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The target localization algorithm is critical in the field of wireless sensor networks (WSNs) and is widely used in many
applications. In the conventional localization method, the location distribution of the anchor nodes is fixed and cannot be
adjusted dynamically according to the deployment environment. The resulting localization accuracy is not high, and the
localization algorithm is not applicable to three-dimensional (3D) conditions. Therefore, a Delaunay-triangulation-based WSN
localization method, which can be adapted to two-dimensional (2D) and 3D conditions, was proposed. Based on the location
of the target node, we searched for the triangle or tetrahedron surrounding the target node and designed the localization
algorithm in stages to accurately calculate the coordinate value of the target. The relationship between the number of target
nodes and the number of generated graphs was analysed through numerous experiments, and the proposed 2D localization
algorithm was verified by extending it the 3D coordinate system. Experimental results revealed that the proposed algorithm
can effectively improve the flexibility of the anchor node layout and target localization accuracy.

1. Introduction

With the rapid development of wireless communication
technology and small embedded devices, WSNs have been
used in numerous applications, such as target localization
[1], environmental monitoring [2], smart factories [3], and
agriculture and field habitat monitoring [4]. In practice, sen-
sor network technology is used to monitor and collect data
on specific targets in the area of interest.

The precise location coordinates of the target are critical
for target monitors, and the data are analysed in data cen-
tres. For example, in sensitive areas involving rescue opera-
tions, the precise location of the target is first obtained.
Typically, the location coordinates of the monitored target
are unknown. Therefore, designing a scheme in which a
WSN is used to accurately locate the target and constantly
adjust the state when the location of the target moves is crit-
ical. Furthermore, the calculation efficiency of the proposed
algorithm and the energy consumption of the nodes should
be balanced. The accuracy of the positioning and compre-
hensive performance of the algorithm determines the quality
of the localization method. GPS positioning systems can

achieve high accuracy, but the systems are not suitable for
indoor environments and complex areas. When the location
information of the target is determined using WSNs, the tra-
jectory of the target can be estimated and drawn by combin-
ing related algorithms. The performance of positioning
technology or methods markedly affects the localization
accuracy and monitoring quality of WSNs.

Localization schemes are typically classified into
distance-based localization schemes and distance-free local-
ization schemes [5]. In distance-based localization scheme,
the distance between the unknown node and the anchor
node is estimated, whereas in the distance-free localization
scheme, the location of the unknown node on the premise
of uncertain distance is calculated [6]. Generally, the
distance-based localization scheme exhibits a high localiza-
tion accuracy, but its algorithm complexity is high, which
requires computation. The distance-independent location
scheme has low localization accuracy and low algorithm
complexity. Range-based localization methods have been
widely studied. The signal time of arrival (TOA) [7], time
difference of arrival (TDOA) [8], angle of arrival (AOA)
[9, 10], and received signal strength (RSS) are calculated.
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The ranging method based on TOA technology is simple,
but it requires considerable hardware performance, numer-
ous computations, and high equipment costs. The TDOA
method is an improvement of the TOA method and can
accurately measure the coordinates of the target. However,
this method requires two transmission signals of different
rates, which results in a large operating overhead for the
network. In addition, the AOA method must calculate
the angle between the transmitting and receiving ends
and must communicate and transmit in a line-of-sight
environment. Therefore, the AOA is not suitable for pre-
cise locations in WSNs. The development of low-cost, fast
calculation speed, and accurate localization methods is
critical in WSN monitoring. Received signal strength
indicator- (RSSI-) based localization methods have been
widely used and commercialized [11–13]. The lost power
between the transmitted and received power can thus be
converted and calculated using a mathematical model.
Furthermore, equipment hardware for WSN node localiza-
tion using the RSSI method is commercialized and does
not require additional separate components. RSSI-based local-
ization technology is suitable for low-cost, high-precision, and
large-scale WSNs.

The triangulation method has been studied in detail in
fields, such as WSN coverage, routing algorithms, and local-
ization, which optimise the node network layout and con-
struct an optimal triangulation network. Therefore, the aim
of this study is to optimise the location distribution of sensor
nodes, improve the localization accuracy and performance
of the localization algorithm, and extend it to the 3D coordi-
nate system for testing.

(1) To solve the problems of layout optimization and
low localization accuracy of anchor nodes occurring
in conventional localization methods, the Delaunay
triangulation method was introduced, and a localiza-
tion scheme was designed to estimate the location
coordinates of the target

(2) Based on the location of the target node, its sur-
rounding triangle or tetrahedron were searched,
and the location algorithm was designed in stages
to accurately calculate the coordinate value of the
target. The relationship between the number of tar-
get nodes and the number of generated graphs was
analysed through numerous experiments, and the
proposed 2D algorithm was verified by extending it
to the 3D coordinate system

(3) We designed an experimental simulation and algo-
rithm comparison and conducted numerous experi-
ments with various parameters to verify the
localization accuracy and reliability of the algorithm

The related work is reviewed in Section 2. In Section 3,
the RSS channel model is presented, and related problems
are described. The strategy we propose is detailed in Sections
4 and 5. In Sections 6 and 7, relevant experimental verifica-
tion and algorithm comparison are designed. Concluding
remarks alongside the future work are given in last section.

2. Related Works

The deployment method and algorithm design of anchor
nodes are a research focus of target localization. In experi-
ment tests performed by many researchers, the coordinate
location distribution of anchor nodes generally occurs in
the shape of a square, rectangle, and triangle [14–16]. There-
fore, before experimentation, it is necessary to fix the loca-
tion of the node in advance. If the location of the anchor
node changed, the localization accuracy calculated also
changed. Therefore, the fixed deployment mode of the
anchor node is not suitable for the environment where
nodes are randomly deployed.

