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Objective. This study is aimed at exploring the application effect of duodenoscopy assisted by visual sensing technology based on
convolutional neural network (CNN) segmentation algorithm in the diagnosis and treatment of gallbladder stones, so as to
provide safer and more effective treatment methods for patients with gallstones. Methods. 188 patients with gallstones and
choledocholithiasis who were admitted to our hospital from January 2016 to April 2021 were selected as the research
objects. Based on whether the patients were willing to use AI-assisted visual sensing technology during the treatment
process, all patients were divided into two groups, namely, the AI group and the conventional group. Various surgical
indicators of patients in two groups were compared. Results. The precision, recall, and mean intersection ratio of the M-
Unet-based segmentation algorithm were 94.56%, 96.56%, and 98.92%, respectively. In the AI group, the operation time
(2:74 ± 0:45 h), postoperative drainage tube placement time (4:31 ± 1:15 d), time required for recovery of gastrointestinal
function (1:74 ± 0:54 d), time required to get out of bed (1:14 ± 0:55 h), and time spent in hospital (9:94 ± 1:45 d) were all
shorter compared with those in the conventional group, which were 3:21 ± 0:32 h, 12:14 ± 2:98 d, 2:89 ± 0:67 d, 2:09 ± 0:87 h
, and 14:14 ± 1:15 h, showing statistical differences (P < 0:05); the intraoperative blood loss (79:74 ± 6:45mL) and residual
status of stones (0%) in the AI group were much lower than those in the conventional group (P < 0:05). In addition, the
incidence of complications (10.26%) and the indicators of postoperative gallbladder function of patients in the AI group
were lower greatly than those in the conventional group (P < 0:05). Conclusion. The visual sensing technology assisted by
the CNN algorithm showed a good effect on image processing, and endoscopic technology can effectively improve the
treatment effect of gallbladder stones combined with choledocholithiasis with the aid of this technology. Therefore, the
conclusion in this study proved that visual sensing technology based on intelligent algorithms showed a good future in the
medical field.

1. Introduction

The current society is in an era of rapid development of
technology and civilization. People’s living standards and
quality of life have been greatly improved, which is a benefi-
cial aspect of social development. However, it is not only the
beneficial side that develops along with it, for example, var-
ious diseases also closely follow. Nowadays, people do not
pay enough attention to dietary hygiene and dietary rules,
so the probability of occurrence of digestive system diseases
is becoming higher and higher. These digestive system dis-
eases include gallbladder and biliary system diseases, espe-

cially stone diseases of the gallbladder and biliary tract [1,
2]. According to relevant research statistics, the incidence
of gallbladder and biliary calculus diseases is basically about
10% among the adult population in China; and in this type
of disease, the probability of patients with gallbladder stones
combined with choledocholithiasis is about 12%~15% [3].
Therefore, a large number of clinical applications have been
done to provide patients with gallbladder stones combined
with choledocholithiasis with more convenient and effective
treatment methods. After continuous efforts in researches of
many experts and researchers, endoscopic technology has
been introduced into the clinical treatment of gallbladder
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stones and has been widely applied in clinical medicine
today. However, laparoscopic technology and duodeno-
scopy are often used clinically in the treatment of this
disease due to the complicated condition of gallbladder
stones combined with choledocholithiasis [4]. A duodeno-
scope is mostly used to guide the implementation of bile
duct stone removal. It refers to the method of pulling the
bile duct stones out of the bile duct using net baskets,
balloons, and other instruments under a duodenoscope.
The main indications are choledocholithiasis, hepatolithia-
sis, and gallbladder stones [5]. Laparoscopy is mostly
used to guide gallbladder resection. The main operation
method is to insert a special catheter from the abdomen
into the peritoneal cavity and then infuse about 2~5L
of carbon dioxide into the peritoneal cavity. When the
abdominal pressure reaches a certain level, three incisions
of 0.5~1.5 cm are made in the abdomen to dissect the tri-
angle structure of the gallbladder. Then, the cystic duct
and cystic artery are separated and clamped, and then,
the entire gallbladder including the stones is resected [6,
7]. Although the treatment effect has made people feel
satisfied, there is still a big gap between the effect
observed through the display mirror and the effect under
direct eyes. With the rapid development of science and
technology these years, the artificial intelligence (AI) tech-
nology has been widely used in various fields, among
which AI and visual sensing technology have developed
rapidly. The main function of this technology is to add
perception technology to the visual sensor so that it can
segment, detect, and recognize the network architecture
of the target object [8]. The basic theory of this technol-
ogy is the convolutional neural network (CNN) algorithm
[9], and visual sensing technology assisted by the CNN
system has gradually reached or exceeded the recognition
level of humans. In the past, this technology was mostly
used for segmentation and identification of commodity
goods [10] and measurement of pitting of gears in shoot-
ing ranges [11]. Its application in the field of medical
examination is relatively small. To provide a safer and
more effective treatment for patients with gallstones, the
patients with gallstones and choledocholithiasis were
selected as the research objects in this study. In addition,
the laparoscopic technology, duodenoscopy, and visual
sensing technology assisted by CNN segmentation algo-
rithm were combined for research and analysis of the
treatment of gallbladder stones combined with common
bile duct stones, hoping that this method can give
research basis for clinical treatment.

