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Aiming at the problem of low diagnosis efficiency and accuracy, due to noise and cross aliasing among various faults when
diagnosing composite faults of rolling bearing under actual working conditions, a composite fault diagnosis method of rolling
bearing based on optimized wavelet packet autoregressive (AR) spectral energy entropy and adaptive no velocity term particle
swarm optimization-self organizing map-back propagation neural network (ANVTPSO-SOM-BPNN) is proposed. The energy
entropy feature is extracted from the bearing vibration signal through wavelet packet AR spectrum, and SOM and BPNN are
combined to form a series network. For PSO, the velocity term is discarded and the inertia weight and learning factor are
adaptively adjusted. Finally, the Dempster-Shafer (D-S) evidence fusion diagnosis is carried out. To get closer to the
application condition, the data are collected near and far away from the fault point for the composite fault diagnosis, which
verifies the effectiveness of the proposed method.

1. Introduction

Rolling bearing is one of the most important components in
rotating machinery. It plays an important role in supporting
rotating shaft and reducing friction. Its working state is of
great significance to the normal operation of the whole rotat-
ing machine [1–4]. In practical engineering, the fault often
does not appear alone, and the probability of composite fault
of the same bearing is also large. Composite faults are two or
more faults that are interrelated and cross influenced at the
same time [5]. And the vibration signals caused by different
faults will interfere with each other and produce the coupling
phenomenon, which makes the signal more complex and dif-
ficult to accurately diagnose faults. Therefore, the fault diagno-
sis of rolling bearing has the important practical value [6].

For the fault diagnosis of bearing, the feature extraction,
neural network, andmulti-information fusion are the research
focuses. For the feature extraction, the wavelet packet decom-

position is a typical processing method of unsteady signal,
which can process the signal more finely [7]. Tang and Deng
[8] proposed a composite bearing fault feature separation
method based on the improved harmonic wavelet packet
decomposition to decompose the signal of intermediate
frequency part and extract more effective signals. He et al. [9]
applied the adaptive redundant multiwavelet packet to com-
posite fault diagnosis of rotating machinery, proposed the
normalized multifractal entropy as the evaluation criterion,
adaptively constructed multiwavelet, and determined the fault
sensitive frequency band by the relative energy ratio of charac-
teristic frequency. Ma et al. [10] decomposed the composite
fault signal using multiwavelet packet, reconstructed the signal
with permutation entropy as the evaluation index, and finally
demodulated and extracted the fault features using energy
operator. For the fault diagnosis of rolling bearing, Abbasion
et al. [11] preprocessed the vibration signal through wavelet
analysis and then used support vector machine (SVM) to
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diagnose the faults. Janssens et al. [12] applied the convolu-
tional neural network (CNN) to multi fault diagnosis. Lv and
Yao [13] used wavelet packet decomposition combined with
back propagation neural network (BPNN) to diagnose the
faults. Among them, BPNN is widely used for the fault diagno-
sis of rolling bearing due to its strong nonlinear mapping ability
and high self-learning and adaptive ability [14]. However, the
standard BPNN is easy to fall into the local optimal solution
and relies too much on samples. According to the defects of
BPNN,Huang et al. [15] used the global search ability of genetic
algorithm to optimize BPNN. Gong et al. [16] combined the
self-organizing map (SOM) with BPNN to obtain the better
classification results and improve the convergence speed. Ju
et al. [17] optimized the weight and threshold of BPNN through
particle swarm optimization (PSO) and extracted the feature
energy through wavelet packet, which improved the diagnosis
efficiency and accuracy. The standard PSO also has its disad-
vantages, such as low convergence accuracy and easy to fall into
local extremum. Wang and Wang [18] introduced the decline
index and iteration threshold to improve the linear decline
weight of the standard PSO and verified the advantages of
improved PSO in search accuracy, convergence speed, and sta-
bility. Zhu and Xue [19] adaptively modified the learning factor
to better balance the local and global search ability in view of the
problem that the fixed value of learning factor in PSO affects the
algorithm performance. Aiming at the signal fuzziness and
uncertainty of composite fault, the diagnosis result is further
improved by information fusion. Khazaee et al. [20] fused vibra-
tion and sound signals through Dempster-Shafer (D-S) evi-
dence theory for fault diagnosis of gearbox and achieved ideal
results. Feng and Pereira[21] applied the wavelet neural net-
work and evidence theory to fault diagnosis of rotating machine
and verified the effectiveness.

This paper proposes a new diagnosis method based on
optimized wavelet packet AR spectral energy entropy to
adaptive no velocity term PSO-SOM-BPNN (ANVTPSO-
SOM-BPNN). In order to be closer to the real working con-
ditions on site, data are collected near the fault points and far
away from the fault points, respectively. The energy entropy
characteristics of bearing vibration signals are extracted
through wavelet packet AR spectrum. The basis function
and decomposition layers of wavelet packet decomposition
are optimally selected. SOM and BPNN are combined to
form a series network, and PSO discards the velocity term
and adaptively adjusts the inertia weight and learning factor.
Finally, the proposed method is used to fuse the diagnosis
results at two measuring points at D-S evidence decision
level to improve the efficiency and accuracy in the composite
fault diagnosis of rolling bearing.

2. Methodology

During the operation of rolling bearing, due to the interaction
of inner ring, outer ring, and rolling element, it is easy to form
overlapping composite faults. Among them, the fault features
with weak energy may be submerged by the features with other
strong energy or noise, which affects the accuracy of fault diag-
nosis. Therefore, at first, vibration accelerators are installed at
two different measuring points to collect the vibration signals.

