fusion method
based on LiDAR sensors. Furthermore, we introduced the
Bhattacharyya distance to measure the degree of occlusion
of the target and proposed an improved Camshift tracking
algorithm based on Kalman filtering. Experimental results
prove that the algorithm proposed in this paper can effec-
tively solve the problem of interactive point positioning
and tracking. When the interactive point exceeds the effec-

tive interactive area, the real-time predictive position of the
algorithm can still keep accurate tracking, which can effec-
tively solve the robustness problem of target tracking in
interactive systems. Our future work focuses on extending
the tracking target and considering the introduction of visual
attention mechanisms to increase the speed of tracking.
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