Among the localization algorithm distance-based mea-
surement, the most typical algorithms include the trilateral
centroid localization, triangular measurement, least square
method, and hyperbola localization algorithm. The trilateral
centroid localization method has a small number of nodes
and a low accuracy of target localization and is not suitable
for 3D. The triangular measurement method needs to calcu-
late the angle between the target and node, which undoubt-
edly increased cost. In [17], the author proposed a new
sensor node localization scheme that improved the RSSI
algorithm by considering power transmission and reception
parameters to estimate the initial location of the node. A
genetic algorithm is used to minimize the localization error,
and the optimized coordinates are obtained by combining
mutation and crossover operators. However, the layout
optimization of the nodes is not considered, and the test
environment is not suitable for 3D coordinates. In [18],
two localization algorithms were designed based on anchor
nodes, H-V scanning and diagonal localization algorithms,
to estimate the coordinates of sensor nodes in the monitor-
ing area. Among these algorithms, the diagonal localization
algorithm belongs to the RSSI-based localization technology
which can improve the localization accuracy of unknown
nodes. However, the layout of anchor nodes is not suffi-
ciently flexible to adjust dynamically according to the num-
ber of nodes, which may lead to nonsystematic errors. This
method is suitable for 2D localization conditions but lacks
a test of the real dimension. [19] proposed a robust ranging
method to track the location of the target and used the trilat-
eral localization method based on RSSI ranging. Conse-
quently, the author reports the result of applying the
trilateral localization technology to the measuring point
and calculates the distance error between the ideal measur-
ing point and measuring point through computer simula-
tion. However, the computation speed of the trilateral
localization method is slow, and the localization error is
not accurate. In [20], the authors proposed a non-site-
specific algorithm to better estimate the relationship between
the RSS and distance. The author selected the most appro-
priate RSS value in the original RSS values through an
algorithm to reduce the outlier effect, thereby ensuring the
consistency between the RSS and distance relationship. In
[21], the authors analysed the influence of two types of envi-
ronmental interference on the RSSI value, used Kalman filter
to preprocess the RSSI, and proposed a triangle centroid
localization algorithm based on weighted feature points.
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Experiments reveal that higher localization accuracy can be
achieved, but its network did not have the characteristics
of a self-organizing layout and is not suitable for 3D localiza-
tion. In [14], to improve the precision of inside localization
and optimize the allocation of node resources in WSNs, an
equal-arc trilateral localization algorithm based on RSSI is
proposed from the perspective of increasing measurement
precision and bettering beacon nodes layout. Compared
with the square layout, the triangle layout, and the improved
triangle layout, the localization accuracy of this algorithm
increased by 81%, 54%, and 48%, respectively. Finally, the
author revealed that the proposed equal-arc triangulation
algorithm can improve the localization accuracy and reason-
ably control sensor costs. However, in many applications,
anchor nodes usually must be self-deployed for layout, and
it is not possible to prespecify whether the layout of anchor
nodes is square or other shapes. Delaunay triangulation has
the optimal partition mode and geometric characteristics
and is applied in the research direction of geometric routing,
location, coverage, segmentation, data storage, and process-
ing [22]. Li et al. [23] proposed a simple yet effective
segmentation-based approach to detect trunk position and
Delaunay triangulation (DT) geometry-based localization
method for autonomous robots navigating in a forest envi-
ronment. Experiments show the proposed method reach
accurate global localization precision without a good initial
pose or GPS signal.

The Delaunay division method can optimize the layout
of 2D nodes, and applies to the network layout of 3D sensor
nodes, based on the location coordinates of the nodes.
Delaunay triangle segmentation can improve the flexibility
of node layout and strengthen the correlation between
anchor nodes. Therefore, we used the Delaunay partition
method to optimize the Delaunay network layout for ran-
domly deployed anchor nodes. Consequently, methods are
designed to accurately estimate the coordinates of the target
in 2D and 3D.

3. RSSI Ranging Principle and
Problem Description

3.1. RSSI Ranging Principle. WSN localization methods are
categorised into two ranging localization and localization
without ranging depending on whether to measure the
received signal and the transmitted signal is necessary.
Localization technologies based on ranging primarily
include TOA, TDOA, RSSI, and AOA. However, consider-
ing comprehensive indicators such as hardware cost,
network computing power, and localization accuracy, the
technical method based on RSSI is primarily used, combined
with the improved localization algorithm to accurately locate
the target. The primary principle of using RSSI ranging tech-
nology is used to establish a signal loss or attenuation model
in the propagation process to estimate the distance between
the transmitter and receiver. As displayed in Figure 1, the
red line represents the waveform of the signal intensity vary-
ing with the distance under the ideal path loss model, and
the blue line represents the waveform of the signal interfer-
ence in the environment.

The localization algorithm based on the path loss model
is used to determine the parameters of the path loss model
according to the received RSSI data, and the model is used
to estimate the distance value or further processing. We
assume that the number of RSSIs received isM, and the RSSI
value i received by node k is RSSI ðs, iÞ[24]. Distance
estimation was then performed based on the statistical RSSI
measurement model.

RSSI k,ið Þ = Pk − 10ηk log dkð Þ + v k,ið Þ, ð1Þ

where dk is the distance between the target and the anchor
node k; Pk and ηk are the RSSI path loss model parameters
of the anchor node k; and vðk,iÞ is a zero-mean Gaussian ran-
dom distribution variable whose variance is equal to σk.

dk = 10Ak−RSSIk/10ηk : ð2Þ

The noise in the model obeys a Gaussian distribution,
and the generated random variables are processed using
the average value. When estimating the distance, the median
value of a set of RSSI data is used for estimation RSSIk =
RSSIk =MedianfRSSIðk,iÞ, i = 1,⋯,Mg. The median value
processing method was used to eliminate the random error
of the original RSSI data, where RSSIk represents the median
value of the RSSI data collected by the anchor node k, which
can be expressed as follows.

RSSIk =
1
M

〠
M

i=1
RSSI k,ið Þ: ð3Þ

During propagation, the RSSI obeys the Gaussian distri-
bution Nðμ, σ2Þ of the mathematical expectation μ and
variance σ. The probability density function for any RSSI
value is expressed as follows:

f RSSIk
� �

= 1
σ

ffiffiffiffiffiffi
2π

p e− RSSIk−μð Þ/2σ2 , ð4Þ

where the specific expressions of μ and σ are as follows:

μ = 1
M

〠
M

i=1
RSSI k,ið Þ,

σ2 = 1
M

〠
M

i=1
RSSI k,ið Þ − μ

� �2
:

ð5Þ

In the subsequent experimental verification process,
after multiple sets of distance values measured by the anchor
node, the localization method or algorithm is used to achieve
an accurate estimation of the location of the target.