Secondly, two kinds of collected signal are preprocessed and
then extract the signal features. And two kinds of extracted
fault feature are diagnosed in the new method, to obtain two
kinds of basic probability distribution. Finally, two probability
distributions are fused by D-S evidence theory to achieve the
purpose of fault diagnosis using multi-information fusion.
The overall research idea of composite fault diagnosis of rolling
bearing is shown in Figure 1.

2.1. Wavelet Packet AR Spectral Entropy Feature
Extraction Method

2.1.1. Principle of Wavelet Packet Decomposition. Wavelet
packet decomposition overcomes the defect that wavelet
analysis only decomposes the low-frequency part of signal.
It also decomposes the high-frequency part and improves
time-frequency resolution. The specific algorithm is as
follows.

Given scaling function ϕðtÞ and wavelet basis function
ψðtÞ, two-scale equations are satisfied between them:

ϕ tð Þ =
ffiffiffi
2

p
〠
k∈Z

hkϕ 2t − kð Þ,

ψ tð Þ =
ffiffiffi
2

p
〠
k∈Z

gkϕ 2t − kð Þ,

8>><
>>: ð1Þ

where k is the time translation factor; hk is the low-pass filter
coefficient; and gk is the high-pass filter coefficient.

The wavelet packet decomposition algorithm is

dj,2n
l =〠

k

ak−2ld
j+1,n
k ,

dj,2n+1
l =〠

k

bk−2ld
j+1,n
k ,

8>><
>>: ð2Þ

where j is the number of wavelet packet decomposition
layers; dj,2n

l is the low-frequency coefficient decomposed by

layer j; and dj,2n+1
l is the high-frequency coefficient decom-

posed by layer j.
The wavelet packet reconstruction algorithm is

dj+1,n
l =〠

k

hl−2kd
j,2n
k + gl−2kd

j,2n+1
k

� �
, ð3Þ

where hl−2k is the low-frequency coefficient reconstructed by
wavelet packet and gl−2k is the high-frequency coefficient
reconstructed by wavelet packet.

2.1.2. AR Spectrum Estimation. Due to the complexity of
composite fault signal of rolling bearing, it is difficult to
obtain the accurate fault characteristics only by wavelet
packet decomposition. Therefore, it needs to be further
processed on the basis of wavelet packet decomposition.
The basic idea of AR spectrum estimation is to establish an
AR model for time series signal and then calculate the self-
power spectrum of signal with model coefficients [22].
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The general expression of AR model is

g xð Þ = s xð Þ − 〠
R

i=1
aig x − ið Þ, ð4Þ

where gðxÞ is autoregressive time series; sðxÞ is finite band-
width white noise with normal distribution with mean value
of 0 and variance of σ2s ; ai is regression coefficient; and R is
model order.

If equation (4) is regarded as the input/output equation
of a system, sðxÞ can be regarded as the white noise input
of the system, and gðxÞ is the response output of the system
under the excitation of limited bandwidth white noise.

According to the definition of self-power spectrum and
transfer function, the unilateral spectrum of signal can be
expressed by the following formula:

Gy fð Þ = 2Tsσ
2
s

1 +∑R
i=1aie

−i2πkTs

��� ���2 , ð5Þ

where f ∈ ½0, f s/2:56�; T s = 1/f s; and f s is the sampling
frequency.

2.1.3. Determination of Wavelet Packet Decomposition Levels.
The selection of decomposition levels not only affects the fault
feature extraction but also determines the dimension of
feature vector. When the number of decomposition layers is
too small, the information of each frequency band cannot be
completely decomposed, and the bearing feature information
is not accurately extracted, which affects the accuracy of fault
diagnosis. Although increasing the number of wavelet packet
decomposition layers can analyze the fault signal more finely,
the number of signals after decomposition increases. When
the number of decomposition layers is too many, the dimen-
sion of feature vector is too large, which affects the efficiency
of fault identification. Therefore, the number of wavelet packet
decomposition layers must consider the characteristics of the
signal itself. In this paper, the optimal number of decomposi-
tion layers is calculated by the following equation [23]:

J = max j < log2
f s
4f sf

����
� �

, j ∈ Z, ð6Þ

where J is the maximum number of layers; f s is the sampling
frequency; and f sf is the signal frequency.

For the vibration signal of rolling bearing, especially the
fault state signal, the frequency of useful signal is divided
into two types: (1) rotation frequency and (2) fault frequency
[24]. The wavelet packet decomposition aims to find fault

features, so the signal frequency f sf can be replaced by fault
feature frequency [25].

2.1.4. Selection of Wavelet Packet Basis Function

(1) Information Entropy Principle. Information entropy is the
measure of information disorder in information theory. The
greater the entropy, the greater the disorder of information
and the smaller the contribution of information. On the con-
trary, the smaller the entropy, the smaller the disorder of infor-
mation and the greater the contribution of information. The
working state of rolling bearing is often expressed in the form
of vibration state. When rolling bearing fails, the vibration sig-
nal will change accordingly. Therefore, extracting information
entropy from vibration signal in the time-frequency domain
can reflect the vibration state of rolling bearing.

(2) Wavelet Packet Energy Entropy. The construction steps
of wavelet packet energy entropy are as follows.

Step 1. The composite fault signal of rolling bearing is
decomposed by wavelet packet. After the signal is decom-
posed in j layers, 2j sub-signals are generated. The energy
of the node n of layer j, the Sj,n, is expressed as

Ej,n = 〠
Q

q=1
Sj,n qð Þ� 	2, ð7Þ

where j is the number of wavelet packet decomposition
layers; n = 0, 1,⋯, 2j − 1 is the node n of the layer j; and Q
is the signal length.

