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The working environment of the oil drilling platform is harsh, with many uncertain factors and high operating risks. During the
drilling process, due to sudden formation factors or improper process operations, it is extremely easy to cause well wall instability,
sticking, lost circulation, well kick, and blowout. In addition, other complicated situations and accidents have brought major
challenges to drilling safety. In order to improve the technical level of oil and gas exploration and development and achieve the
goal of reducing costs and increasing efficiency, it is necessary to strengthen the optimization of traditional oil drilling
monitoring systems. This article summarizes the advantages and disadvantages of the existing image multiscale analysis
algorithms, from wavelet transform, stationary wavelet transforms to contourlet transform, and nondownsampled contours
based on the characteristics of the images collected by different sensors in the oil drilling monitoring system and the needs of
practical applications. Wave transforms detailed comparison of the fusion performance of these image analysis algorithms
under the same fusion rules. Aiming at the shortcoming of the large amount of calculation of nonsubsampled contourlet
transform, a fast implementation algorithm (IFNSCT) is proposed. The multichannel filter bank structure is used to replace
the original tree filter bank structure, which reduces the time-consuming to the original without affecting the analysis
performance of the algorithm. One-half of the oil drilling monitoring efficiency has been improved.

1. Introduction

With the year-on-year increase in the amount of drilling engi-
neering operations, the increasing renewal of technology, and
the development of the information industry, offshore oil has
entered the era of network information [1, 2]. According to the
characteristics of offshore drilling technology, through special
research, test analysis, evaluation optimization, and engineer-
ing practice, a complete set of the intelligent auxiliary
decision-making monitoring system for offshore oil drilling
has been formed [3, 4]. It ensures operation safety, improves
operation timeliness, saves drilling costs, and provides solid
technical support for the exploration and development of off-
shore oil and gas resources.

The most important part of the optimization of the oil
drilling monitoring system is the information fusion of the

acquired images of monitoring equipment. Information
fusion technology is such a processing process, and it can
make full use of advanced computer technology to compre-
hensively analyze and process the information obtained
through different (multisource) sensors and then obtain a
comprehensive and accurate information about a certain
target or scene. Image fusion belongs to the category of
information fusion [5–7]. As an important part of it, this
technology integrates many hot subjects, such as image
and signal processing, computer technology, and sensor
technology and has huge application and development pros-
pects. The so-called image fusion is not simply superimpos-
ing images of different natures after obtaining them through
multisource sensors. However, it is committed to adopting
appropriate fusion algorithms, but to make full use of the
redundancy of these images through appropriate fusion
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algorithms [8, 9]. Based on the remaining and complemen-
tary information, they are fused, so that the final generated
image has richer details and fuller content [10]. The fusion
image has many advantages that cannot be compared with
the image obtained by a single sensor, which greatly over-
comes the latter are limitations in some aspects such as spec-
trum, spatial geometry, and resolution.

According to the different images processed, image
fusion methods can be divided into two categories: one is
the most widely studied grayscale image fusion; the other
is the increasingly emerging color image fusion method.
Commonly used fusion algorithms are all trying to make
the fusion image with higher quality, which belongs to the
category of pixel-level fusion [11, 12]. Literature [13] carried
out the simplest image fusion experiment; he carried out a
simple fusion processing of Landsat image and radar image
and successfully applied the fused image in the interpreta-
tion of terrain and landform. Later in the literature [14],
the MSS image and Landsat-RBV image were fused, and pre-
liminary results were obtained. Image fusion technology has
gradually attracted attention and has begun to be applied to
general images such as visible light images. Image fusion
technology has begun to become one of the research
hotspots in the field of remote sensing image processing
and analysis. In the first type of the fusion method, pixel-
based or region-based fusion is more widely used and
simpler. This type of method runs fast, but often has unde-
sirable effects such as washout. Principal component analysis
(PCA) is a commonly used algorithm for matrix dimension
reduction and data relevance removal. It is similar to the KL
transformation in the image compression fields [15–17]. A
linear transformation processes the grayscale image into a
two-dimensional matrix, solves the eigenvalues and corre-
sponding eigenvectors of the matrix, and finally fuses the
extracted principal components to obtain the fusion result
[18]. The above algorithms are all performed on a single
scale when processing the image, and there is no difference
in the processing of pixels, which will cause the loss of image
detail information. The idea of multiresolution analysis
solves the abovementioned problems to a certain extent.
Literature [19] first proposed the tower decomposition
method, namely, the Gaussian pyramid and the Laplace pyr-
amid. On this basis, Fedele and Merenda [20] proposed a
low pass pyramid layered fusion method based on the con-
trast pyramid. Feng et al. proposed the gradient pyramid
algorithm [21], which makes the poor directionality of the
pyramid structure get to improve. In general, in the fusion
method based on the tower decomposition, the Laplace pyr-
amid does not express the directional information, the con-
trast and gradient pyramid algorithms will increase the
amount of data in the processing process, and their stability
needs to be enhanced. Wavelet transform technology was
proposed in the 1990s. This method has many excellent
properties such as variable time and frequency domain, good
directionality, and multiscale and has been widely studied
and applied [22–25]. The directionality of wavelet transform
is not flexible enough, and it is not very ideal in expressing
the curve. In response to this defect, scholars have proposed
analysis tools such as ridge let and Curvelet transform. The