3.2. Problem Description. The method of using RSSI to deter-
mine the target distance is the first step in localization. Next,
an efficient localization algorithm is designed to estimate the
location coordinates of the target node. In the conventional
method, a trilateral centroid localization algorithm with
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low power consumption and fast measurement speed is used
to solve the coordinates of the target. As displayed in
Figure 2, the location coordinate of the node Tðxt , yt , ztÞ to
be tested is considered T , and the coordinates of the three
anchor nodes, A, B, and C are Aðx1, y1, z1Þ, Bðx2, y2, z2Þ,
and Cðx3, y3, z3Þ, respectively. Thus, the principle of trilat-
eral measurement is that the distances between the three
anchor nodes of A, B, and C to the target T are ra, rb, and
rc. Consequently, the circles formed by their respective mea-
sured radii intersect at a point T , and then, the location
coordinates of the point T can be determined by establishing
a system of equations.

However, in the test, the radii of points ra, rb, and rc are ra,
rb, and rc, respectively, and their three circles cannot intersect
at one point. As displayed in Figures 3 and 4, when the circles
formed using the radii did not intersect at one point, Bulusu
et al. [25] assumed aðxa1, ya1, zz1Þ, bðxb1, yb1, zb1Þ, and cðxc1,
yc1, zc1Þ as the intersection points formed by them. Next,
determine the centre of mass of the three coordinates as the
target coordinates. Thus, the approximate target coordinate
value T can be obtained by calculation, and T = ððxa1 + xb1 +
xc1Þ/3, ðxa2 + xb2 + xc2Þ/3, ðxa3 + xb3 + xc3Þ/3Þ is calculated.
However, the accuracy of the unknown target coordinates esti-
mated by the trilateral centroid localization algorithm is not
high, particularly when a certain height difference exists
between the transmitter and receiver. In the calculation process
for trilateral centroid localization, constraints should be consid-
ered, which is not conducive to large-scale network operations.

4. WSN Target Localization Algorithm Based
on 2D Delaunay

4.1. Building a 2D Delaunay Network. In the Delaunay
method, the region is divided according to the location of

the node and a triangular network with an optimal layout
is generated. According to the properties of Voronoi [26]
and Delaunay [27], only the neighbouring nodes corre-
sponding to the adjacent edges of Voronoi generate the
corresponding triangle network, and the vertices of the
triangle are composed of the nodes in the Voronoi unit body
and its neighbouring nodes. In a nutshell, the vertices of
each triangle in the Delaunay triangle network are composed
of the three nearest nodes, and each side of the triangle will
not intersect. Therefore, the construction of Delaunay trian-
gulation will markedly reduce the localization time of anchor
nodes and improve localization accuracy.

As shown in Figure 5, 70 anchor nodes si were randomly
located on the plane L with an area of SL, and the red dots
represent the anchor nodes. Next, we used the Delaunay
method to divide the area according to the 70 node coordi-
nates siðxi, yi, ziÞ. In Figure 6, the area divided by Delaunay
is a triangular network composed of triangles NΔ with vari-
ous shapes. After the calculations are completed, in area L,
the number of triangles NΔ depends on the location coordi-
nate siðxi, yi, ziÞ of the node and the number of nodes n.
Thus, the greater the number of nodes is, the more triangles
NΔ are generated.

Initially, the number of randomly deployed nodes in area
L = 200 × 200 was n (n = 100), and the number of triangles
in the Delaunay triangulation obtained from the test was
NΔ = 184. The number of triangles was proportional to n,
as listed in Table 1, which revealed the number of triangles
generated by the Delaunay method when n has different
values. Table 1 indicates that as the number of nodes
increases, the number of triangles generated increases
accordingly. Second, the total area S0 of the formed Delau-
nay graph also changed with the number of nodes and loca-
tion coordinates. Consequently, as the number of nodes n
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Figure 1: Schematic of the loss during RSS signal propagation.
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increased, the total area S0 of Delaunay also increased, and
its area ratio S0/SL gradually approached 100%.

4.2. Determining the Target Surrounded by Triangles. First,
the coordinates of the nodes were divided using the Delau-
nay method, and the inner coordinates of each triangle were
determined. The distance between the target and vertices of
the triangle was calculated to determine the triangle sur-
rounded by the target. The coordinates of the target are
unknown; thus, the judgement method is the core step of
positioning. In Figure 7, five black dots represent five nodes

with unknown coordinates. The coordinates of these five tar-
gets are: (127,135), (150,150), (145,170), (90,170), and
(42,130). In a test, the coordinates of an unknown target
cannot be determined in advance. Therefore, determining
the triangle surrounded by the target is difficult. To address
this problem, the area ratio method was used.

Figures 8 and 9, display a partial diagram of a certain
part of the Delaunay triangulation. The coordinates of trian-
gles and △ABC and △BCD are known and are Aðx1, y1Þ, B
ðx2, y2Þ, Cðx3, y3Þ, and Dðx4, y4Þ, respectively. Because the
coordinates of the target T are unknown, the distances
between the four points A, B, C, D, and T can be measured
by Equation (2) as dAT , dBT , dCT , and dDT , respectively.
Therefore, determining whether T is in △ABC or inside
the triangle △BCD is the key in this method.

If point T is inside the triangle △ABC, then the area of
the small triangle formed by T and △ABC satisfies the fol-
lowing conditions: SΔABT + SΔACT + SΔBCT ≤ SΔABC . If point
T is not inside the triangle ΔABC, then it satisfies SΔABT +
SΔACT + SΔBCT > SΔABC . The area of SΔABC can be calculated
using Equation (8), and the area of the small triangle SΔABT ,
SΔACT , SΔBCT can be calculated using Helen formula as follows:

S = 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 + d2 + d3ð Þ d1 + d2 − d3ð Þ d1 + d3 − d2ð Þ d2 + d3 − d1ð Þ½ �

p
,

ð6Þ

where d1, d2, and d3 are the distances between the vertices of
targets T and ΔABC.

Thus, the target T can be estimated to be specifically
located in a certain triangle in the Delaunay triangulation,
and a corresponding localization method can be designed to
calculate the coordinates of target T. Next, the subsequent
localizationmethod is implemented in stages in a real situation.

4.3. WSN Localization Algorithm Based on 2D Delaunay
Partition. After this analysis, a target localization algorithm
based on 2D Delaunay partitioning (2D-DPTL) was pro-
posed, which is categorised into two stages to accurately
locate the target.

Stage 1. When the number of anchor nodes is large,
method 1 is used for localization.