Step 2. The total signal energy is expressed as

Ej = 〠
2 j−1

n=0
Ej,n: ð8Þ

Step 3. The proportion of energy of each node in the total
energy is recorded as

pj,n =
Ej,n
Ej

: ð9Þ

Step 4. pj,0, pj,1,⋯, pj,2 j−1 is the energy distribution of each
frequency band in layer j after the signal is decomposed by
wavelet packet. According to Shannon’s theorem, the wave-
let packet energy entropy corresponding to each node is
defined as
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Figure 1: General research idea of rolling bearing composite fault diagnosis.
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Hj,n = −pj,n ∗ log pj,n: ð10Þ

Step 5. The total energy entropy of the signal is expressed as

Hj = ‐ 〠
2 j−1

n=0
pj,n ∗ log pj,n: ð11Þ

(3) Selection of Wavelet Packet Basis Functions. In wavelet
packet decomposition, the parts where the signal waveform
is similar to the waveform of the selected wavelet packet
basis function are enhanced and the rest are suppressed
[26], so the greater the wavelet packet energy after decompo-
sition. In information theory, the more regular the signal is,
the higher the contribution value of information will be, and
the smaller the energy entropy of wavelet packet will be.
According to the principle of maximum ratio of total energy
and total energy entropy of wavelet packet, the larger the
ratio is, the more similar the selected wavelet packet basis
function is to the original signal [27]. The ratio formula
of total energy and total energy entropy of wavelet packet is

σ =
Ej

Hj
: ð12Þ

2.1.5. Construction of Wavelet Packet AR Spectral Entropy
Eigenvector. The construction steps of wavelet packet AR
spectral entropy eigenvector are as follows.

Step 1. The optimal wavelet basis is selected to decompose
the collected vibration signals by j level wavelet packet
decomposition and generate 2j wavelet packet coefficients.

Step 2. According to the wavelet packet filter selected in the
decomposition process, its dual filter is selected for recon-
struction. When reconstructing a certain frequency band
signal, set the wavelet packet coefficients of other frequency
bands to zero to make the reconstructed signal only contain
the time-domain waveform of the frequency band signal.

Step 3. The AR spectrum of each reconstructed signal is esti-
mated to obtain the AR spectrum containing only specific
frequency information.

Step 4. Calculate the energy entropy of wavelet packet AR
spectrum band.

Step 5. The energy entropy of wavelet packet AR spectrum
band is normalized, and the feature vector is constructed.

2.2. Fault Diagnosis Model of ANVTPSO-SOM-BPNN

2.2.1. SOM-BPNN Algorithm. BPNN is a multilayer feedfor-
ward neural network trained according to the error back prop-
agation. It is a supervised learning network, which is trained
on the premise of known expected output. SOM is an unsu-
pervised, self-organizing, and visual network composed of
fully connected neuron arrays. The two are connected in series

to form a combined SOM-BPNN model, which has both the
advantages of SOM and BPNN. After the sample data enters
SOM, the preliminary classification of samples is realized.
The essence of training the secondary network is to add a
dimension to the training sample vector and use it as the input
of the secondary network. The newly added dimension is used
to mark the classification results of the primary network,
which can promote the training of the secondary network.
Theoretically, it can effectively reduce the training time of
the secondary network and make the whole combined net-
work converge faster. As the primary network training, SOM
does not need a large sample set, so SOM-BPNN also has
the same characteristics. Therefore, the combination of two
neural networks can achieve the complementary advantages,
so as to improve the accuracy of fault diagnosis. The essence
of SOM-BPNN is to add a competition layer in front of the
hidden layer of BPNN, and its structure is shown in Figure 2.

The implementation process of SOM-BPNN is as follows.

Step 1. Construct the training samples, and normalize the
input samples.

Step 2. Determine the number of layers and nodes of SOM
and BPNN, respectively.

Step 3. Classify the input samples preliminarily with SOM.

Step 4. Add a dimension to the training sample vector
according to the preliminary classification results of SOM,
and use the new vector as the input of the secondary BPNN.

Step 5. Start training after the BPNN input layer of the
secondary network receiving the new sample vector, until
the model reaches the convergence requirement.

The combined network is the SOM-BPNN model which
can classify the input sample set more accurately. The classi-
fication of test samples is realized by inputting the test
sample set into the model.

2.2.2. ANVTPSO Algorithm. PSO is the search for the opti-
mal solution through the cooperation among individuals in
the group. In practice, a group of random particles is initial-
ized, and in each iterative search process, the particles con-
tinuously update through the extreme ðPia, PgaÞ until the
optimal solution is found within the set number of iterative
steps. Among them, Pia is the optimal solution found so far
by the particle itself, which is the individual extreme value,
and Pga is the optimal solution found so far by the whole
population, which is the global extreme value.

Via t + 1ð Þ =w tð ÞVia tð Þ + c1r1 Pia tð Þ − Xia tð Þð Þ + c2r2 Pga tð Þ − Xia tð Þ� 	
,

Xia t + 1ð Þ = Xia tð Þ +Via t + 1ð Þ,
ð13Þ

where Viaðt + 1Þ and Xiaðt + 1Þ are the particle velocity and
position of the i particle in the a dimension in the t + 1 iter-
ation, respectively; wðtÞ is inertia weight; t is the number of
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iterations; c1 and c2 are learning factors; and r1 and r2 are
random numbers at ½0, 1�.

