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In this paper, we propose a robust and reliable face recognition model that incorporates depth information such as data from
point clouds and depth maps into RGB image data to avoid false facial verification caused by face spoofing attacks while
increasing the model’s performance. The proposed model is driven by the spatially adaptive convolution (SAC) block of
SqueezeSegv3; this is the attention block that enables the model to weight features according to their importance of spatial
location. We also utilize large-margin loss instead of softmax loss as a supervision signal for the proposed method, to enforce
high discriminatory power. In the experiment, the proposed model, which incorporates depth information, had 99.88%
accuracy and an F1 score of 93.45%, outperforming the baseline models, which used RGB data alone.

1. Introduction

LiDAR, short for light detection and ranging, is a remote
sensing technology similar to radar. The difference is that
radar uses radio waves to detect its surroundings, whereas
LiDAR uses laser energy. When a LiDAR sensor directs a
laser beam at an object, it can calculate the distance to the
object by measuring the delay before the light is reflected
back to it, making it possible to extract depth information
for an object and display it in the form of a point cloud or
depth map. Not only can LiDAR sensors estimate an object’s
range but also they can measure its shape with high accuracy
and spatial resolution. Furthermore, LiDAR sensors are
robust under various lighting conditions (day or night, with
or without glare and shadows), thereby overcoming the dis-
advantages of other sensor types. Because of its superiority,
LiDAR has been widely used in a variety of applications,
including autonomous vehicles, river surveys, and pollution

modeling. Recently, products launched by technology com-
panies often come equipped with a LiDAR scanner, making
it more convenient to obtain depth information for objects
in the form of 3D point clouds, as shown in Figure 1.

A face recognition system is a computer-assisted applica-
tion that automatically determines or verifies an individual’s
identity using digital images. In practice, the system verifies
the person’s identity by comparing intensity images of the
face captured by a camera with prestored images. It can be
used for biometric authentication and is emerging as a crit-
ical authentication method for information and communi-
cations technology (ICT) services. Security-based
applications are spreading to various fields; they include
employee attendance checks, airport surveillance, and bank
transactions. A face recognition system can provide a
straightforward yet convenient authentication process, as it
can operate using just an RGB image captured from a per-
son’s face. However, this simplicity makes it vulnerable to
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spoofing attacks [1, 2] because pictures of people’s faces can
easily be obtained on social media platforms without their
consent, and these can be used by someone with malicious
intent to steal a person’s identity. To prevent such face
spoofing attacks, we propose a robust face recognition
method that uses both RGB images and depth information
such as those extracted from point clouds and depth maps
produced by a LiDAR scanner.

Face recognition based on RGB images is already widely
acknowledged for its promising performance. However, the
determination of whether a face is real or fake, known as
liveness detection, cannot be performed simultaneously.
Distinguishing in terms of liveness between RGB images
captured directly from people’s faces using a camera and
digital images from other sources used for face spoofing
attacks remains challenging because the two images are just
one type of input used by the recognition system. A point
cloud and depth map, however, can be obtained only by
direct capture from people’s faces using sensors such as
LiDAR. In addition, depth information is three-
dimensional. In other words, spoofing attacks using 2D dig-
ital images are immediately identifiable by their lack of 3D
information.

The main feature of the proposed method is a face recog-
nition model that incorporates depth information into RGB
images. The method uses a device equipped with a LiDAR
sensor to collect the supplementary data. Because the
method utilizes point cloud and depth data, it solves the live-
ness detection problem of the existing 2D face recognition
method. We also hypothesize that a deep learning frame-
work using depth information can demonstrate higher per-
formance on the classification model for face recognition
systems.

According to the developers of the SqueezeSeg3 model
[3], point cloud data present strong spatial priors, and their
feature distributions vary according to spatial location. Thus,
we built an attention-based deep convolutional model based
on SqueezeSeg3, called SqueezeFace. Its architecture is
shown in Figure 2.

Based on previous studies [4–9], we additionally adopted
large-margin loss as a supervision signal that enables the
model to learn highly discriminative deep features for face
recognition by maximizing interclass variance and minimiz-
ing intraclass variance during the training phase. In the test
phase, facial embedding features are extracted 5using our
proposed convolution network for face verification. The
method can then verify an identity by calculating the cosine

similarity between embedding features. The proposed
method delivers performance superior to that of existing
methods that use only RGB images. The remainder of this
paper is organized as follows. In Section 2, related work is
reviewed. The structure of the proposed method is described
in detail in Section 3. The experimental results are discussed
in Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

Convolutional neural networks (CNNs) are powerful models
that play an essential role in learning feature representations
that best describe the given domain while maintaining the
spatial information of an image. Because of their excellence
in learning important patterns, CNNs have achieved break-
throughs on a variety of computer vision tasks such as those
involved in image classification, object detection, and
semantic segmentation [10–16].