Method 1. First, the number of known nodes n is ran-
domly deployed in a plane with an area of L size. Then,
the corresponding Delaunay triangulation is generated
according to the position coordinates of the known node si
ðxi, yiÞ (i = 1, 2,⋯, n). Thus, in the first step, the judgement
method described in the previous section is used to
determine a triangle surrounded by T . Next, we calculated
and generated the inner coordinates sjðxj, yjÞ corresponding
to each Delaunay triangle. The coordinates of the inner
point of the triangle can be calculated using the follow-
ing expression:

sj xj, yj
� �

= aixi + bixi+1 + cixi+2ð Þ
ai + bi + ciÞ

, aiyi + biyi+1 + ciyi+2ð Þ
ai + bi + cið Þ

� �
,

ð7Þ

T

A (x1, y1, z1)

B (x2, y2, z2)

C (x3, y3, z3)

ra rb

rc

Figure 2: Three-sided positioning.

T
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Figure 3: Intersect inside.
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Figure 4: External intersection.
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where ai, bi, and ci are the side lengths of the triangle
and ðxi, yiÞ, ðxi+1, yi+1Þ, and ðxi+2, yi+2Þ represent the ver-
tices of the triangle corresponding to the inner centre.

As displayed in Figure 10, the blue five-pointed star rep-
resents the inner point of each triangle in the Delaunay tri-
angle network, and its number is equal to the number NΔ
of triangles. The coordinates of each inner point are num-
bered, and the figure reveals that 126 inner points exist in
total. Based on this method, the triangle surrounded by the
target and its corresponding inner coordinates were deter-
mined. The red triangles in Figure 11 indicate the respective
areas corresponding to the five target points. Next, the area
ratio Sk = Sj/Sm of the triangle to which the target T f ðxf , yf Þ
belongs is calculated. We assume that the area of all triangles
is Sj, j = 1, 2,⋯,NΔ, and the median Sm = ðSj+1, j = 1, 2,⋯,
NΔÞ/2 or Sm = ðSðj+1Þ/2 + SðjÞ/2+1, j = 1, 2,⋯,NΔÞ/2 area of
the triangle is obtained. If Sj ≤ Sm, then the inner coordinate
Gjðxj, yjÞ of the triangle is considered to be the estimated coor-
dinate of the target T f ðxf , yf Þ (i.e., T f ðxf , yf Þ = sjðxj, yjÞ). If
Sj > Sm, the centre of the triangle is used as the estimated value
of T. However, this results in a large error. Thus, method 2 in
stage 2 was used.

Stage 2. When the number of anchor nodes is small,
method 2 is used for localization.

Method 2. When the number of anchor nodes is small,
the number of triangles divided by Delaunay is small. Con-
sequently, the area Sj, j = 1, 2,⋯,NΔ of the triangle where
the target is located is too large, and the accuracy of using
the inner coordinates in method 1 as target’s estimated coor-
dinates is too low. Therefore, in the first step, the method in
phase 1 is used to determine the area ratio. Next, the calcu-
lated inner point Gj connects the vertex coordinates of the
triangles A, B, and C to which it belongs and divides it into
three small triangles, as illustrated in Figure 12, which are
composed of green lines. We subsequently calculated the
inner coordinates G1ðx4, y4Þ of the small triangle where the
target is located. As displayed in Figure 13, the three points
A, B, and C represent a triangle formed in the Delaunay tri-
angulation network, Gðx0, y0Þ represents its inner centre,
and G1ðx4, y4Þ represents the inner coordinate of the small
triangle △BCG. Thus, the coordinates of G1ðx4, y4Þ can be
selected as the estimated coordinates of the target point T
(i.e., G1ðx4, y4Þ = T f ðxf , yf Þ), when the area ratio of the area

ðSl, l = 1, 2,⋯,NLÞ of the small triangle△BCG to the area of
S is Sl/S ≤ 1. For example, the area ΔBCG of a triangle SΔ can
be calculated using Equation (8), and SΔ is a positive value
(usually the absolute value jSΔj).

SΔ =
1
2

x1 y1 1
x2 y2 1
x3 y3 1

								

								
= 1
2 x1y2 + x2y3 + y1x3 − x3y2 − x2y1 − x1y3ð Þ:

ð8Þ

If the ratio of the area ðSl, l = 1, 2,⋯,NLÞ of the small tri-
angle △BCG where the target is located into the area of Sm
satisfies the condition Sl/Sm > 1, the least squares method is
used for calculation. We assumed that T is inside △BCG
and used Equation (2) to measure the distance between each
vertex of the small triangle △BCG and T f ðxf , yf Þ; thus,
d1 = dT1G

, d2 = dT1C
, and d3 = dT1B

. The coordinates of the
three vertices of△BCG are Gðx0, y0Þ, Bðx3, y3Þ, and Cðx2, y2Þ.
Therefore, the following equations can be established:

x0 − xf
� �2 + y0 − yf

� �2
= d1,

x2 − xf
� �2 + y2 − yf

� �2
= d2,

x3 − xf
� �2 + y3 − yf

� �2
= d3:

8>>>>>><
>>>>>>:

ð9Þ

Then, by subtracting d3 from d1 and d2 in Equation (9), the
following equation can be obtained:

x0
2 − x3

2� �
− 2 x0 − x3ð Þxf + y0

2 − y3
2 − 2yf y0 − y3ð Þ = d1

2 − d3
2,

x2
2 − x3

2� �
− 2 x2 − x3ð Þxf + y2

2 − y3
2 − 2yf y2 − y3ð Þ = d2

2 − d3
2:

8<
:

ð10Þ

Equation ((11) can be expressed as a linear equation [28].

HX = b: ð11Þ

Among them,

H =
2 x0 − x3ð Þ 2 y0 − y3ð Þ
2 x2 − x3ð Þ 2 y2 − y3ð Þ

" #
, X =

xf

yf

2
4

3
5, and

b =
x0

2 − x3
2 + y0

2 − y3
2 + d3

2 − d1
2

x2
2 − x3

2 + y2
2 − y3

2 + d3
2 − d2

2

" #
:

ð12Þ

Thus, the coordinate of T can be solved by the following
expression:

X
~
= HTH
� �−1

HTb: ð13Þ

However, the distance d1 = dT1G
from the target T to the

inner heart Gðx0, y0Þ could not be accurately determined. The
distance dG1G

is approximately estimated as the distance of d1,

Table 1: Change in the number of anchor nodes.