2. Materials and Methods

2.1. Visual Sensing Technology Based on CNN. The composi-
tion of the CNN system is based on the traditional neural
network. CNN is a recognition process that gradually
develops from a part to a whole in the aspect of biometric
recognition [12]. Compared with the traditional neural net-
works [13, 14], the CNN system shows excellent features
such as local receptive fields, shared weights, and multicore
convolution. The existence of above advantages can not only

greatly reduce the parameters in the neural network but also
obtain different levels of characteristic information through
the hierarchical network structure. The specific structure of
the CNN system is shown in Figure 1. Its main components
can be divided into a convolutional layer, an activation func-
tion, a convergence layer, and a fully connected layer. Its
own parameters were optimized using an iterative optimiza-
tion algorithm, and the network structure was converged, so
as to further achieve the convergence of target loss function.
Next, each layer of CNN would be explained and described
in detail.

The convolutional layer is a type of local connection,
which can reduce the number of model parameters. Each
network neuron in the convolutional layer will only be
connected to the local receptive field of the previous
layer. However, the size of the local receptive field is
mainly determined by the parameter size of the convolu-
tion kernel. The representative way of the two-
dimensional convolution in the convolutional layer in
CNN was as follows:

s i, jð Þ = Q ∗Wð Þ i, jð Þ =〠
m

〠
n

Q i +m, j + nð ÞW m, nð Þ: ð1Þ

In the above equation, sði, jÞ referred to result of the
convolution of the target image; ðQ ∗WÞ was multiplica-
tion of the local area Q of the target image and the ele-
ments of each position in the convolution kernel W
matrix; ði, jÞ represented the pixel at the target position
of the image; and m and n referred to the number of
parameters of the local area Q and the convolution kernel
W of the target image, respectively.

The activation layer is generally connected after the con-
volutional layer, and the data is nonlinearly transformed by
the activation function in the activation layer. The more
commonly used activation functions include sigmoid activa-
tion function, tanh activation function, and ReLU activation
function. The specific expressions of these three activation
functions were as follows:

f xð Þ = 1
1 + e−x

, ð2Þ

f xð Þ = tanh xð Þ, ð3Þ
f xð Þ =max x, 0ð Þ: ð4Þ

In the expression equations of the above three activation
functions, the ReLU activation function with relatively good
effect was adopted in this study.

The main function of the pooling layer itself is to
perform lower-level sampling on the feature map, so as
to reduce the parameters required for calculation and
overfitting and further improve the stability of CNN.
There were two main pooling methods adopted in this
study, namely, regional maximum pooling and average
pooling.

The Softmax classifier belongs to a multinomial logistic
regression model, which can be classified as a log-linear
model. Most of the time, it is used in binary classification.
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The specific calculation process of the Softmax classifier can
be expressed as follows:

P Y xjð Þ = p wk ⋅ xð Þ
1 +∑K−1

k=1 p wk ⋅ xð Þ
, k = 1, 2, 3,⋯, K − 1, ð5Þ

P Y xjð Þ = 1
1 +∑K−1

k=1 p wk ⋅ xð Þ
, k = K , ð6Þ

P Y xjð Þ = p wk ⋅ xð Þ
∑K−1

k=1 p wk ⋅ xð Þ
, k = 1, 2, 3,⋯, K: ð7Þ

In the above three equations, W referred to the required
parameter model; q was an input vector; PðY ∣ qÞ referred to
the probability of predicting the category of q as category Y ,
and the possible value of Y was k = 1, 2, 3,⋯, K . The dataset
required for training was given as U = fðx1, y1Þ, ðx2, y2Þ,⋯
ðxm, ymÞg (xi ∈ Rn and yi ∈ f1, 2,⋯, Kg), and yi and xi corre-
sponded to the category label. The maximum likelihood esti-
mation method was adopted in this study to calculate the
result of the model. Therefore, the function of xi could be
expressed as

ℝK
j=11 Y = jf gP Y = j xi ;wjð Þ =ℝK

j=11 Y = jf g
p wU

j ⋅ x
� �

∑K
k=1p wU

j ⋅ x
� � :

ð8Þ

Then, the expression of its logarithmic function was

given as follows:

〠
k

j

1 Y = jf g log
p wU

j ⋅ x
� �

∑K
k=1p wU

j ⋅ x
� � : ð9Þ

The expression of 1fwith true value wasg = 1, and the
expression of 1fwith false value wasg = 0. For the entire data-
set U , its log likelihood function was written as follows:

1
m

〠
m

i=1
〠
K

j=1
1 yi = jf g

" #
log

p wU
j ⋅ x

� �

∑K
k=1p wU

j ⋅ x
� � : ð10Þ

Maximizing the log-likelihood function was equivalent
to minimizing the loss function JðwÞ:

J wð Þ = 1
m

〠
m

i=1
〠
K

j=1
1 yi = jf g

" #
log

p wU
j ⋅ x

� �

∑K
k=1p wU

j ⋅ x
� � : ð11Þ

In equation (11), when the value of JðwÞ was the smal-
lest, w was the model parameter to be sought; and JðwÞ
was a convex function. Then, the method was optimized to
make the result converge to the best in the whole process.

Adam optimizer [15] combines the advantages of two
types of optimization algorithms: AdaGrad optimization
algorithm and RMSProp optimization algorithm. The opti-
mization method is to use the dynamic changes of the
first-order moment estimation (the average of all gradients)
and the second-order moment estimation (the variance of

Raw data X

Objective function Y

Activation function Convolution layer

Confluence layer Activation function

Fully connected layer

Fully connected layer

Confluence layer

Convolution layer

Figure 1: The specific structure of the CNN system.
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the gradient without centering) to adjust each parameter of
learning rate.

Then, the expressions of the first-order moment mu
and the second-order moment ou of the u-th iteration
are shown in

mu = αmu−1 + 1 − αð Þgu, ð12Þ

ou = βou−1 + 1 − βð Þg2u: ð13Þ

In the above two equations, α and β were parameter
values, which were defaulted to 0.9 and 0.99, respectively.
Then, the required unbiased estimation of the first and
second moments required proper processing of mu and
ou. The specific processing process was as follows:

mu′ =
mu

1 − αu
, ð14Þ

ou′ =
ou

1 − βu : ð15Þ

After further improvement, the manifestation of the
parameters can be expressed as below equation:

χu = −
δffiffiffiffiffiffiffiffiffiffiffi
ou′ + ε

q mu′: ð16Þ

After Adam was corrected by equations (14) and (15),
the range of the learning rate of each iteration can be
determined, and the parameters were relatively stable.

The propagation algorithm in CNN can be classified into
forward propagation algorithm and backward propagation
algorithm.

The forward propagation algorithm [16] refers to the
process in which information starts from the input layer
and then propagates forward in a one-way propagation
manner, penetrating the neural network to the output layer,
and finally being output by the network. The information
output from the ðh − 1Þ-th layer in the overpropagation pro-
cess was the input information of the h-th layer. It was sup-
posed that Zh was the output information of the ðh − 1Þ-th
layer, where h = 1, 2, 3,⋯,H.

It was assumed that the h-th layer was a convolutional
layer, and then, the algorithm at this layer can be expressed
as follows:

Zh = f h−1 WhZh−1 + bh
� �

: ð17Þ

If the h-th layer was assumed as the pooling layer, then
the algorithm at this layer can be written as follows:

Zh = P Zh−1
� �

: ð18Þ

If the h-th layer was assumed as the output layer, then

the algorithm at this layer can be written as follows:

ZH = C WhZh−1 + bh
� �

: ð19Þ

In equations (17)–(19), Wh and bh represented the
weight and bias of the h-th layer, respectively; f h−1 was the
activation function in the ðh − 1Þ-th layer, which was the
ReLU activation function mentioned above; P referred to
the process of pooling the input through the fixed pooling
function; and C was the Softmax classifier mentioned above.

The backpropagation algorithm [17, 18] refers to propa-
gating the residuals backwards during the training process
and then gradually correcting the parameters in the CNN,
which greatly simplifies the solution of the partial derivatives
of the variables in the multilayer composite function. The
specific calculation method was shown in equations
(20)–(25).

The expression equation of the loss function can be
assumed as follows:

J W, b ; x, yð Þ = 1
2

aW,b xð Þ − y
�� ��2: ð20Þ

The variables in equation (20) were specifically
expressed as follows. x was an input information; W and b
represented the parameters and bias of the network model,
respectively; aW,bðxÞ − y referred to the probability that the
network predicted the input x as the category y. The activa-
tion value was calculated based on the forward propagation
algorithm, and then, the residual error ∂hi of the i-th neuron
node in the h-th layer was calculated. The specific calcula-
tion equation was expressed as follows.

∂hi =
κ

κdhi
J W, b ; x, yð Þ: ð21Þ

In the equation above, dhi referred to i-th unit of the h-th
layer, including the weighted sum of the bias units, and had
not been processed by the activation function.