Attention-based CNNs in particular have attracted con-
siderable interest and have been extensively exploited to
improve a model’s performance on numerous computer
vision tasks by integrating attention modules with the exist-
ing CNN architecture [3, 17–20]. The attention module
allows the model to selectively emphasize important features
and discard less informative ones. Hu et al. [17] proposed
the Squeeze-and-Excitation (SE) block, which learns the
relationship between the channels of its convolutional fea-
tures and adaptively recalibrates channel weights according
to the relationship learned. Specifically, the SE block extracts
a representative scalar value for each channel using global
average pooling (GAP) and assigns a weight for each chan-
nel based on the interdependency between channels through
the excitation process. Park et al. [19] introduced the simple
yet efficient Bottleneck Attention Module (BAM), which
generates attention maps by separating the process of infer-
ring a attention map into a channel attention module and a
spatial attention module and configures them in parallel.
Woo et al. [20] presented the lightweight Convolutional
Block Attention Module (CBAM), which sequentially
applies channel and spatial attention modules to emphasize
important elements in both the channel and spatial axes.

Exploiting face representation embedding features
extracted using a deep CNN is one of several methods used
in face recognition tasks [9, 21–24]. Face recognition using a
deep CNN involves two essential preprocessing steps: face
detection and face alignment. These two tasks should be per-
formed jointly because they are inherently correlated [25].

Real Apple’s device 2D RGB image Depth data Point cloud data 

Figure 1: Capture of RGB image, depth, and point cloud data using a LIDAR scanner-equipped device.
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Softmax loss [26] is commonly used as a loss function to
supervise the face recognition model and was used in Dee-
pID [21] and DeepFace [22]. However, recent studies have
indicated that softmax loss is not suitable for face recogni-
tion tasks owing to its inability to optimize the feature
embedding to enforce strong similarity within positive class
samples and diversity across negative class samples, which
can deteriorate model performance on face recognition. Sug-
gested alternatives included functions based on Euclidean
distance, such as contrastive loss, triplet loss, and center loss,
to alleviate such constraints while strengthening discrimina-
tive features.

Contrastive loss was proposed as the loss function in
DeepID2 [21] and DeepID3 [27]. Generally, this loss
requires pairs of inputs, and it will adjust the distances
between embedding features differently depending on
whether the pair belongs to the positive class (for an intra-
class pair) or the negative class (for an interclass pair). To
increase the learning efficiency of contrastive loss, triplet loss
was proposed in FaceNet [23]. Unlike contrastive loss, triplet
loss requires three inputs, two of which are in the same class
and the third belongs to a different class. This loss function
reduces the distance between the intraclass pairs and
increases the distance between the interclass pairs. Despite
being used in many metric learning methods because of
its excellent performance, triplet loss requires an expen-
sive preprocessing step in constructing input data for
the distance comparison. Thus, center loss was proposed
to learn the centroid of the features of each class and
penalize the distances between the centroids and their
corresponding class features. This loss not only handles
the complicated input data preprocessing step but also
boosts performance.

In addition to the losses described above, there exists a
series of losses that incorporate a large angular margin to
strengthen discriminatory power on classification, decrease
the distance between features within the same class, and
increase the distance between features from different classes
[7–9]. We discuss these losses in detail in Section 3.

Traditional face recognition methods utilize only RGB
data as the input. Such methods perform relatively well,
but they present a disadvantage with regard to liveness in
that the model cannot distinguish whether an image has
been captured directly from a person’s face or is a digital
image obtained from other sources. This characteristic
makes such methods vulnerable to face spoofing attacks.
Recent studies have sought to mitigate this problem by add-
ing depth information in the form of point cloud and depth
data as inputs. Fuseseg [28], Fusenet [29], and Chinet [30]
have been proposed for boosting model performance by
effectively fusing such data collected from various sensors.
Each model has different methods for data fusion, and each
embedding feature created is fused at the layer level.