literature [26] proposed the Curvelet transform. To obtain
the decomposed subband, the source image needs to be
filtered many times. Due to the multiple convolution of the
image, it will inevitably affect the computational efficiency
of the digital image.

In this paper, we optimize the monitoring system of oil
drilling based on multisensor image fusion. First, analyze the
structure of the oil drilling monitoring system and design a
reasonable structure of the multisensor image fusion algo-
rithm. Secondly, the relevant theories of themultisensor image
fusion algorithm are analyzed and researched. Aiming at the
slower image information fusion of the traditional nonsub-
sampled contourlet transforms multiscale transform method,
an improved fast nonsubsampled contourlet transform algo-
rithm is proposed. Finally, simulation experiments verify the
effectiveness of the algorithm and improve the monitoring
efficiency of oil drilling. The second part of the article is an
introduction to the overall framework of the article and related
theories; the third part is the algorithm structure and specific
implementation; the fourth part is the simulation experiment
verification; the fifth part is the full text summary. The main
contributions are follows: (1) simultaneous interpreting the
characteristics and practical applications of different sensors
collected from the oil drilling monitoring system, a nonsam-
pling contour is proposed. (2) A fast implementation algo-
rithm (IFNSCT) is proposed to solve the problem of large
amount of computation of nosubsampled contour wave trans-
form. (3) The multi-channel filter bank structure is used to
replace the original tree filter bank structure, which reduces
the time-consuming of the original filter bank structure with-
out affecting the analysis performance of the algorithm.

2. Related Theories and Technologies

2.1. Oil Drilling Monitoring System Design. The overall struc-
ture of the offshore oil drilling intelligent auxiliary decision-
making monitoring system can be divided into 4 parts, as
shown in Figure 1, which are, respectively, the preview layer,
the monitoring layer, the decision-making layer, and the
optimization layer. The preview layer is the simulation eval-
uation layer of the drilling design.

The drilling design is simulated before drilling, the key
parameter changes are analyzed, and the possible complica-
tions are predicted. The monitoring layer is the tracking eval-
uation layer of the land center, which simultaneously
analyzes the drilling data transmitted on site, intelligently
evaluates the drilling conditions, and provides real-time
guidance for the site. The decision-making layer is the plan
formulation layer of the head office. It integrates drilling
and geological conditions and provides an auxiliary role for
technical experts in decision-making in a three-dimensional
dynamic visualization method. The optimized layer is the
monitoring image analysis layer after drilling, which per-
forms overall monitoring and analysis of the drilled single
well or regional multiwells, and provides reference materials
for subsequent construction or adjacent well design.

Each area of the drilling well site is equipped with a
video security monitoring system to monitor its operation
status in real time to ensure that the system runs more
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continuously and reliably. Adopt professional methods to
conduct real-time intelligent analysis of the video data of
the well site, such safety risks are avoided and prevented,
and the zero-accident construction behavior is counted to
facilitate the orderly progress of safe construction work
and make this work more standardized. The multisensor
image self-adaptive fusion frame structure proposed in this
paper is used for the optimization of the drilling monitoring
system to facilitate the intelligent analysis of monitoring
video information. The framework consists of a multiscale
analysis module, a coefficient fusion module, a multiscale
reconstruction and image evaluation module, and a parame-
ter optimization module, as shown in Figure 2.