If the h-th layer was a convolutional layer, then the ðh
+ 1Þ-th layer was the pooling layer, and the residual calcula-
tion could be realized with below equation:

∂hi = upsample ∂h+1i

� �
⊙ f ′ dhi

� �
: ð22Þ

In equation (22), ⊙ referred to the dot product opera-
tion of matrix, upsample was to restore the residual matrix
to before pooling, and f ′ðdhi Þ was the derivative value of
activation function f to dh.

If the h-th layer was a pooling layer, the ðh + 1Þ-th layer
was a convolutional layer, and the residual could be calcu-
lated with

∂hi = ∂h+1i ∗ rot180 Wh+1
� �

⊙ f ′ dhi
� �

: ð23Þ

In the equation above, ∗ was convolution, and rot180
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referred to flipping up and down once and then flipping
once left and right.

Finally, the partial derivatives of each layer could be
written as

κ

κWh
ij

J W, b ; x, yð Þ = ∂ h+1ð Þ
i Z hð Þ

j , ð24Þ

κ

κb hð Þ
i

J W, b ; x, yð Þ = ∂ h+1ð Þ
i : ð25Þ

A multipath dilated convolution (MPDC) [19] is pro-
posed to further optimize the CNN image segmentation
algorithm. The MPDC-Unet (M-Unet) was adopted for
description in the following text (Figure 2), and the Soft Dice
loss was applied for program supervision. In this network, its
overall architecture was established in the way of encoding
and decoding. It should encode (i.e., downsampling) and
decode (i.e., upsampling) firstly and then get the segmenta-
tion result mask with the same size as the initial image.
The encoding process used Max Pooling for double down-
sampling, and multiple convolutions were used between
the two pooling layers to encode features. In the decoding
stage, deconvolution was to gradually increase the resolution
of the feature map, and the large convolution kernel was
used to encode the context information. The low-level out-
put feature map was firstly cropped to make it the same spa-
tial size as the corresponding high-level feature map and
then spliced in the channel dimension to achieve feature
fusion so that the low-level and high-level features can be
fused better.

The most commonly used loss function in semantic seg-
mentation [20] is the pixel-wise cross-entropy loss. For each
pixel, the predicted category was compared with the true
value category, and the loss of all pixels was averaged, that
was, the loss of each pixel in the image was treated equally.
In this study, the Soft Dice coefficient was undertaken as
the loss function, which could be expressed as follows:

Soft Dice = 2∑M
i pigi

∑M
i p

2
i +∑M

i g
2
i

: ð26Þ

In the equation above, pi and gi represented the value of
the prediction mask and the true value mask, respectively.
The cross-entropy loss function paid more attention to the
global pixel classification including the background and
foreground, which exerted a better effect on reducing mis-
segmentation. Therefore, the Soft Dice loss and cross-
entropy weighted summation were adopted in this study to
replace the traditional cross-entropy loss function in M-
Unet as shown in

V =w1 × Soft Dice +w2 × Cross Entropy: ð27Þ

In the above equation, when the values of w1 and w2
were both 0.5, the result was the best. The main process of
image segmentation based on the M-Unet network model
is shown in Figure 3.

The indicators commonly used to evaluate the effect of
semantic segmentation included precision, recall, and mean
intersection ratio. If there were two sets of pixel sets for the
research target, then the actual set GT and the predicted set
P can be defined as follows. The first referred to the correctly
predicted pixels (true positive, TP), and TP referred to the
intersection of the two sets; the second was false positive
(FP), which referred to the predicted wrong pixel in the pre-
dicted pixel set; and the last was false negative (FN), which
referred to the wrongly predicted pixels in the set of true
value pixels. According to the above definitions, the higher
the precision (that was, the ratio of the predicted correct
pixel to the predicted total pixel), the higher the FP was
(the fewer false predictions). The precision can be calculated
with equation (28). The higher the recall (the ratio of the
predicted correct pixel to the true value pixel) was, the less
FN was, which meant the less missed detection of segmenta-
tion result. It can be calculated with equation (29). mIoU
was the intersection ratio of two sets, which was used to
judge the coincidence rate between the prediction result
and the target true value. The higher the mean intersection
ratio, the more accurate the segmentation algorithm. Its cal-
culation expression was given as equation (30).

Pre = TP
TP + FPð Þ , ð28Þ

Rec =
TP

TP + FNð Þ , ð29Þ

mIoU =
TP

TP + FP + FNð Þ : ð30Þ

In the above three equations, Pre, Rec, and mIoU
referred to precision, recall, and mean intersection ratio,
respectively.