In order to avoid the influence of randomly given initial
velocity of particles on the convergence speed and accuracy,
the velocity term of the standard PSO is abandoned [28], and
the position is updated according to the following equation:

Xia t + 1ð Þ =w tð ÞXia tð Þ + c1r1 Pia tð Þ − Xia tð Þð Þ + c2r2 Pga tð Þ − Xia tð Þ� 	
:

ð14Þ

PSO has the disadvantages of easy premature convergence,
low convergence accuracy, and low later iteration efficiency
[29]. Inertia weight w regulates the searching ability of parti-
cles in solution space, and its value affects the optimization
level of the algorithm. Meanwhile, because PSO has the evolu-
tionary stages, different learning factors should be set in differ-
ent stages. Based on this, this paper uses an adaptive method
to modify the inertia weight, which changes with the change
of particle objective function value [30], expressed by equation
(15). Asynchronous nonlinear adaptive adjustment learning
factor is adopted [31], which is expressed by equation (16).

w =
wmin −

wmax −wminð Þ ∗ f − fminð Þ
f avg − fmin

, f ≤ f avg,

wmax, f > f avg,

8><
>:

ð15Þ

where wmax is the maximum inertia weight; wmin is the mini-
mum inertia weight; f is the real-time objective function value
of the particle; and f avg and fmin are the average andminimum
values of all current particles, respectively.

c1=2+
f− f avg

f avg− fmin
,

c2=2−
f− f avg

f avg− fmin
,

(
ð16Þ

where 2 is the initial value of learning factors c1 and c2.

2.2.3. ANVTPSO-SOM-BPNN Model. The preliminary clas-
sification of input samples is realized through SOM. Accord-
ing to the preliminary classification results, a dimension is
added to the training sample vector, and the newly formed
feature vector is used as the input of SOM-BPNN. However,
the initial network connection weight and node threshold of

SOM-BPNN, like BPNN, are usually determined based on
experience and are easy to fall into local optimal solution,
which limits the convergence efficiency of the network. But
PSO can search in a large space, and when it is used to opti-
mize the threshold and weight of SOM-BPNN, it can avoid
the above problems to a certain extent. Because the parame-
ter setting of PSO has a great impact on the final result, this
paper adopts an adaptive way to adjust the inertia weight
and learning factor of PSO and round off its velocity term
to avoid the influence of particle initial velocity on the
convergence speed and solution accuracy, which is the new
ANVTPSO algorithm, used for SOM-BPNN threshold and
weight optimization, to improve the accuracy of fault
diagnosis. ANVTPSO-SOM-BPNN diagnostic model is con-
structed, and the process is shown in Figure 3.

The process of ANVTPSO-SOM-BPNN algorithm is as
follows.

Step 1. Set the input node, network competition layer, and
other parameters in SOM, according to the characteristic
data. Use the classification results obtained by SOM as the
training sample vector, and add a dimension; then, form a
new feature data set with the original feature data.

Step 2. Set the input node N , hidden layer node L, output
node M, and other parameters according to the new feature
data set. Clarify the structure of SOM-BPNN.

Step 3. Initialize PSO, calculate its search space dimension a,
and set parameters such as population number and maxi-
mum iteration times Tmax.

Step 4. Use the characteristic data as the input of SOM-
BPNN to calculate the fitness value of each particle. Fitness
function takes the mean square error function MSE between
the actual training output and the expected output.

Step 5. Calculate the initial individual optimal position Pia
and global optimal position Pga of PSO.

Step 6. Discard the velocity term of PSO, update the position
according to equation (14), update the inertia weight accord-
ing to equation (15), and update the learning factor accord-
ing to equation (16), so as to obtain the individual and global
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xy yx

Energy
eigenvector

Input layer Competitive
layer
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Fault diagnosis result

˙˙
˙
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˙
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Figure 2: Topological structure of the SOM-BPNN model.
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Figure 3: Flow chart of ANVTPSO-SOM-BPNN algorithm.
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Figure 4: Fault diagnosis comprehensive test platform.

(a) (b)

Figure 5: Fault machining equipment: (a) EDM; (b) laser welding machine.
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optimal extreme value. And then, the PSO position is
mapped to obtain the optimal weight and threshold.

Step 7. Bring the optimized weight and threshold into SOM-
BPNN, and continue tuning until the training objectives are
met.

2.3. D-S Evidence Theory

2.3.1. Principle of D-S Evidence Theory. D-S evidence theory
has good practicability, so it is widely used in the field of
multisensor target recognition [32, 33]. Its main characteris-
tics include the following: it satisfies the weaker conditions
than Bayesian probability theory and has the ability to
directly express “uncertainty” and “do not know” [34].

Definition 1. If Θ is a finite sample set and all propositions in
the set are mutually exclusive, set Θ is called the identifica-
tion framework. The power set of Θ is composed of all sub-
sets and various combinations of identification framework Θ
, noted as 2Θ. Take Θ as the identification framework of

(a) (b)

(c)

Figure 6: Finished fault bearings: (a) inner ring and outer ring; (b) inner ring and rolling element; (c) outer ring and rolling element.

Table 1: Fault size of rolling bearing.

Bearing status Fault size (mm)

Normal 0

Inner ring crack and outer ring crack 2 ∗ 1:5 ∗ 0:5 + 2 ∗ 1:5 ∗ 0:5
Inner ring crack and rolling element pitting 2 ∗ 1:5 ∗ 0:5 + 1s (pit corrosion)
Outer ring crack and rolling element pitting 2 ∗ 1:5 ∗ 0:5 + 1s (pit corrosion)

Table 2: Fault characteristic frequency of rolling bearing.

Fault location Frequency (Hz)

Inner ring 162.23

Outer ring 107.77

Rolling element 71.33
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proposition A. A assign the basic probability function m as
mðAÞ which is the mapping of set 2Θ to [0,1].

The function m : 2Θ ⟶ ½0, 1�satisfies the following
conditions:

m ϕð Þ = 0,

〠
A⊆Θ

m Að Þ = 1,

8<
: ð17Þ

where 0 ≤mðAÞ ≤ 1, A is called focal element, and mðAÞ is
the basic probability assignment of A, indicating the trust
degree in A.