Image fusion is a preprocessing operation for subsequent
tasks such as detection, recognition, segmentation, and clas-
sification. Different subsequent tasks often require observa-
tion or processing of different features in the same image.
Therefore, unlike most fusion frameworks based on multi-
scale analysis, the image fusion framework proposed in this
chapter introduces the evaluation of the fusion image quality
into the fusion process, and the result of the image quality
evaluation is used as feedback information to optimize the
parameters in the coefficient fusion module, thereby get
better fusion results adaptively. As shown in Figure 2, first,
the input source image is subjected to multiscale transforma-
tion to obtain high-frequency coefficients and low-frequency
coefficients. Different fusion rules are used to fuse the corre-
sponding coefficients to obtain fusion coefficients, and the
fusion coefficients are multiscale reconstruction to obtain
the fused image. Then, the quality of the fusion image is
evaluated, and the evaluation result is fed back to the optimi-
zation algorithm to optimize the parameters in the coeffi-
cient fusion module, so that the final fusion image will be a
better fusion result for the selected evaluation index.

2.2. Analysis of Classical Multiscale Image Technology.Multi-
scale analysis is a fast and effective image signal processing
algorithm. By decomposing the image at different scales, it
can effectively extract the characteristic information of the
image signal at each scale. In view of the different nature of
the statistical characteristics of the information at different
scales, a targeted image fusion rule is designed, which can
effectively retain the important information of the source
image and improve the overall quality and usability of the
fused image. The current academic circles have proposed
more than ten different multiscale image analysis algorithms,
among which the classic multiscale analysis algorithms
mainly include wavelet transform and contourlet transform.

Wavelet transform (WT) is one of the first multiscale
image analysis algorithms introduced into the field of image
fusion research. It has good time-frequency analysis capabil-
ities [27–29]. Because the image under the computer plat-
form is stored in the form of a pixel matrix, the wavelet
transform used for image processing and fusion is mainly
two-dimensional discrete wavelet transform.

In discrete wavelet transform (DWT), the family of func-
tions ζa,bðtÞ can be expressed in the following form:

ζa,b tð Þ = 1ffiffiffiffiffiffiffi
∣a ∣

p ζ
t − b
t + a

� �
, ð1Þ

where a and b are scale and translation coefficients, a, b ∈ R,
a is a positive value, a ≠ 0, and the function ζ satisfies

cζ =
ð+∞
0

ζ ωð Þj j2
∣ω∣+1 dω <∞, ð2Þ

�e internet
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Figure 1: Overall structure diagram of the oil drilling monitoring system.
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where w is the angular frequency. Discretize a and b with
power exponents: a = aj0 and b = kaj0b0. Among them, j ∈ R,
the expansion step a0 is fixed values, and a0 ≠ 1.The DWT
coefficient is defined as follows:

cj,k =
ð+∞
−∞

f tð Þζj,k tð Þdt = <f , ζj,k tð Þ > : ð3Þ

In image fusion, permanent a0 = 2, b0 = 1, the wavelet
basis function is simplified to

ζj,k tð Þ = 2−j/2ζ t − 2jk
2j + 1

� �
: ð4Þ

After the source image is wavelet transformed, each level
of wavelet decomposition will get four subband images,
including LL (low frequency sub band), LH (horizontal sub
band), HL (vertical sub band), and HH (diagonal sub band).
The length and width of each subband image are 1/2 of the
source image, and the data volume is 1/4 of the source
image. The second-level wavelet decomposition is to decom-
pose the LL subband iteratively and so on.

In the one-dimensional signal representation, DWT is
undoubtedly an effective algorithm, which to some extent
provides the best representation of the one-dimensional
signal. However, because the image is not directly stacked
by one-dimensional signals, the poor direction extraction
ability of DWT is only suitable for capturing point singular-
ities, and it is not enough to encounter two-dimensional
images containing line singularities and surface singularities.
The multiscale decomposition is completed by Laplace filter
bank, and a directional filter that satisfies the tree expansion
rule achieves the multidirectional analysis. The device group

is complete. The structure of the filter bank is shown in
Figure 3. The yellow part is the range of the image frequency
band filtered by the Laplace filter bank.