2.2. Research Objects. The patients who were diagnosed with
gallbladder stones combined with choledocholithiasis during
January 2016 to April 2021 were randomly selected as the
research objects with a total of 188 cases. Then, based on
whether all patients were willing to accept the AI-assisted
and visual sensing technology during the treatment process,
all patients were divided into two groups: AI group and con-
ventional group. According to statistics, there were 78
patients in the AI group, of which 38 were males and 40
were females. They were all between 26 and 75 years old,
with an average age of 42:72 ± 2:87 years; and the course
of disease was 1.17~5.67 months with the average value of
3:37 ± 0:78 months; and the number of stones was 17 cases
of single stones and 61 cases of multiple stones. There were
110 patients in the conventional group, including 51 males
and 59 females; they were aged 24~74 years with the average
age of 42:45 ± 3:12 years; the disease course was also
1.16~5.68 months (with an average course of the disease of
3:44 ± 0:12months); and there were 26 cases of single stones
and 84 cases of multiple stones. The research had been
applied to the medical ethics committee of our hospital,
and the research permission had been obtained.

5Journal of Sensors



The inclusion criteria were defined as follows: (a) all
patients had been diagnosed with gallbladder stones com-
bined with choledocholithiasis by CT or B-ultrasound and
suffered from clinical manifestations such as jaundice,
abdominal pain, nausea, and vomiting before the surgery;
(b) after diagnosis, all patients were found to have indica-
tions for laparoscopy and duodenoscope diagnosis and treat-
ment; (c) routine hematuria examinations of all patients
showed that they were normal, and they could follow the
doctor’s instructions well; and (d) all patients and their fam-
ily members had signed the informed consent forms.

The exclusion criteria were determined as follows: (a)
patients with severe liver, kidney, and other organ failure
diseases and endocrine diseases; patients who had taken
drugs that may affect the research indicators within one
month before surgery; patients who did not cooperate or
comply during treatment and who did not cooperate with
follow-up after surgery; patients who also received other
treatment methods during treatment; and patients whose
condition suddenly worsens or was transferred to hospital
during treatment.

2.3. Treatment Methods. All patients were intubated in a
supine position under general anesthesia. Then, the laparo-
scope was placed, and the specific operations were as follows.
Firstly, 1 cm below the belly button was undertaken as the
entrance of the laparoscope to make a transverse cut here.
The incision was about 2~3 cm. Then, the abdomen was
inflated and the pressure was maintained at 12~14mmHg
to separate the organs from the abdominal tissues and fully
expose them. Under the above circumstances, the size and
position of the gallbladder in the abdominal cavity and its
adhesion to the surrounding tissues were observed. All
patients were treated by laparoscopy combined with duode-
noscope. The duodenoscope was inserted from the oral cav-
ity, the duodenal papilla was found according to the
duodenoscope, and the guide wire was inserted into the
common bile duct along the nipple. During the surgery,
patients in the conventional group were performed with
endoscopy for retrograde cholangiopancreatography, while
patients in the AI group received the visual sensor and the
endoscope to directly observe the gallbladder and bile duct.
The location and size of the stones in the bile duct were

1

1 2

41 2

841 2

Figure 2: Module diagram of MPDC (the number in the arrow indicated the void ratio).

Image dataset

M-Unet

Data
preprocessing

Model
initialization
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Training network
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Image test set Network model
parameters

U-Net

MPDC

Segmentation
results

Figure 3: The main process of image segmentation based on the M-Unet network model.
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observed. Afterwards, the papillary sphincter was incised
(when the incision was about 1 cm and the stone was less
than 1 cm, the balloon was to directly remove the stone;
when the stone was larger than 1 cm, it had to be crushed
firstly before removing). After the stone removal, it was
observed again. If it was observed that the stones in the com-
mon bile duct had been removed, a plastic stent of the bile
duct was placed for nasal drainage, and the patient’s liver
function and amylase indicators were monitored synchro-
nously. After 3 days, laparoscopic cholecystectomy was per-
formed for surgical treatment. The specific process is shown
in Figure 4. Two weeks after the patient was discharged from
the hospital, the biliary stent was removed by a duodeno-
scope, and the stone removal was observed by the above
two methods.

2.4. Evaluation Indicators. The blood loss, operation time,
postoperative drainage tube placement time, gastrointestinal
function recovery, extrabed activity time, postoperative
complications, residual stones, and time spent in hospital
for the two groups of patients were observed and recorded
during the surgery.

The total serum bilirubin, direct bilirubin, alanine ami-
notransferase, and alkaline phosphatase were measured with
the Romer combined biochemical analyzer (Roche Diagnos-
tics (Shanghai) Co., Ltd. COBAS INTEGRA 800) and
compared.

2.5. Statistical Analysis. In this study, SPSS 25.0 was applied
to calculate the data. The count data was expressed in the
form of percentage, and the χ2 test was used. The measure-
ment data was expressed in the form of x ± s, and the t-test
was used. P < 0:05 was considered that the difference was
statistically significant.