3. Proposed Method

In this section, we describe the proposed face recognition
method, which uses not only RGB images but also depth
and point cloud data (3D coordinates) extracted from
LiDAR sensors. We constructed the proposed model with a
data integration network that processes data serially from
different sensors. Because it is imperative to emphasize fea-
tures that will influence the model’s performance, the atten-
tion mechanism was adopted to allow the model to capture
and best exploit important features from the point cloud.
For the operational technique, we incorporated the spatially
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Figure 2: Integration of the attention block in the SqueezeFace architecture.
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adaptive convolution (SAC) block of SqueezeSegv3 into a
data integration network to process our data and extract fea-
tures from them.

In addition, we replaced softmax loss with large-margin
loss for supervising the feature embedding process to
increase similarity within the same class and discrepancy
between different classes. We discuss in detail the construc-
tion of the proposed data integration network and the large-
margin loss function in Sections 3.1 and 3.2, respectively.

3.1. SqueezeSegv3. Most face recognition models are based
on deep convolutional neural networks (DCNNs) to have
discriminatory power for classification. Facial feature repre-
sentations can be extracted with standard convolution as

Y m, p, q½ � = σ 〠
i,j,n

W m, n, i, j½ � × X n, p + î, q + ĵ
� �

 !

, ð1Þ

where Y ∈ RO×S×S and X ∈ RI×S×S are the output and input
tensors; W ∈ RO×I×K×K is the convolutional weight matrix,
in which K is the convolutional kernel size; O and I are
the output and input channel sizes; S represents the image
size; and σð·Þ is a nonlinear activation function such as ReLU
[31]. In this method, î and ĵ are defined as î = i − bK/2c and
ĵ = j − bK/2c. As mentioned with regard to the SqueezeSegv3
model [3], standard convolution is based on the assumption
that the distribution of visual features is invariant to the spa-
tial location of the image. This assumption is largely true in
the case of RGB images; thus, a convolution uses the same
weight for all input locations. However, this assumption
cannot be applied to point cloud data as X-coordinate point
cloud data present very strong spatial priors, and the feature
distribution of the point cloud varies substantially at differ-
ent locations. In consideration of this fact, the SAC block,
which is designed to be spatially adaptive and content aware
using 3D coordinates of a point cloud, is proposed to apply
different weights for different image locations as follows:

Y m, p, q½ � = σ 〠
i,j,n

W X0ð Þ m, n, p, q, i, j½ � × X n, p + î, q + ĵ
� �

 !

:

ð2Þ

In SqueezeSegv3 [3], Wð·Þ ∈ RO×I×S×S×K×K is a spatially
adaptive function of the raw input X0, which depends on
the location (p,q). In this method, X0 is only the raw input
point cloud. Wð·Þ, the spatially adaptive function of Squee-
zeFace, is shown in detail in the lower part of Figure 2.

To process our data, which are gathered from different
sources, an appropriate data fusion model is required. Seven
channels are constructed for the input data by stacking RGB,
depth, and point cloud data, which are collected from differ-
ent sensors and possess different characteristics. To obtain
attention map A, the point cloud data are fed into a 7 × 7
convolution followed by a sigmoid function. Next, this
attention map A is combined with the input tensor X. Then,
a standard convolution with weight W is applied to the
adapted input. For the embedding network, we employ the

well-known ResNet34 architecture [32]. The ResNet model
reduces the image size as it passes through each layer. The
downsampling process for the point cloud has difficulty in
properly utilizing spatial coordinate information because of
the small size of our dataset. Therefore, the SAC block is
used at the initial layer, as shown in Figure 2. The network
successfully maps the face input to face representation
embedding features, combining the three types of data.

3.2. Large-Margin Loss. The face recognition task is a multi-
class classification, defined as the problem of classifying
images into one of certain classes. The most commonly used
loss for multiclass classification is softmax loss, which is a
softmax activation function followed by cross-entropy loss
[33]. The softmax activation function outputs the probability
for each class, whose sum is one, and the cross-entropy loss
is the sum of the negative logarithms of these probabilities,
defined as

L1 = −
1
N
〠
N

i=1
log

eW
T
yi
xi+byi

∑n
j=1e

WT
j xi+bj

, ð3Þ

where xi is the feature vector of sample data, yi represents
the truth class corresponding to xi, and W and b are weight
and bias terms, respectively. Despite being widely used, soft-
max loss has some limitations as it does not strictly enforce
higher similarity within the same class and discrepancy
between different classes. Thus, traditional softmax loss
may create a performance gap for face recognition when
intraclass variation is high because of factors such as age
gaps, differences in facial expression, and variations in pose
(left, right, or frontal). To enable the model to circumvent
this problem, A-softmax loss was proposed as a reformula-
tion of the traditional softmax loss in SphereFace [5] as fol-
lows:

L2 = −
1
N
〠
N

i=1
log

e∥xi∥cos mθyi ,ið Þ
e∥xi∥cos mθyi ,ið Þ +∑ j≠yi

e∥xi∥cos θ j,ið Þ , ð4Þ

where m is the angular margin and θyi ,i is the angle between

the vectors Wyi
and xi. A-softmax loss adopts WT

yi
xi as the

linear form, which is expressed as ∥Wyi
∥∥xi∥cos ðθyi ,iÞ. This

loss enables metric learning by constraining the classification
weight’s norm to 1 through normalization, setting the bias to
0 and incorporating the angular margin adjusted via param-
eter m to capture discriminative features with clear geomet-
ric interpretation.

Then, the CosFace model [8] was proposed, which
includes a large-margin cosine loss function that normalizes
both weights and features by L2 normalization to eliminate
radial variations and adds a quantitative m value, a fixed
parameter used to control the magnitude of the cosine
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margin. The overall loss function can be expressed as

L3 = −
1
N
〠
N

i=1
log

es cos θyi ,ið Þ−mð Þ
es cos θyi ,ið Þ−mð Þ +∑j≠yi

es cos θj,ið Þð Þ , ð5Þ

where s is a rescale parameter, used by the loss function to
rescale the weights and features after normalizing them.

ArcFace [9] adds an additive angular margin penalty m
between weights and features. This penalty is equal to the
geodesic distance margin penalty in the normalized hyper-
sphere and thus is named ArcFace. The loss function is for-
mulated as follows:

L4 = −
1
N
〠
N

i=1
log

es cos θyi ,i+mð Þð Þ
es cos θyi ,i+mð Þð Þ +∑ j≠yi

es cos θ j,ið Þð Þ : ð6Þ

Thus, we can supervise our model using additive angular
margin loss that combines the margin penalties of Sphere-
Face [5], CosFace [8], and ArcFace [9], which demonstrates
the best performance, as follows:

L5 = −
1
N
〠
N

i=1
log

es cos m1θyi ,i+m2ð Þ−m3ð Þ
es cos m1θyi ,i+m2ð Þ−m3ð Þ +∑j≠yi e

s cos θ j,ið Þð Þ ,

ð7Þ

where m1, m2, and m3 are the angular margin parameters,
each represented as m in the loss functions described above.
Our main task is to identify a class for each input identity.
By adopting the proposed additive angular margin loss, the
proposed model can increase the similarity of positive clas-
ses and enforce a wide diversity of negative classes in metric
learning. The proposed large-margin loss can generate high-
quality embedding features from our data, enabling high-
accuracy classification with both the training dataset and
the unseen test dataset.

4. Numerical Experiments

4.1. Datasets. The face dataset consisted of 784 face scans
from 83 Korean individuals. The face data were captured
using Apple’s latest device equipped with a LiDAR scanner.
Specifically, the device was equipped with three cameras
(main, wide, and telephoto) and a LiDAR scanner for cap-
turing both RGB image and depth information. ARKit can
be used to connect with the scanner on the Apple device
and process the depth and point cloud (3D coordinate) data.
ARKit recently introduced a new depth API available only
for devices equipped with a LiDAR scanner and provides
several methods to access depth information collected from
LiDAR scanners. The LiDAR scanner allows this API to
obtain per-pixel depth information of a person’s face and
generate 3D coordinates of the point cloud by setting the
parameters for the device. We modified ARKit’s sample code
and set up the application to simultaneously store RGB and
point cloud data within one scene. We installed this modi-
fied app on the device and collected data through the app.

4.2. Experiment Setup. We trained three different models to
compare their performance. The first model used only
RGB data. The second model used three types of sensor data
(RGB, depth, and point cloud) with three different charac-
teristics, and the third model was the SqueezeFace model
that uses the SAC block on the three types of sensor data.
All three models used the ResNet34 architecture [32] and
large-margin loss [6]. The ResNet34 model is pretrained
using a facial image dataset of 400 Korean individuals, pro-
vided by AI Hub (https://aihub.or.kr/). For the three sensor
data models, pretrained weights from ResNet34 were used
as the weights of the RGB data, and the weights for the point
cloud and depth data were initialized using the Xavier
initializer.