Definition 2.Mapping BelðAÞ: 2Θ ⟶ ½0, 1� is the confidence
function defined on Θ, which reflects the exact trust degree
of A. The expression is

Bel Að Þ = 〠
B⊆A

m Bð Þ: ð18Þ

Mapping PIðAÞ: 2Θ ⟶ ½0, 1� is a plausible function
defined on Θ, which represents the degree of nonfalse trust
in proposition A. It is also an uncertainty measure that
seems to be possible for proposition A. The expression is

PI Að Þ = 1 − Bel �A
� 	 ð19Þ

where PIðAÞ and BelðAÞ represent the upper and lower
limits of the function, respectively.

Definition 3. ½BelðAÞ, PlðAÞ� is defined as the trust interval of
proposition A. ½0, BelðAÞ� represents the support evidence
interval of proposition A. ½PlðAÞ, 1� represents the rejection
evidence interval of proposition A.

Definition 4. D-S evidence theory synthesis rule: let m1 and
m2 be the basic reliability distribution on the same identifi-
cation framework Θ and meet the following conditions:

〠
Ai∩Aj=ϕ

m1 Aið Þm2 Aj

� 	
< 1: ð20Þ

Then, the combined basic probability distribution
function is

m Að Þ =
∑Ai∩Aj=Am1 Aið Þm2 Aj

� 	
1 −∑Ai∩Aj=ϕm1 Aið Þm2 Aj

� 	 : ð21Þ

2.3.2. Fault Diagnosis Based on D-S Evidence Fusion. The com-
posite fault signals of rolling bearing obtained by multiple sen-
sors are processed by wavelet packet AR spectral entropy, and
the relevant eigenvalues are extracted. The composite fault
diagnosis is carried out by using ANVTPSO-SOM-BPNN,
and the output is used as evidence which is fused through D-
S evidence theory to construct a new fault diagnosis model.
The model makes full use of the advantages of D-S theory in
dealing with uncertain problems and the powerful nonlinear
processing ability of neural network and uses the self-learning
ability of neural network to solve the problem that it is difficult
to obtain the basic probability assignment in D-S theory. At the
same time, if there is no noise, the target recognition will be
easy, but in practice, the noise is inevitable. Therefore, using
multiple sensors for recognition and fusing the recognition
results of each sensor can improve the recognition rate.

The implementation process of the proposed diagnosis
model based on D-S evidence fusion is as follows.

Step 1. Obtain the target feature vector. The collected com-
posite fault signals of rolling bearing are extracted by wavelet
packet AR spectral entropy.

Step 2. Input the target eigenvector into ANVTPSO-SOM-
BPNN model.

Step 3. Normalize the diagnostic output of ANVTPSO-
SOM-BPNN model, with a range of ½0, 1�; calculate the error
En between the actual output and the expected output of the
diagnostic model, as shown in equation (22). The basic
probability value of each focus element is shown in equation
(23). The uncertainty degree mðθÞ of the diagnostic model is
shown in equation (24).

En =
1
2∗〠 tni − ynið Þ, ð22Þ

where tni is the expected value of the output neuron and yni
is the actual value of the output neuron.

m Aið Þ = y Aið Þ
Sn

, ð23Þ

where mðAiÞ is the basic probability of each focal element;
yðAiÞ is the diagnostic result; and Sn =∑n

i=1yðAiÞ + En.

m θð Þ = 1 − 〠
R

i=0
m Aið Þ: ð24Þ

Step 4. Obtain the final result by multi-information fusion
with evidence combination rules.

3. Experiments

3.1. Experimental Data Collection. In order to verify the
effect of the composite fault diagnosis method of rolling
bearing based on ANVTPSO-SOM-BPNN combined with
wavelet packet AR spectral entropy, the experimental test

Table 3: Decomposition level of wavelet packet.

Fault location Decomposition level

Inner ring J < 3:98
Outer ring J < 4:57
Rolling element J < 5:16
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is carried out on the comprehensive experimental platform
for fault diagnosis of mechanical transmission system, as
shown in Figure 4. The test-bed consists of three-phase var-
iable frequency motor, rotor bearing system, radial loading
device, parallel shaft gearbox, and magnetic particle brake.
The rolling bearing in the bearing pedestal on the left side
of the rotor is selected as the tested object. The used bearing

model is NSK6205, the number of rolling elements Z is 9,
the diameter of rolling elements d is 7.94mm, the pitch
diameter D is 39.36mm, and the contact angle α is 0°.

Set the motor speed at 1800 r/min and no load; install
the composite fault part at the bearing seat as the fault
source. Set the bearing pedestal and gearbox as two measur-
ing points for vibration signal acquisition, and the vertical

Table 4: Ratio of total energy and total energy entropy of wavelet packet (radial mean value of direct fault point).

Type sym8 db4 db5 db8 db10

Normal 0.7071 0.7075 0.7069 0.7072 0.7078

Inner ring and outer ring 0.8215 0.8218 0.8212 0.8216 0.8221

Inner ring and rolling element 0.8714 0.8710 0.8705 0.8715 0.8728

Outer ring and rolling element 1.0236 1.0220 1.0219 1.0237 1.0249

Table 5: Ratio of total energy and total energy entropy of wavelet packet (axial mean value of direct fault point).

Type sym8 db4 db5 db8 db10

Normal 1.0148 1.0118 1.0122 1.0149 1.0156

Inner ring and outer ring 1.1893 1.1892 1.1886 1.1891 1.1896

Inner ring and rolling element 0.9888 0.9871 0.9872 0.9893 0.9903

Outer ring and rolling element 1.0543 1.0529 1.0528 1.0544 1.0553

Table 6: Ratio of total energy and total energy entropy of wavelet packet (radial mean value of gearbox).