L n N
△

S0 (m
2) S0/SL

200 × 200 30 50 29374 73.44%

200 × 200 50 89 34460 86.15%

200 × 200 70 126 30552 87.63%

200 × 200 100 184 36839 92.10%

200 × 200 150 283 36933 92.33%

200 × 200 200 383 37245 93.11%

200 × 200 300 581 37810 94.53%
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that is, dG1G
= d1 = dT1G

. Among them, dG1G
can be calculated

using equation dG1G
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 − x4Þ2 + ðy0 − y4Þ2

q
.

In general, methods 1 and 2 can be used in combination
in a real localization process. The proposed 2D Delaunay
target localization method can locate the target quickly
according to the number of nodes.

5. WSN Target Localization Algorithm Based
on 3D Delaunay

The proposed 2D WSN localization algorithm of the Delau-
nay division were extended to 3D. 3D localization algo-
rithms are suitable for practical applications. The trilateral
localization method can be used to determine the approxi-
mate coordinates of the target but cannot be used to measure
the height of the z-axis. Therefore, referring to the localiza-
tion method in Section 5.3, the 3D localization algorithm
was designed according to various stages.

5.1. Three-Dimensional Space Divided by Delaunay. Accord-
ing to the content in Section 4, the Delaunay method is used
to divide the coordinate points in the 2D plane, and the
Delaunay figure obtained is a network composed of many
triangles. When the Delaunay method is used to divide n
the node 3D coordinates, the resulting graph is a 3D net-
work composed of NðN > nÞ tetrahedrons. As displayed in
Figure 14, 100 anchor nodes are randomly deployed in a
space of 200m3, and the blue solid dots represent nodes with
known coordinates. Next, the location coordinates of these
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Figure 7: Set the location of the target.
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Figure 10: Drawing the inner point of each triangle.
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Figure 11: Finding the triangle surrounded by the target.
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100 nodes are divided using the Delaunay method, and the
12 edge lengths of cube 200m3 were set as constrained edges.
As displayed in Figure 15, the black 3D graphic network was
composed of many tetrahedrons with different volumes.
Comparing the graphs divided by the 2D Delaunay and 2D
Delaunay methods reveals that the 2D Delaunay diagram
is consisting of a triangular network composed of multiple
small triangles, and the 3D Delaunay diagram is a 3D net-
work consisting of multiple tetrahedrons. When the coordi-
nate value of the node is fixed, the generated Delaunay
network is unique.

The analysis revealed that the density of the triangular
network or the 3D network after Delaunay is primarily
determined by the number of nodes. Therefore, the data in
Table 2 are used to verify the relationship between the 3D
area size L, the number of nodes n, and the number of
tetrahedrons N formed under the given conditions of the
node coordinates.

Table 2 denotes that the greater the number of nodes is,
the greater the number of tetrahedrons is. Thus, the total
volume V of the formed Delaunay graph increases with an
increased number of nodes. The number of inner points
primarily depends on the number of nodes, and the size of
the constraint space has limited effect on it. Many experi-
ments have revealed that the size of V is primarily deter-
mined by the number of nodes and the location of nodes.
Furthermore, the ratio of the total volume V of the tetrahe-
dron formed by Delaunay to the volume V0 of the deploy-
ment area increases as the number of nodes increases.
However, the growth of the volume percentage V/V0 was
not considerably accelerated, and the volume ratio is low
and between 50% and 70%. In Section 6, the distance
between nodes is set through experiments to increase the
volume ratio and optimise the location distribution of
anchor nodes.

5.2. Determining Tetrahedron the Target Is In. The basic
properties of Delaunay do not change with the increase in
dimensionality, but the problems faced by the 3D localiza-
tion method differ from those of 2D localization. When
the coordinates of the nodes are divided using the Delaunay
method, the inner centre of each tetrahedron should be cal-
culated. Currently, estimating the location of the target T in
the Delaunay tetrahedral network is the core step of 3D
localization. The principle of the judgement strategy is sim-
ilar to that of the 2D localization method in Section 4, but
the method and algorithm to be calculated differ. Assuming
that the vertices of each tetrahedron in the divided Delaunay
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Figure 12: Delaunay second division.
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Figure 13: Partial schematic.
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are composed of known anchor nodes, using Equations
(1)–(3), the RSSI values of the three transmission points with
the strongest signal strength and the four closest distances
d4≤k≤6 between the known and unknown nodes can be calcu-
lated. Although the coordinates of the target are unknown,
judging that T is located inside a certain tetrahedron is the
first step in proposing a 3D WSN target localization
algorithm.

As displayed in Figures 16 and 17, the tetrahedron A −
BCD represents a certain tetrahedron in the Delaunay 3D
network, and E − BCD represents the adjacent tetrahedron.
Among these technologies, the coordinates of points A, B,
C, D, and E are known and represent known nodes. The
coordinate position of the unknown target T is uncertain,
but the distance from the vertices A, B, C, D, and E of the tet-
rahedron can be measured by Equation (2) if dAT , dBT , dCT ,
dDT , and dET are assumed. If the point T is inside the tetra-
hedron A − BCD, the sum of the volume V of the tetrahe-

dron formed by the vertices of the target T and A − BCD
or T and E − BCD satisfies the condition VABCT +VACDT +
VABDT +VBCDT ≤VABCDVABET +VAECT +VABCT +VBCET ≤
VABCE . If the target T is not inside a tetrahedron A − BCD,
then VABCT +VACDT +VABDT +VBCDT >VABCD. To calcu-
late the volume A − BCD of the tetrahedron, the correspond-
ing coordinate values are substituted into the Euler
tetrahedron Formula (14).

V = 1
6

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

											

											
= 1
6

x2 − x1 y2 − y1 z2 − z1

x3 − x2 y3 − y2 z3 − z2

x4 − x3 y4 − y3 z4 − z3

								

								
,

ð14Þ

where xi, yi, and zi are the known vertex coordinates of tet-
rahedron A − BCD or E − BCD. The coordinates of the target
T cannot be directly calculated, but the distance between
each vertex of the tetrahedron can be estimated using the
RSSI ranging model, which is set as d1, d2, d3, d4, and d5.
Therefore, tetrahedron’s edge length formula can be used
to calculate the volume, and Equation (15) can be used to
calculate the volume Vl of the small tetrahedrons VABCT ,
VACDT , VABDT , and VBCDT .

Vl
2 = 1

288

0 1 1 1 1
1 0 d1

2 d2
2 d3

2

1 d1
2 0 d4

2 d5
2

1 d2
2 d4

2 0 d6
2

1 d3
2 d5

2 d6
2 0

														

														
: ð15Þ

Among these values, Vl is a positive value. Therefore, the
corresponding tetrahedral volume can be calculated using
Equations (14) and (15) as follows: using the afore-
mentioned method, we determined the tetrahedron in the
Delaunay network target is inside.