3. Results

3.1. Image Segmentation Results. Figure 5 shows the cap-
tured images of the gallbladder stones and choledocholithia-
sis under laparoscopy and duodenoscope. Figures 5(a)–5(d)
are the initial images under the endoscopy, and
Figures 5(a1)–5(d1) are the images under the M-Unet seg-
mentation. Figure 5(a) is a mirror image of the complete
gallbladder of the abdominal cavity. It showed that the
diameter of the gallbladder was slightly increased, but there
was no inflammatory response on the surface. Figure 5(a1)
shows the shape of the gallbladder segmented by M-Unet
in the original image which performed. Figure 5(b) is an
image of the bile duct after the surface mucosal tissue had
been removed under laparoscopic surgery, and the shape
of the bile duct can be clearly observed where the yellow
arrow pointed. Figure 5(b1) shows the morphological per-
formance of the bile duct after M-Unet segmentation.
Figure 5(c) shows the state of stones in the bile duct
observed under the duodenum meridian, as pointed by the
yellow arrow. It can be concluded that the surface of the
stones was smooth, and the overall colour was black. Com-
pared with the diameter of the bile duct, the diameter of
the stones was relatively small. Figure 5(c1) shows the mor-

phological performance of bile duct stones obtained by M-
Unet segmentation. Observation suggested that only the seg-
mentation was the part shown by the plain film. Figure 5(d)
shows a stone blocked in the bile duct orifice under a duode-
noscope (pointed by the yellow arrow). It can be observed
that the bile duct orifice had been cracked due to the block-
age of the stone, and inflammation was visible. It also indi-
rectly showed that the diameter of the stones in the figure
was larger than the diameter of the bile duct, and the stones
had to be crushed before taking them. Figure 5(d1) shows
the stone part of the bile duct orifice segmented by M-
Unet. After comparative analysis, the segmentation was rel-
atively complete, and there was basically no missing segmen-
tation. After calculation, the precision, recall, and the mean
intersection ratio of the M-Unet-based segmentation algo-
rithm were 94.56%, 96.56%, and 98.92%, respectively. The
results were quite good and can be used in this study.

3.2. Comparison on General Data of Patients. According to
the research statistics, Figure 6 shows the general treatment
status of the two groups of patients in this study, including
gender distribution, age distribution, average course of dis-
ease, and distribution of the number of stones. In terms of
gender distribution, the proportion of men in the AI group
was 48.72% (38/78) and the proportion of women was
51.28% (40/78); the proportions of men and women in the
conventional group were 46.36% (51/110) and 53.64%
(59/110), respectively (Figure 6(a)). In terms of age, the
patients were divided into five stages: 25–35, 36–45, 46–55,
56–65, and >66 years old. The proportions of patients in five
stages in the AI group were 8.97% (7/78), 19.23% (15/78),
29.49% (23/78), 15.38% (12/78), and 26.92% (21/78), respec-
tively; while those in the conventional group were 7.27%
(8/110), 21.82% (24/110), 24.55% (27/110), 18.18%
(20/110), and 28.18% (31/110), respectively (Figure 6(b)).
The average course of disease for patients in the AI group
was 3:37 ± 0:78 months, and that in the conventional group
was 3:44 ± 0:12 months (Figure 6(c)). In terms of the distri-
bution of the number of stones, the proportion of patients
with single stones in the AI group was 21.79% (17/78), the
proportion of multiple stones was 78.21% (61/78); the pro-
portions of patients with single stones and multiple stones
in the conventional group accounted for 23.64% (26/110)
and 76.36% (84/110), respectively (Figure 6(d)). After com-
parative analysis, the two groups were basically the same in
gender distribution, age distribution, course of disease, and
distribution of the number of stones, so there was no obvi-
ous statistical difference (P > 0:05).

3.3. Comparison on Observation Indicators for Patients in
Two Groups. The statistics results of some of observation
indicators for the two groups of patients are given in
Table 1, including operation time, postoperative drainage
tube placement time, time required for recovery of gastroin-
testinal function, time required to get out of bed, and time
spent in hospital. The observation and comparison revealed
that the operation time (2:74 ± 0:45 hours), postoperative
drainage tube placement time (4:31 ± 1:15 days), time
required for recovery of gastrointestinal function
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(1:74 ± 0:54 days), time required to get out of bed
(1:14 ± 0:55 hours), and time spent in hospital (9:94 ± 1:45
days) for patients in the AI group were shorter than those
in the conventional group, showing obvious statistical differ-
ences (P < 0:05). Figure 7 shows the intraoperative blood
loss and postoperative stone residual rate of the two groups
of patients. Figure 7(a) shows the intraoperative blood loss
of the two groups of patients. The intraoperative blood loss
for patients in the AI group was 79:74 ± 6:45mL, and that
in the conventional group was 150:67 ± 15:71mL.
Figure 7(b) shows the residual status of stones in the two
groups of patients. The number of patients with residual
stones in the AI group was 0, and there were 12 patients with

residual stones in the conventional group, accounting for
10.91%. After comparative analysis, it can be found that
the intraoperative blood loss and postoperative stone resid-
ual rate of patients in the AI group were lower compared
with those of the conventional group, and the differences
were statistically notable (P < 0:05).