Laplace decomposition can generate a low-resolution
image and a difference image (that is, the difference
between the upper level decomposition image and the cur-
rent level decomposition prediction image) at each level,
and then iteratively decompose the low-resolution image,
and finally obtain a one lowest level low-resolution image
and several differential images at various levels. The recon-
struction process is a process in which low pass and low-
resolution images are predicted to the upper level and
superimposed on the upper level difference image, and
finally, the original image is obtained. Figure 3(b) describes
the Laplace decomposition and reconstruction process. H
and G are Laplacian decomposition filter and Laplacian
reconstruction filter, respectively.

After improving the traditional Laplacian filter, the direc-
tional filter structure in the contourlet transform (CT) is
shown in Figure 3(c). Among them, H0 and G0 are sector fil-
ters, H1 and G1 are quadrant filters, and Q is plum blossom.
DFB can generate 2k wedge-shaped frequency segmentation
through a binary tree decomposition of k layers. In order to
obtain the desired frequency segmentation, it is necessary to
use a plum blossom sampling filter bank that satisfies the tree
expansion law for image and filter adjustment.

2.3. Evaluation Index of Image Fusion Quality. Due to the
complexity of the image itself, it is a relatively difficult task
to evaluate the effectiveness of the fusion algorithm and the
quality of the fusion image. Therefore, the evaluation of fusion
algorithms and fusion quality requires a number of indicators
with different focuses. At present, the evaluation indicators of
image fusion are mainly divided into two categories: subjective
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Figure 2: Multisensor image adaptive fusion framework structure.
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evaluation indicators and objective evaluation indicators, and
generally both types of indicators are used to comprehensively
evaluate image fusion algorithms. The structure diagram of
the evaluation index is shown in Figure 4.

For a visual image, the most intuitive way to evaluate the
fusion effect is human observation. Human beings have devel-
oped a complete set of image evaluation standards related to
life experience in daily life and study. For an image, humans
can easily qualitatively judge the clarity, intelligibility, rational-
ity, and information content of the image and other intuitive
evaluations. However, subjective evaluation also has inevitable
errors, and its evaluation conclusions are often different. Com-
pared with the single and imprecise subjective evaluation stan-
dard, the objective evaluation standard provides a quantitative
evaluation of a certain attribute of the fusion result. The exist-
ing objective evaluation indicators can be roughly divided into
two categories, based on evaluation methods for the statistical
characteristics of a single image: information entropy, average
gradient, spatial frequency, image mean, standard deviation,
etc. In addition, evaluation methods based on the amount of
information transfer between multiple images: mutual infor-
mation (MI), Q, QE, QAB/F, structural similarity (SSIM),
visual information (VIF), etc. Because the evaluation method
based on the information transfer of the source image com-
bines the information of the source image and the fusion
image, it has better reliability. The mathematical definitions
of several evaluation indicators used in this article are given
below:

(1) MI: this parameter reflects the amount of informa-
tion transferred from the original image to the fusion
image and is defined as shown in formula (5). The
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Figure 3: Multisensor image adaptive fusion framework structure.

larger the value, the more information the fusion
image inherits from the original image and the better
the fusion quality

MIABF = IFA f , að Þ + IFB f , bð Þ =〠
f ,a
pFA f , að Þ log pFA f , að Þ

pF fð ÞpA að Þ

+〠
f ,b
pFB f , bð Þ log pFA f , bð Þ

pF fð ÞpB bð Þ ,

ð5Þ

where IFAð f , aÞ and IFBð f , bÞ mean the intensity
level in image A and image B. pFAð f , aÞ, pFAð f , bÞ,
pFð f Þ, pAðaÞ, and pBðbÞ mean probability mass
function.

(2) VIF: by modeling the human visual system, natural
scenes, and image distortion models, comprehensive
quantitative evaluations including additive noise,
blur, and global or local contrast distortion can be
carried out. The larger the value, the better. 1 means
there is no distortion, and its definition is shown in
formula (6) [30]:

VIF = 〠
j=subbands

I C
!N ,j

; F
!N ,j����sN ,j

� �
〠

j=subbands
I C

!N ,j
; E
!N ,j����sN ,j

� �

= 1
2〠

N

i=1
〠
M

k=1
log2 1 + g2i s

2
i λk

σ2v + σ2
n

� �

ð6Þ
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(3) SSIM: the quality of the fusion image is evaluated by
the structural similarity evaluation of the source
image and the fusion image. The larger the value 1
means no distortion, and its definition is given by for-
mula (7) [30]:

SSIM x, yð Þ =
2μxμy − C1

� �
2σxy − C2
� 	

μ2x + μ2y − C1
� �

σ2xσ
2
y − C2

� � : ð7Þ

3. Research on Multisensor Image Fusion
Algorithm Based on Improved Fast NSCT

Two kinds of monitoring equipment that often appear in
petroleum mines are ordinary visible light monitoring and
infrared monitoring, and in the application field of image
fusion, infrared and visible light fusion is an important
application direction. Due to the different characteristics
and points of interest between infrared images and visible
light images, these two images contain a large amount of
complementary useful information, such as clear texture
information in visible light images and hidden targets in
infrared images. The fusion of these two images, and then
the effective use of the complementary information, is of
great significance to facilitate human observation and later
computer image processing.

3.1. Nonsubsampled Contourlet Transform (NSCT). In the
image multiscale and multidirectional analysis algorithm,
NSCT is widely used because of its resolution ability in any
direction and any scale, translation invariance provided by
nondown sampling, and excellent performance without
spectrum aliasing and Gibb’s phenomenon [22–25]. Atten-
tion. It holds the segment-based structure provides a

progressive optimal, sparse image approximate way, better
than the vast majority of image analysis algorithms on
decomposition and reconstruction performance.

NSCT is a nonsubsampling version developed based on
CT. It can be divided into two parts: nonsubsampled pyra-
mid (NSP) decomposition and nonsubsampled directional
filter bank (NSDFB) decomposition. The former guarantees
the multiscale characteristics of NSCT. The latter provides
NSCT with powerful multidirectional decomposition perfor-
mance. Figure 5 shows the breakdown structure of NSCT.

The nonsubsampled pyramid (NSP) transform is
formed by cascading a two-channel filter bank. At each
decomposition level, one high-frequency subband image
and one low-frequency subband image can be obtained,
and then each the hierarchical low-frequency sub-band
image is iteratively filtered to complete the multilayer NSP
decomposition. In K-level NSP filtering, a low-frequency
subband image and K high-frequency sub-band images are
generated, and the size of all subband images is the same
as the source image. Figure 5 shows a schematic diagram
of three-layer NSP decomposition, where H0ðz2

kIÞ repre-
sents the low pass filter bank, H1ðz2

kIÞ represents the high
pass filter bank, k represents the decomposition level, and
the grey area represents the filter passband of each NSP
decomposition step.

The nondownsampling direction filter bank transform is
a tree-shaped nondownsampling filter bank composed of a
series of fan-shaped filter banks and quadrant filter banks
according to the tree expansion principle, which can provide
rich directional detailed information. In the 1-level NSDFB
decomposition, 21 directional subbands of the same size as
the source image can be obtained. In Figure 5, a 2-level
NSDFB structure and its frequency splitting diagram are
given, where U0ðzÞ and U1ðzÞ are sector filters, and U0ðzQÞ
and U1ðzQÞ are quadrant filters.
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Image fusion 
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Multi-image fusion 
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Average gradient

Spatial frequency
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Based on a single image
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Figure 4: The structure diagram of the evaluation index.
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3.2. Fast Implementation of NSCT. Although NSCT has
excellent multiscale and multidirectional analysis capabili-
ties, its application range is limited by its huge computa-
tional overhead. As described in the previous section, the
traditional NSCT is divided into two parts. The source
image to be decomposed needs to be decomposed by NSP
and NSDFB in turn. Therefore, to obtain a decomposed
sub band, the source image needs to be filtered multiple
times. Due to the large amount of digital image data, calcu-
lating image convolution multiple times will inevitably
affect the efficiency of the algorithm. On the contrary, if
they obtained decomposed subbands that can be com-
pressed in the primary filtering, the algorithm efficiency will
be greatly improved. Based on this idea, we redesigned the
filter structure, and its implementation on a single channel
is shown in Figure 6.