5.3. 3D WSN Target Localization Algorithm Based on 3D
Delaunay. A novel WSN target localization algorithm based
on 3D Delaunay was proposed. According to the relation-
ship between the number of nodes and the number of tetra-
hedrons after the Delaunay division, the algorithm was
designed in two stages. In the first stage, the number of
nodes and area range were determined. The number of tetra-
hedrons generated by the 3D Delaunay method was approx-
imately three times greater than the number formed by the
2D Delaunay method. Therefore, the 3D Delaunay method
was more suitable for target localization with many nodes.
In the second stage, the number of nodes is small, and the
analysis and design are performed with reference to the 2D
Delaunay localization method.
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Stage 1. When the number of nodes is large, the coordi-
nates of the centre I of the tetrahedron are mainly used to
estimate the coordinates of the target.

Method 1. First, we calculated the inner coordinates
Iðxi, yi, ziÞ of each tetrahedron. In Figure 18, the red dots
represent the inner points of each tetrahedron, the number
of which is equal to the number of tetrahedrons. According
to the method in Section 5.2, we find the tetrahedron sur-
rounded by the target T and use Equation (16) to calculate
the inner coordinates Iðxi, yi, ziÞ of the tetrahedron.

x1 =
S1x1 + S2x2 + S3x3 + S4x4

S1 + S2 + S3 + S4
,

y1 =
S1y1 + S2y2 + S3y3 + S4y4

S1 + S2 + S3 + S4
,

z1 =
S1z1 + S2z2 + S3z3 + S4z4

S1 + S2 + S3 + S4
:

8>>>>>>>><
>>>>>>>>:

ð16Þ

Assume that the vertex coordinates of the tetrahedron
are ðx1, y1, z1Þ, ðx2, y2, z2Þ, ðx3, y3, z3Þ, and ðx4, y4, z4Þ.
Here, Siði = 1, 2, 3, 4Þ represents the side area of the tetrahe-
dron, and the inner point Iðxi, yi, ziÞ of the tetrahedron can
be calculated using Equation (16). In the experiment, three
unknown target coordinates are given. Next, the tetrahedron
where the target is located is determined by using the method
described in Section 5.2. As displayed in Figure 19, the three
black tetrahedrons each contain three targets.

To avoid selecting the inner points of some tetrahedrons
that are too large, the coordinates of the target are assumed
to be inaccurate. Therefore, the volume ratio of the tetrahe-
dron was determined to solve the afore-mentioned problem.
The volume of all tetrahedrons is V j (j = 1, 2,⋯,Np), where
Np is the number of tetrahedrons. Next, the volume
median Vm = ððV j+1Þ/2, j = 1, 3,⋯,NpÞ or Vm = ðSðj+1Þ/2 +
SðjÞ/2Þ/2, j = 2, 4,⋯,NpÞ of the divided tetrahedron was cal-
culated. Assuming that the volume of the tetrahedron in
which the target T is located satisfies V j ≤Vm, the tetrahe-
dral centre coordinate Gjðxj, yjÞ can be replaced with the
coordinate of the target T , that is, Ff ðxf , yf Þ = I jðxj, yjÞ.
Assuming that V j > Vm, the method in phase 2 is used.

Stage 2. When fewer known node coordinates exist,
and the formed tetrahedron volume satisfies the condition

Table 2: Verifying the relationship between the number of nodes and other variables.

L n N V (m3) V/V0 L n N V (m3) V/V0
200 × 200 × 200 100 512 5.3744e+06 67.18% 200 × 200 × 20 100 483 5.3744e+05 67.18%

200 × 200 × 200 70 327 4.8725e+06 60.91% 200 × 200 × 20 70 319 4.8725e+05 60.91%

200 × 200 × 200 50 228 4.3816e+06 54.77% 200 × 200 × 20 50 211 4.3816e+05 54.77%

200 × 200 × 200 20 61 2.2605e+06 28.26% 100 × 100 × 20 70 323 1.2181e+05 60.90%

200 × 200 × 50 100 479 1.3436e+06 67.18% 100 × 100 × 20 50 214 1.0954e+05 54.77%

200 × 200 × 50 70 333 1.2181e+06 60.90% 100 × 50 × 20 70 319 6.0906e+04 60.91%
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B (x2, y2, z2)
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C (x3, y3, z3)

T

Figure 16: Point T is inside A − BCD.
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Figure 17: Point T is outside A − BCD.
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Figure 18: Calculating the inner point of a tetrahedron.
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V j >Vm, the inner coordinates cannot be estimated as the
coordinates of the unknown target.

Method 2. When V j >Vm is determined in the first step,
the coordinates of the target T are directly solved using the
least squares method. As displayed in Figures 20 and 21,
the red mark indicates target T , and T is inside the A − BC
D tetrahedron. When the tetrahedron surrounded by the
target T is located for the first time, the least square method
combined with the RSSI ranging principle is used to solve
the problem with less computation time.

Assuming that T is inside A − BCD, we use Equation (2)
to measure the distance between the four vertices of the tet-
rahedron A − BCD and T f ðxf , yf Þ, where d1 = AT , d2 = BT ,
d3 = CT , and d4 =DT . Consequently, the coordinates of
the three vertices of △BCG are known, Aðx1, y1, z1Þ, Bðx2,

y2, z2Þ, Cðx3, y3, z3Þ, and Dðx4, y4, z4Þ, which can be calcu-
lated as follows:

x1 − xf
� �2 + y1 − yf

� �2
+ z1 − zf
� �2 = d1,

x2 − xf
� �2 + y2 − yf

� �2
+ z2 − zf
� �2 = d2,

x3 − xf
� �2 + y3 − yf

� �2
+ z3 − zf
� �2 = d3,

x4 − xf
� �2 + y4 − yf

� �2
+ z4 − zf
� �2 = d4:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

Next, subtract d4 from d1, d2, and d3 from Equation (17)
to obtain the following expression:

Next, Equation (18) is rewritten as a system of linear
equations, similar to Equation (11), where

H =
2 x1 − x4ð Þ 2 y1 − y4ð Þ 2 z1 − z4ð Þ
2 x2 − x4ð Þ 2 x2 − x4ð Þ 2 z2 − z4ð Þ
2 x3 − x4ð Þ 2 y3 − y4ð Þ 2 z3 − z4ð Þ