3.4. Comparison on Postoperative Complications. Based on
the statistics of the results of this study, the postoperative
complications of the two groups of patients were mostly bil-
iary fistula, biliary hemorrhage, bile reflux esophagitis, acute
pancreatitis, and incision infection (Figure 8). In the AI
group, the numbers of patients with biliary fistula, biliary

Preoperative
preparation

Separation of gallbladder
triangle by ultrasonic scalpel

Exposure of gallbladder and
common bile duct

Separation of gallbladder
and common bile duct

Suture
incision

Placing drainage tube

Cheek bleeding and bile
leakage

Rinse abdominal cavity

Separating
gallbladder bed

Dissection of
gallbladder Hemostasis

Figure 4: Laparoscopic cholecystectomy process.

(a) (a1) (c) (c1)

(b) (b1) (d) (d1)

Figure 5: The captured images of the gallbladder stones and choledocholithiasis under laparoscopy and duodenoscope. Note: (a) and (a1)
show the images of the gallbladder; (b) and (b1) show the images of the bile duct; (c) and (d) show the images of the common bile duct; and
(c1) and (d1) show the stone in the common bile duct. The yellow arrows on images (b), (c), and (d) referred to the cystic duct, stones in the
common bile duct, and stones in the common bile duct, respectively.
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hemorrhage, bile reflux esophagitis, acute pancreatitis, and
incision infections were 0, 2, 1, 5, and 2, respectively. The
total incidence of complications in the AI group was
10.26%. The numbers of patients with biliary fistula, biliary
hemorrhage, bile reflux esophagitis, acute pancreatitis, and
incision infections were 2, 4, 5, 9, and 6, respectively. After
statistics and calculation analysis, the total incidence of com-
plications in conventional group patients was 23.64%.

Therefore, it was clear that the incidence of complications
in the AI group was lower obviously than that in the conven-
tional group, showing statistical difference (P < 0:05).

3.5. Comparison on Postoperative Gallbladder Function.
Figure 9 shows the comparison on average values of serum
total bilirubin, direct bilirubin, alanine aminotransferase,
aspartate aminotransferase, alkaline phosphatase, and
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Figure 6: Comparison on general data of patients in two group. Note: (a)–(d) illustrate the comparison on gender, age, course of disease,
and the number of stones, respectively.

Table 1: Comparison on observation indicators for patients in the two groups.

Observation indicators AI group (n = 78) Conventional group (n = 110)
Operation time (h) 2:74 ± 0:45 3:21 ± 0:32

Postoperative drainage tube placement time (d) 4:31 ± 1:15 12:14 ± 2:98

Time required for recovery of gastrointestinal function (d) 1:74 ± 0:54 2:89 ± 0:67

Time required to get out of bed (h) 1:14 ± 0:55 2:09 ± 0:87

Time spent in hospital (d) 9:94 ± 1:45 14:14 ± 1:15
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Figure 7: Comparison on intraoperative blood loss and postoperative stone residual rate of patients. Note: (a) shows the comparison on
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glutamyl transpeptidase in the two groups of patients. After
analysis, it was found that the serum total bilirubin
(64:99 ± 24:45 μmol/L), direct bilirubin (93:79 ± 22:11μ
mol/L), alanine aminotransferase (77:99 ± 13:01U/L),
aspartate aminotransferase (40:98 ± 13:9U/L), alkaline
phosphatase (211:77 ± 101:91U/L), and glutamyl transpep-
tidase (423:12 ± 109:21U/L) were lower remarkably than
those in the conventional group, which were 30:13 ± 33:25
μmol/L, 166:11 ± 122:09μmol/L, 116:89 ± 100:99U/L,
89:08 ± 13:01U/L, 328:09 ± 110:01U/L, and 570:99 ±
101:21U/L, respectively. The differences in above indicators
between patients in the two groups were statistically great
(P < 0:05).