Type sym8 db4 db5 db8 db10

Normal 2.6329 2.6375 2.6346 2.6329 2.6332

Inner ring and outer ring 2.5379 2.5415 2.5385 2.5393 2.5401

Inner ring and rolling element 2.6280 2.6309 2.6279 2.6286 2.6282

Outer ring and rolling element 2.5099 2.5119 2.5096 2.5088 2.5097

Table 7: Ratio of total energy and total energy entropy of wavelet packet (axial mean value of gearbox).

Type sym8 db4 db5 db8 db10

Normal 3.2479 3.2479 3.2456 3.2472 3.2497

Inner ring and outer ring 2.8983 2.8962 2.8951 2.8985 2.9004

Inner ring and rolling element 3.2146 3.2151 3.2128 3.2148 3.2167

Outer ring and rolling element 3.1967 3.1949 3.1932 3.1968 3.1991

Table 8: Parameters of ANSVTPSO-SOM-BPNN.

ANVTPSO parameters Value SOM parameters Value BPNN parameters Value

Number of population particles x 20 Input node 9 Input node N 10

Spatial dimension a 199 Network competition layer 6 ∗ 6 Hidden layer node L 13

Position X [-1, 1] Topological function Hextop Output node M 4

Learning factor c1 Undetermined Distance function Linkdist Maximum training times 1000

Learning factor c2 Undetermined Classification stage learning rate 0.9 Training objectives 10-8

Inertia weight Wmax 0.9 Classification stage learning step 1000 Learning rate 0.001

Inertia weight Wmin 0.4 Learning rate in tuning phase 0.02 Hidden layer transfer function Tansig

Maximum number of iterations Tmax 20 Tuning phase domain distance 1 Output layer transfer function Purelin
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radial and axial direction corresponding to the measuring
points adopt the accelerators with a sensitivity of 103mV/g
(g is gravity acceleration). When collecting the vibration sig-
nal of composite fault of rolling bearing, the sampling time is
set as 1 s and the sampling rate is set as 10.24 kHz. A total of
300 groups of vibration acceleration signals are collected,
including the normal, inner ring crack and outer ring crack,
inner ring crack and rolling element pitting, and outer ring
crack and rolling element pitting, and each type has 75
groups. The signal samples are divided into a training set
and test set in 2 : 1.

The inner ring and outer ring are machined by using
electrical discharge machine (EDM), and the rolling element
has the 1 second pit corrosion by using TH-RFT300 high-
speed laser welding machine. The fault machining equip-
ment is shown in Figure 5. The finished fault bearings are
shown in Figure 6. The fault size is shown in Table 1, and
the fault characteristic frequency is shown in Table 2.

3.2. Experimental Data Analysis

3.2.1. Determining the Optimal Number of Wavelet Packet
Decomposition Layers. The purpose of wavelet packet
decomposition is to find fault characteristics. Therefore,
the signal frequency can be replaced by fault characteristic
frequency. The number of decomposition layers can be
calculated by equation (6), as shown in Table 3.

Table 3 shows that according to the characteristic fre-
quencies of different fault parts of the bearing, the best
values of wavelet packet decomposition layers are 3 to 5.
Because the composite fault signal is more complex than a
single fault case, in order to retain the useful information
of four types of bearing vibration signals to the greatest
extent, in the selection of unified decomposition layers, if
the number of decomposition layers exceeds 3, the inner
ring signal may be over decomposed, resulting in the loss
of useful information in the composite fault. After compre-
hensive consideration, the number of wavelet packet decom-
position layers in this paper is 3.

3.2.2. Determining the Optimal Wavelet Basis Function. 75
groups of 4 types of bearing data are selected, and the 5 types
of wavelet bases sym8, db4, db5, db8, and db10 are decom-
posed in 3 layers by wavelet packet and calculated according

to formula (12) to obtain the ratio of wavelet packet total
energy and total energy entropy corresponding to the 4 types
of bearing data. In order to eliminate the uncertain influence
caused by individual signals, the mean value of parameters
under various states is calculated. The corresponding calcu-
lation results are shown in Tables 4–7.

It can be seen from Tables 4 and 5 that the ratio of total
energy and total energy entropy of wavelet packet in 4 types
of bearings in the measuring points of bearing pedestal
(direct fault point) is db10, which is the largest in the data
of radial and axial measuring points. According to the prin-
ciple that the greater the ratio of total energy and total
energy entropy of wavelet packet, the better the decomposi-
tion effect of wavelet packet, db10 is regarded as the optimal
wavelet basis function of wavelet packet decomposition of 4
kinds of bearing signals in radial measuring points and axial
measuring points of bearing pedestal. It can be seen from
Tables 6 and 7 that the ratio of total energy of wavelet packet
to total energy entropy of four types of bearings in the gear-
box measuring points is db4 and db10, respectively, in the
radial and axial data. Similarly, db4 and db10 are taken as
the optimal wavelet basis function for wavelet packet decom-
position of 4 types of bearing signals in the gearbox radial
direction measuring points and axial measuring points.

3.3. Determination of the ANVTPSO-SOM-BPNN
Parameters. The parameters of ANVTPSO-SOM-BPNN
are shown in Table 8, where the spatial dimension of parti-
cles a [35] and the selection of the optimal number of nodes
L in the hidden layer are shown in equations (25) and (26),
respectively.

a =N ∗ L + L ∗M + L +M, ð25Þ

L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M +Nð Þ

p
+ ε, 0 < ε < 10: ð26Þ

3.4. Result Analysis. BPNN, SOM-BPNN, PSO-SOM-BPNN,
and ANVTPSO-SOM-BPNN were used for the composite
fault diagnosis of rolling bearing, respectively. The expected
output of the state categories of the tested rolling bearing are
normal (1 0 0 0), inner ring fault (0 1 0 0), outer ring fault (0
0 1 0), and rolling element fault (0 0 0 1).