2
664

3
775, X =

xf

yf

z f

2
664

3
775,
ð19Þ

and b can be rewritten as a determinant

b =
x21 − x24 + y21 − y24 + z21 − z24 = d24 − d21

x22 − x24 + y22 − y24 + z22 − z24 = d24 − d22

x23 − x24 + y23 − y24 + z23 − z24 = d24 − d23

2
664

3
775: ð20Þ

Thus, Equation (9) is used to calculate the determinant
coordinate value of the target T , and then the corresponding
value is removed.
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Figure 19: Tetrahedron surrounded by target.

x1
2 − x4

2� �
− 2 x1 − x4ð Þxf + y1

2 − y4
2� �

− 2 y1 − y4ð Þyf + z1
2 − z4

2� �
− 2 z1 − z4ð Þzf = d1

2 − d4
2,

x2
2 − x4

2� �
− 2 x2 − x4ð Þxf + y2

2 − y4
2� �

− 2 y2 − y4ð Þyf + z2
2 − z4

2� �
− 2 z2 − z4ð Þzf = d2

2 − d4
2,

x3
2 − x4

2� �
− 2 x3 − x4ð Þxf + y3

2 − y4
2� �

− 2 y3 − y4ð Þyf + z3
2 − z4

2� �
− 2 z3 − z4ð Þzf = d3

2 − d4
2:

8>>><
>>>:

ð18Þ
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6. Experimental Verification and
Result Analysis

6.1. A Linear Regression Analysis of Relevant Data. Experi-
ment 1. Determining the relationship between the number
of anchor nodes and the number of graphs generated by
the Delaunay division.

Comparing the graphs formed by the 2D and 3D Delau-
nay methods revealed that the 2D Delaunay graph is a trian-
gular network composed of multiple small triangles, while
the 3D Delaunay graph is a 3D network composed of multi-
ple tetrahedrons. When changing L, the number of tetrahe-
drons primarily depends on the number of nodes n. The
relationship between the number of nodes divided by the
2D and 3D Delaunay methods and the number of corre-
sponding graphics were analysed. With the same number
of nodes, the number of triangles generated by the Delaunay
method is considerably smaller than the number of tetrahe-
drons. Thus, the number of graphs generated by the Delau-
nay method is linearly related to the number of nodes. As
displayed in Figure 22, we set the size of the 2D area to
L = 200m2 and the 3D area to L = 200m3. Next, we set
the number of different nodes nð20 ≤ n ≤ 200Þ, obtain the
number of triangles NΔ and the number of tetrahedrons
N , and draw a scatter plot of the two. Figure 22 reveals
that the number of triangles or tetrahedrons formed after
the Delaunay division appears to have a linear relationship
with the number of nodes n. To verify this result, linear
regression analysis was performed using Excel software.

Assume that the linear equations of two of them can be
expressed as follows:

y1 = ax0 + b, 2Dð Þ,
y2 = cx1 + d, 3Dð Þ:

(
ð21Þ

When using Excel software to analyse its linear regres-
sion characteristics, select the confidence area as 95% and
the constant as 0, and generate the corresponding predic-
tive regression and residual plots. Next, the Delaunay lin-
ear regression equation and regression characteristics of
2D and 3D data were calculated, and the linear regression
equation fitting diagram shown in Figure 23 was obtained.

Figure 23 displays the linear regression equation y1 =
1:887x. Among these results, the coefficient of determination
R2 = 1 of the equation y1 indicates that the data fit is excel-
lent and close to 1. The value obtained by the regression
analysis satisfies the condition F value = P value < 0:01,
which indicates that the regression effect of the linear equa-
tion is significant. Similarly, to analyse the data obtained by
the 3D Delaunay division, the equation is y2 = 5:4132x. Fur-
thermore, all the indicators satisfy the linear regression.
Therefore, the number of triangles or tetrahedrons obtained
after Delaunay division is positively linearly related to the
number of nodes.

Finally, residual analysis was used for the 2D and 3D
data, as displayed in the residual diagrams in Figures 24
and 25. In the figures, the two sets of data are evenly distrib-
uted on both sides of the symmetry axis x = 0, which demon-
strates that the variables are linearly distributed. Finally,
through afore-mentioned analysis, the number of triangles
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Figure 22: Delaunay scatter chart.
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Figure 20: T is inside the tetrahedron.
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Figure 21: Distance from T to the tetrahedron vertex.
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or tetrahedrons formed after the Delaunay division and the
number of nodes n satisfy a linear relationship.

6.2. A Setting the Distance Constraint Value K between
Anchor Nodes. Experiment 2. Setting the distance constraint
value k between Delaunay generated anchor nodes.

Data in Tables 1 and 2 were tested. First, the first row of
2D data in Table 1 reveals that when the number of nodes is
small, the calculated area accounts for a low percentage. This
result likely occurs because the distribution of a small num-
ber of randomly generated anchor nodes is uneven, and the
distance between nodes is too close, which results in a low

proportion of the area or volume of the Delaunay network.
After these analyses, when the number of anchor nodes is
small, initial constraints were added to the distance between
the nodes generated randomly to increase the proportion of
the area divided by the Delaunay method; the minimum
constraint distance k is set. The distance dðsi, sjÞ ≤ k between
each node Delaunay is constrained to make it evenly distrib-
uted, where k is a fixed value that can be obtained through
multiple experiments.

In experiment 2, we set the phase parameters as L =
200 × 200, n = 30, and k = 25 for verification. As listed in
Table 3, the experiment randomly generated 10 sets of 2D
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Figure 23: Linear regression analysis.
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data and calculated the total proportion S0/SL of each group
of Delaunay generated areas So and total areas SL. By com-
paring the data in Table 3 with the data in the first row of
Table 1, setting the constraint distance value k between
anchor nodes can increase the area ratio of the anchor
nodes. By setting k, the utilization rate of the anchor node
can be improved, and the area of the divided area can be
increased. Second, the calculated average of the total area
ratio of the 10 sets of data in Table 4 is 83.62%, which is
an average increase of 10.18% compared with 73.44% in
Table 1.

Similarly, Table 4 lists the test results of the Delaunay
method, which randomly generates 3D data to verify the
influence of the distance k between the constraint nodes on
the Delaunay volume. First, we set the relevant parameters
L = 200 × 200 × 200, n = 70, and k = 45 for the experiments.
In the experiment, the 3D volume data V formed by the
anchor nodes divided by Delaunay and 10 sets of data for
the total volume of V0/VL were obtained (as listed in
Table 4).