4.3. Experiment Results. We split our face dataset into a
training set and a test set, and the sensor data were config-
ured as three types (RGB, depth, and point cloud). In addi-
tion, to evaluate the face verification performance, we
constructed a face verification dataset with pairs of face
images from the test set. Accuracy, precision, and recall were
used as metrics to measure the model’s performance for face
verification. Accuracy is the ratio of the number of correct
predictions to the total number of inputs. Precision is the
ratio of the number of true positive predictions to the total
number of the model’s predicted positive values, and recall
is the ratio of the number of true positive predictions to
the number of all positive samples. These three definitions
are represented as

Accuracy = TP + TN
TP + TN + FP + FN

,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

ð8Þ

where TP, TN, FP, and FN denote true positive, true

Table 1: Comparison of models’ performance on the test set.

Model Accuracy F1 score

RGB-only, ResNet34 0.9979 0.8995

Our data, ResNet34 0.9980 0.9056

Our data+SqueezeFace 0.9988 0.9345

Table 2: Face verification performance comparison on three-shot
learning between the RGB-only model and proposed three-
sensor-data-type model.

Statistic RGB RGB + depth + point cloud
Number of output classes 83 83

Number of training images 248 248

Number of testing images 536 536

Testing accuracy 0.9973 0.9977

Testing F1 score 0.8884 0.9036

Best threshold 0.7255 0.8026
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negative, false positive, and false negative, respectively. For
the face verification dataset, the number of interclass combi-
nations was much greater than the number of intraclass
combinations. Because the intraclass and interclass counts
were considerably imbalanced, the F1 score—the harmonic
mean of precision and recall—was used as the evaluation
metric for face verification:

F1 score = 2 ×
Precision × Recall
Precision + Recall

: ð9Þ

4.3.1. Analysis of Face Verification Results of the Proposed
Method. According to the experimental results, shown in
Table 1, the model using the three types of sensor data out-
performed the model using only RGB data, demonstrating
that employing depth information can enhance rich facial
representation. More importantly, the proposed Squeeze-
Face model, with the added SAC attention block, achieved
the best accuracy and F1 score. This result shows that the
proposed model learned well the face points with high
importance by actively utilizing the point cloud data with
different distributions according to the spatial location. The
intraclass variance due to pose variations and age gaps sig-
nificantly increases the angle between positive pairs and
therefore can increase the best threshold for face verification
on test data. However, if the train data for each identity are
limited, making the intraclass variance small, it is difficult to
increase the best threshold for face verification on test data.
A low threshold used in the evaluation of face verification
indicates a low reliability of the model. The proposed model
addresses this problem by adding point cloud and depth
data to the RGB data.

The results for face verification performance on three-
shot learning are compared in Table 2. Three-shot learning

is learning that takes place using only three training samples.
The best threshold is the threshold with the maximum F1
score. The model using the three types of sensor data shows
higher accuracy, a higher F1 score, and an increase in the
threshold than the RGB-images-only model. This demon-
strates that by making use of supplementary information
such as point cloud and depth data, the proposed model
can increase intraclass variance and, as a result, increase
the best threshold for face verification.

4.3.2. Analysis of Cosine Similarity on Three-Shot Learning of
the Proposed Method. We examined the cosine similarity for
various facial expressions on three-shot learning, with
results as shown in Table 3. The proposed model produced
better similarity values between positive pairs than the RGB-
images-only model, even with a variety of facial expressions.
Because the proposed method uses more information of face
by adding depth and point cloud, the intraclass variance of
the model can increase the angle between positive pairs.
Therefore, the model can increase the cosine similarity, and
the higher cosine similarity can increase the best threshold
on face verification. This result demonstrates that adding
depth and point cloud data enables the model to learn impor-
tant facial features for face verification more effectively than
the model with only RGB data. In addition, despite the differ-
ence between the same identities according to pose variations,
the proposed method can distinguish the identity well in the
test data by adding depth and point cloud data.

5. Conclusion

This paper has proposed a face recognition approach that
considers depth information using point cloud data. By
using depth information, false facial verification using a face

Table 3: Cosine similarity for various facial expressions.

Description Pair1 Pair2 Pair3 Pair4 Pair5

RGB 0.9118 0.7450 0.7734 0.5164 0.5558

RGB + depth + point cloud 0.9664 0.9050 0.8781 0.8258 0.8484
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photo or video of an authorized person can be avoided,
thereby increasing the reliability of the face recognition sys-
tem. The method incorporates the SAC block based on the
attention mechanism to capture important features and
weight them to enhance model performance. In addition,
we used a modified loss function constructed by adding a
large margin to reinforce high discriminatory power for face
recognition applications [34]. The proposed method delivers
a considerable performance improvement over the baseline
models and uses a higher threshold for face verification
when subjected to an increase in intraclass variance.
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