In order to verify the advantages of the method proposed
in this paper, at first, optimize the wavelet basis function and
decomposition levels of wavelet packet AR spectrum energy
entropy, extract the characteristics of energy entropy, and
compare SOM-BPNN with standard BPNN to verify that
the series network has more advantages in convergence
speed than a single network. Second, the PSO-SOM-BPNN
is compared with SOM-BPNN to verify the optimization
effect of PSO on SOM-BPNN. Then, compare the above 3
schemes BPNN with ANVTPSO-SOM-BPNN, study the
series advantages of both unsupervised learning network
and supervised learning network, and verify the impact of
improved PSO on fault diagnosis results. Finally, the col-
lected multisensor data are used for fault diagnosis through
the ANVTPSO-SOM-BPNN constructed in this paper, and
the results are fused at the decision level through D-S evi-
dence theory, so as to improve the final fault diagnosis rate.

Table 10: Comparison of bearing fault diagnosis results (axial
direction of fault point).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 135 97

ANVTPSO-SOM-
BPNN

81 97

Table 9: Comparison of bearing fault diagnosis results (radial
direction of fault point).

Diagnostic method Iteration steps Diagnostic accuracy (%)

BPNN 12 100

10 Journal of Sensors



Through fault diagnosis of vibration signals of radial
measuring points and axial measuring points of bearing ped-
estal, the diagnosis results are shown in Tables 9 and 10,
respectively.

As shown in Table 9, in the radial measuring points of
the bearing pedestal, because they are close to the fault point,

there is less noise interference, and the fault characteristics
of the collected vibration signals are obvious. Therefore,
the fault diagnosis using standard BPNN can reach 100%,
and the number of iterative steps is only 12. Table 10 pre-
sents that in the axial measuring point, the standard BPNN
used for fault diagnosis reach 97%, and the number of
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Figure 7: Error curves of four kinds of diagnosis models (gearbox radial direction).
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Figure 8: Error curves of four kinds of diagnosis models (gearbox axial direction).
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iterative steps is 135. The ANVTPSO-SOM-BPNN method
proposed in this paper is used for diagnosis, with an accu-
racy of 97%, which is the same as the diagnosis result of
the standard BPNN, but the number of iterative steps is
81; compared with the former, it reduces 54 steps.

To sum up, the data collected at the measuring point of
the bearing pedestal has less interference and obvious fault
characteristics, so the basic diagnosis algorithm used in both
radial and axial direction data has a high accuracy. However,
in real working conditions, due to the influence of various
on-site factors, it is impossible to install sensors to collect
vibration signals close to the direct fault point. Therefore,
the indirect gearbox measuring point is more universal in
line with the actual working conditions.

Figures 7 and 8, respectively, demonstrate the mean
square error of the four diagnostic methods of the radial
measuring point and axial measuring point of gearbox with
the number of training times. The comparison of diagnostic
results of the composite fault of rolling bearing is shown in
Tables 11 and 12.

Figure 7 indicates that BPNN, PSO-SOM-BPNN, and
ANVTPSO-SOM-BPNN intersect near 50 steps and the error
of ANVTPSO-SOM-BPNN is the smallest before the intersec-
tion. After the intersection, the BPNN always keeps the mini-
mum error until the second intersection with ANVTPSO-
SOM-BPNN near 200 steps. After the second intersection,
ANVTPSO-SOM-BPNN converges faster. Before SOM-
BPNN intersects with BPNN, SOM-BPNN error is always the
largest, and it converges faster after the bifurcation point. From
the details of the iterative process, the four methods all have
fallen into the local minimum for a short time, resulting in
the increase of the total iterative steps, but ANVTPSO-SOM-
BPNN performs better than the other methods. Figure 8
displays that BPNN and SOM-BPNN intersect near 100 steps.

The error of BPNN before intersection is the smallest, but it is
easier to fall into the local minimum than SOM-BPNN, and the
convergence speed becomes slower and the total number of
iterative steps increases after intersection. Before the intersec-
tion of PSO-SOM-BPNN and ANVTPSO-SOM-BPNN, the
error is the smallest among the four methods, and the number
of relative falling into the local minimum is the least. After the
intersection, ANVTPSO-SOM-BPNN converges faster and
takes the least iterative steps to reach the training target.

Above all, ANVTPSO-SOM-BPNN has the advantages
of series connection of unsupervised learning network and
supervised learning network. Combined with ANVTPSO,
at the gearbox measuring points with more interference, it
can reach the training target faster for both radial and axial
vibration signal diagnosis, which proves that the proposed
new method has an obvious optimization effect.

Tables 11 and 12 show the quantitative data of the four
methods in the radial and axial measuring points of gearbox.
Table 11 reveals that the diagnostic accuracy of SOM-BPNN
is 3% higher than that of BPNN. Compared with SOM-BPNN,
the diagnostic accuracy of PSO-SOM-BPNN is improved by
2%, and the number of iterative steps is reduced by 87.
Table 12 suggests that the diagnostic accuracy of SOM-
BPNN is 2% higher than that of BPNN. Compared with
SOM-BPNN, the diagnostic accuracy of PSO-SOM-BPNN is
improved by 2%, and the number of iterative steps is reduced
by 133. In both radial and axial directions, the PSO learning
factor in PSO-SOM-BPNN is taken as c1 = c2 = 1:49445
according to experience, while the ANVTPSO-SOM-BPNN
adaptively adjusts the inertia weight and learning factor, so
that the inertia weight is taken as w = 0:9 in the initial stage
and w = 0:4 in the later stage, the radial learning factor is c1
= 1:4175 and c2 = 2:5825 in the later stage, and the axial learn-
ing factor is c1 = 1:6984 and c2 = 2:3016 in the later stage. As
mentioned above, the axial learning factor of bearing pedestal
is c1 = 1:5736 and c2 = 2:4264 in the later stage. Both the iner-
tia weight and learning factor meet the needs of different
stages of the algorithm through adaptation. After many tests,
the accuracy of ANVTPSO-SOM-BPNN is higher than other
methods, and the number of iterative steps also has great
advantages. Table 11 presents that in the radial direction, the
diagnostic accuracy reaches 92% at step 240. Table 12 shows
that in the axial direction, the diagnostic accuracy reached
96% at step 182.