4. Discussion

Cholelithiasis refers to the stone-like disease that occurs in
the gallbladder and bile duct. It is not only a disease with a
high incidence and a high incidence in China but also has
a high incidence in the world. According to relevant statisti-
cal reports, about 10%~15% of European adult population
suffer from gallstone disease, and the incidence of gallblad-
der stones combined with choledocholithiasis in patients
with gallstone disease is 10%~20% [21, 22]. There are also
related statistics suggesting that in the United States, there
are about 2,000 new cases of gallstones appearing every year.
Studies have shown that 18%~33% of symptomatic choleli-
thiasis is related to acute biliary pancreatitis [23]. The surgi-
cal treatment of biliary stones has undergone many
improvements and is still being improved, mainly to provide
patients with more efficient and convenient treatment
methods. The surgical treatment of gallbladder stones has
evolved from traditional open surgery to today’s minimally
invasive surgical treatment under the guidance of endos-
copy. Such series of changes have greatly reduced the pain
of the patient during the treatment process and can further
reduce the time required for the prognosis of the patients.

In this study, the visual sensing technology based on the
CNN system was applied to further optimize the surgical
treatment of cholelithiasis guided by endoscopy and analyze
its application effects through clinical experiments. Firstly,
the improved CNN algorithm was adopted to optimize the
visual sensing technology, which was tested and verified
then. The results showed that the precision of the M-Unet-
based segmentation algorithm reached 94.56%, the recall
reached 96.56%, and the mean intersection ratio was
98.92%. Such results are basically consistent with the trend
of a study on the multitarget detection and recognition sys-
tem in the intelligent visual sensor network (in which the
precision, accuracy, and mean intersection ratio based on
the segmentation under intelligent algorithms were 96.63%,
56.92%, and 93.32%, respectively) [24]. A study on the appli-
cation effects and functions of industrial visual perception
technology in smart cities found that the improved CNN
algorithm was superior to other algorithms in image and
video processing [25]. Secondly, this technology was com-
bined with endoscopic technology and applied to the surgi-
cal treatment of patients with gallbladder stones combined
with choledocholithiasis. It was found in this study that in

the AI group, the operation time (2:74 ± 0:45 h), postopera-
tive drainage tube placement time (4:31 ± 1:15 d), time
required for recovery of gastrointestinal function
(1:74 ± 0:54 d), time required to get out of bed
(1:14 ± 0:55 h), and time spent in hospital (9:94 ± 1:45 d)
were all shorter compared with those in the conventional
group, which were 3:21 ± 0:32 h, 12:14 ± 2:98 d, 2:89 ± 0:67
d, 2:09 ± 0:87 h, and 14:14 ± 1:15 h, showing statistical dif-
ferences (P < 0:05); the intraoperative blood loss
(79:74 ± 6:45mL) and residual status of stones (0%) in the
AI group were much lower than those in the conventional
group (P < 0:05); in addition, the incidence of complications
(10.26%) during the treatment was lower than that (23.64%)
in the conventional group (P < 0:05). What is more, the
therapeutic effect of the biliary function index of the AI
group was also much better than that of the conventional
group. The above results are consistent with most other
complication rates after treatment with laparoscopy com-
bined with duodenoscope for treatment of gallbladder stones
combined with common bile duct stones [4, 5, 26–28], pro-
viding support for laparoscopy combined with duodeno-
scope in the treatment of gallstones. Of course, AI-assisted
visual sensing technology shows a wide range of applica-
tions, not just for assisted endoscopic treatment of gallblad-
der stones, which has been illustrated in a number of studies
on the optimization of colonoscopy bowel preparation and
the establishment and preliminary verification of the artifi-
cial intelligence-assisted colorectal polyp identification sys-
tem [29–32]. AI-assisted visual sensing technology can also
be used to prevent and control children’s myopia. A system-
atic study on the use of multipurpose 3D visual sensing tech-
nology to prevent and control children’s myopia illustrates
this research [33]. AI-assisted visual sensing technology
can also be applied to the identification and detection of
drugs, which is specifically embodied in a research on intel-
ligent and visual sensing technology and the application of
this technology in the automatic visual detection of drugs
[34]. Both the research results of this study and the related
research results of predecessors reflect that it is natural and
inevitable that intelligent and visual sensing technology is
popularized in all aspects of people’s lives.

5. Conclusions

In this study, the visual sensing technology based on the
CNN system was applied to further optimize the treatment
of cholelithiasis guided by endoscopy and analyze its appli-
cation effects through clinical experiments. The conclusions
were summarized as follows. Firstly, CNN algorithm showed
good effects in image segmentation processing. Secondly,
based on the CNN algorithm, AI-assisted visual sensing
technology can reasonably process the target image and
has a good optimization effect. Thirdly, applying the visual
sensing technology based on CNN algorithm to endoscopic
technology for the treatment of gallbladder stones combined
with choledocholithiasis can effectively improve the treat-
ment effect. However, the representativeness of the research
results was not up to standard due to the insufficient number
of samples taken in this study, so further research was
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needed. This also gave certain empirical hints, which would
be continuously summarized and corrected in subsequent
research. However, it was proved in this study that visual
sensing technology based on intelligent algorithms showed
a good future in the medical field.
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