The calculated average volume ratio of Table 4 is 80.17%,
which is an average increase of 19.26% compared with the
60.91% data value in Table 2 under the same conditions.
Therefore, the verification and analysis of the above two sets
of data reveal that when the data were initially randomly
generated; adding the constraint value k of the distance
between anchor nodes could increase the Delaunay genera-
tion area or volume. Consequently, the area and volume
ratio of Delaunay’s divided areas increased, rendering the
layout of the anchor nodes reasonable.

7. Comparison Analysis

In this section, the proposed 2D-DPTL algorithm was com-
pared with the centroid, amorphous, and APIT algorithms
[29]. The degree of irregularity (DOI) represents the degree
of irregularity of the signal and generally is a value in the
range of [0,1]. DOI is defined as the distance change of the
largest wireless signal per unit degree change in the signal
propagation direction [29]. When the DOI value is zero, this
indicates that the signal model is an ideal circular signal
model. In this experiment, the node was deployed in an area
L with a range of 200 × 200, and the communication range
of the node was set to Rc = 20m. Through experimental
tests, we set the relevant parameters of the RSSI path loss
model as follows: noise standard deviation σk = 4, path loss
value ηk = 2:5, and Pk = −24. Next, the neighbour density
(ND), anchor percentage deployment method (random
deployment or uniform deployment), and other parameters
were selected to verify the accuracy of the algorithm.

7.1. Effect of Changing the Number of Nodes on Average
Localization Error. Experiment 3. Effect of changing the
number of anchor nodes on the average localization error
(ALE) of the algorithm.
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Figure 25: 3D data residual plot.

Table 3: Setting condition k, the data of the 2D Delaunay graph.

Serial number Delaunay area S0 (m
2) Total area ratio S0/SL (%)

1 3.3977e+04 84.94%

2 3.3350e+04 83.38%

3 3.2263e+04 80.66%

4 3.3672e+04 84.18%

5 3.4795e+04 86.99%

6 3.4602e+04 86.51%

7 3.0426e+04 76.04%

8 3.2313e+04 80.78%

9 3.3888e+04 84.72%

10 3.5203e+04 88.01%

Table 4: Setting condition k, the data of the 3D Delaunay graph.

Serial
number

Delaunay volume V
(m3)

Total volume ratio V/V0
(%)

1 3.3977e+04 84.94%

2 3.3350e+04 83.38%

3 3.2263e+04 80.66%

4 3.3672e+04 84.18%

5 3.4795e+04 86.99%

6 3.4602e+04 86.51%

7 3.0426e+04 76.04%

8 3.2313e+04 80.78%

9 3.3888e+04 84.72%

10 3.5203e+04 88.01%
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First, we analysed the effect of the change in the number
of anchor nodes on the ALE and compared the performance
of the proposed algorithm with other algorithms. Next, the
parameters DOI = 0 and ND = 8 were set, and two sets of
experiments were designed with various node deployment
methods. As displayed in Figure 26, when nodes were
deployed uniformly, the ALE of the five algorithms

decreased as the percentage of anchor nodes increased.
However, the ALE values of the various algorithms differed
considerably. The centroid algorithm (CA) exhibited the
highest ALE and did not consider the optimization of the
anchor node layout, and the calculation method is not rigor-
ous. The proposed 2D-DPTL algorithm exhibited a lower
ALE value than other algorithms because the distance
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Figure 26: Uniform node deployment.
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Figure 27: Random node deployment.
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judgement condition between nodes was added to optimize
the node layout. Consequently, the proposed algorithm
divided the target area twice to improve the localization
accuracy and reduce the ALE of the algorithm.

Comparing Figures 26 and 27 reveals that the deploy-
ment methods differed considerably, and under the same
values of other indicators, the ALE value of randomly
deployed nodes was greater than that of uniformly deployed
nodes. This result likely occurred because the uniform
deployment of anchor nodes rendered the layout of nodes

reasonable and increased the accuracy of target localization.
Consequently, the ALE of the proposed algorithm was
higher than that of other algorithms because the Delaunay
method could optimally divide node’s location according
to its location coordinates from an optimal triangle network,
and the location of the target was estimated, which improved
location accuracy. Second, the proposed algorithm per-
formed a secondary calculation on the problem of target’s
excessive localization range and reduced the ALE value of
the overall network.
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Figure 28: ALE of all algorithms when DOI = 0.
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Figure 29: ALE of all algorithms when DOI = 0:1.
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7.2. Effect of the Density of Neighbour Nodes on ALE. Exper-
iment 4. Effect of changing the density of neighbouring
nodes on the ALE when the DOI differed.

The effect of the change in the neighbour node density of
each algorithm on its ALE was verified. With AP = 28 and
uniform deployment of nodes, we set DOI = 0 and DOI =
0:1 to conduct two sets of experiments, as displayed in
Figures 28 and 29, which reveal that the CA exhibited the
highest ALE because this algorithm estimated the centre of
mass coordinates as the target localisation and failed to
reduce the localisation error. The proposed algorithm used
a phased calculation method to reduce ALE.

In Figure 28, the ALE values of the amorphous and APIT
algorithms decreased as the density of neighbouring nodes
increased, whereas the ALEs of the CA and the proposed
algorithm were not affected by a change in neighbouring
node density. These results were attributed to the absence
of the interaction between the target node and neighbouring
nodes. Figures 28 and 29 reveal that the improvement in sig-
nal irregularity reduces the average localisation accuracy of
the algorithm. Consequently, these experiments reveal that
the localisation accuracy of the proposed algorithm was
superior to that of the other algorithms and can be main-
tained within a certain range.

8. Conclusions

The Delaunay division method can optimize the layout of
2D nodes and can be applied to the network layout of 3D
sensor nodes based on the location coordinates of the nodes.
Delaunay triangle division can improve the flexibility of the
node layout and strengthen the correlation between the
anchor nodes. Therefore, the Delaunay partition method
was used to optimize the Delaunay network layout of ran-
domly deployed anchor nodes. Two localization algorithms
were designed to accurately estimate the position of the tar-
get in 2D and 3D coordinate systems. The proposed algo-
rithm has limitations in the network life cycle and delay
and must be verified in a real-world scenario. The results
of this study provide a critical important direction for future
research.
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