Tables 13 and 14 display the partial basic probability dis-
tribution values of the radial and axial measuring points of
gearbox after the output results of the ANVTPSO-SOM-
BPNN model are processed according to formula (22) and
formula (23) and the uncertainty degree of the diagnostic
model according to equation (24). Table 15 presents the par-
tial basic probability distribution values and uncertainty
degree of the two measuring points after D-S evidence
fusion. Table 16 indicates that the diagnosis results of the
newly proposed ANVTPSO-SOM-BPNN method in this
paper at the radial and axial measuring points of gearbox
are fused at the decision level, and the accuracy of fault diag-
nosis reaches 100%. The diagnostic accuracy after fusion was
improved by 8% and 4% compared with the radial and axial
ANVTPSO-SOM-BPNN in the gearbox, respectively. When

Table 11: Comparison of bearing fault diagnosis results (gearbox
radial direction).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 448 82

SOM-BPNN 389 85

PSO-SOM-BPNN 302 87

ANVTPSO-SOM-
BPNN

240 92

Table 12: Comparison of bearing fault diagnosis results (gearbox
axial direction).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 576 91

SOM-BPNN 415 93

PSO-SOM-BPNN 282 95

ANVTPSO-SOM-
BPNN

182 96
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compared with the diagnostic accuracy of BPNN in the
radial direction of the fault point, it also reaches 100%.
And compared with the diagnostic accuracy of ANVTPSO-
SOM-BPNN in the axial direction of the fault point, it is
improved by 3%. In conclusion, it is proved that the method
proposed in this paper can achieve high diagnosis accuracy
even at the gearbox measuring point far away from the fault
point.

4. Conclusions

(1) The method of wavelet packet AR spectrum energy
entropy can effectively extract the composite fault
feature components in the vibration signal of rolling
bearing and can better eliminate interference and
noise. The optimal selection of wavelet packet
decomposition layers and basis function in wavelet
packet AR spectrum energy entropy can avoid the
external interference caused by blind selection

(2) The adaptive inertia weight and learning factor are
introduced into the standard PSO algorithm to meet

the needs of the algorithm for parameters in different
stages, and the velocity term is discarded to avoid the
influence of the initial particle velocity on the conver-
gence speed and solution accuracy of the algorithm,
which significantly improves the search speed and
convergence accuracy of the algorithm compared with
the conventional method

(3) Build ANVTPSO-SOM-BPNN diagnostic model.
SOM-BPNN avoids the influence of the limitations
of a single algorithm on the diagnosis results, so that
the primary network can promote the training of the
secondary network. Then ANVTPSO is used to opti-
mize the threshold and weight of SOM-BPNN to
avoid falling into the local optimal solution, so as
to improve the diagnostic accuracy

(4) In the actual working condition, it is common for the
same rolling bearing to coexist multiple faults, and
the installation scheme of sensors also have a great
impact on the accuracy of diagnosis. In this paper, both
the data of fault point and far away from fault point are
collected by multiple acceleration sensors, and the pro-
posed method based on optimal wavelet packet AR
spectrum energy entropy combined with ANVTPSO-
SOM-BPNN is used formulti-information fusion diag-
nosis. By comparing the diagnosis results of two mea-
suring points, it is found that even at the gearbox
measuring point far away from the direct fault point,
the diagnosis results can achieve high accuracy and
effectively diagnose the composite fault of rolling bear-
ing under noise

Table 13: Basic probability distribution value of ANVTPSO-SOM-BPNN (gearbox radial direction).

Type m1 A1ð Þ m1 A2ð Þ m1 A3ð Þ m1 A4ð Þ m1 θð Þ
Normal 0.9373 0.0416 0.0200 0 0.0011

Inner ring and outer ring 0.0764 0.8403 0.0764 0 0.0069

Inner ring and rolling element 0.0212 0.0422 0.9354 0 0.0012

Outer ring and rolling element 0.0839 0 0.0840 0.8235 0.0086

Table 14: Basic probability distribution value of ANVTPSO-SOM-BPNN (gearbox axial direction).

Type m2 A1ð Þ m2 A2ð Þ m2 A3ð Þ m2 A4ð Þ m2 θð Þ
Normal 0.7670 0 0.2050 0.0006 0.0274

Inner ring and outer ring 0 0.9994 0.0004 0.0002 0

Inner ring and rolling element 0.1051 0 0.8887 0 0.0062

Outer ring and rolling element 0.0000 0.0059 0.0117 0.9823 0.0001

Table 15: Basic probability distribution value after D-S evidence fusion.

Type m A1ð Þ m A2ð Þ m A3ð Þ m A4ð Þ m θð Þ
Normal 0.9920 0.0015 0.0065 0 0

Inner ring and outer ring 0 1.0000 0 0 0

Inner ring and rolling element 0.0030 0.0003 0.9967 0 0

Outer ring and rolling element 0 0.0001 0.0013 0.9986 0

Table 16: D-S evidence fusion diagnosis results.

Diagnostic method
Diagnostic accuracy

(%)

ANVTPSO-SOM-BPNN (radial &
axial)

100
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