As shown in Figure 6, H0ðzÞ and H1ðz2Þ represent low
pass and high pass filters in NSP, and U0ðzÞ and U0ðzQÞ rep-
resent sector and quadrant filters in NSDFB. To obtain a
final directional decomposition subband, the source image
needs to be filtered by these four filters in sequence, since
the size of the digital filter is much smaller than the size of
the digital image. The amount of calculation to combine
the filters is negligible compared to the image convolution.
Therefore, the filter banks of the same channel in NSCT
(H0ðzÞ, H1ðz2Þ, U0ðzÞ, and U0ðzQÞ) are combined into a sin-
gle filter in fast NSCT FðzÞ. Furthermore, the filter signal
passes through a two-dimensional convolution network;
finally, the signal sends to the NSCT algorithm. In this
way, the fast implementation of NSCT is realized.

3.3. Multisensor Image Fusion Rule Design. Pixel-level image
fusion is to directly integrate each pixel in the source image
into a fusion pixel, and the calculation of the fusion weight is

based on the importance of the original pixel in the informa-
tion. Therefore, regardless of the fusion rule, it is a process of
weighted summation of the original pixels, and these weights
reflect the importance of the original pixels. The most essen-
tial requirement of image fusion is to retain as much impor-
tant information in the source image as possible. Therefore,
pixels with more information should be assigned with higher
weights to retain more information, while pixels with low
information should be assigned higher weights to retain
more information in contrast. Based on this, a new fusion
rule based on information theory pixel information estima-
tion (PIE) is proposed to measure the information contained
in the pixel and to determine the pixel weight.

In NSCT, the low-frequency subband image is severely
blurred in the NSP decomposition, which means that a
small neighborhood contains no more information than a
single pixel, and too much time is spent calculating the
neighborhood information of the pixel. It is not necessary.
In addition, the current popular regional energy fusion rule
ignores the dark information, and the regional variance rule
only strengthens the pixels in the edge area. Therefore, in
order to solve the above problems, the low frequency part
of the PIE method is proposed. It only calculates the back-
ground brightness of the overall image once instead of cal-
culating the neighborhood information for each pixel
successively and then determines the fusion weight based
on the difference between the pixel grayscale and the over-
all background brightness.

In NSCT, the high-frequency subband reflects the edge
and texture information distribution of the image, and its
coefficient is small in the smooth area, but increases sharply
in the edge part. Different coefficient values represent differ-
ent object characteristics, and different rules are needed to
fuse them. Suppose that cvisðm, nÞ and cinf ðm, nÞ are the

Two-level NSDFB structure

Low frequency 
subband

Lower low 
frequency subband

Lowest low 
frequency subband

Original image

…
NSDFB

NSP
�ree-level NSP structure

Figure 5: NSCT decomposition and its partial details.
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visible light image and infrared image in m rows and n col-
umns, respectively, for high-frequency coefficient values, if
one of them belongs to the texture or edge part (that is,

has a larger coefficient value), the value with the larger abso-
lute value is selected as the fusion coefficient value to ensure
that important information is preserved. If both belong to

Frequency domain range of filtered image
0

0

Primary filter

Secondary filtering

�ree-stage filtering

Four-stage filtering

Two-dimensional convolution

Fast filter with IFNSCT

k

100 200 300 400 500 600

100

200

300

Figure 6: The fast implementation structure of NSCT.

(a) Visible light picture (b) Infrared image (c) CT fusion image

(d) NSCT fusion image (e) NSCT-PCNN fusion image (f) IFNSCT fusion image

Figure 7: Subjective evaluation of multisensor image fusion.
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the smooth part (that is, both have smaller coefficient
values), then they are weighted and averaged to ensure that
as much source image information as possible is inherited.
Therefore, it is necessary to calculate a threshold to distin-

guish the smooth region coefficient from the texture edge
coefficient and apply different fusion rules.

4. Simulation Results and
Performance Analysis

In this part, three different sets of infrared and visible light
data are used to test the fusion performance of the proposed
algorithm. For each set of data, the algorithm in this chapter
will be compared with other existing algorithms, including
CT algorithm, NSCT algorithm, and NSCT-PCNN algo-
rithm. These algorithms have outstanding performances in
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Figure 8: “UN Camp image” collection objective evaluation.

Table 1: EFQI and WFQI of infrared and visible image fusion
results.

Mallat CT NSCT NSCT-PCNN FNSCT

EFQI 0.766 0.723 0.792 0.793 0.811

WFQI 0.768 0.782 0.795 0.791 0.813
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the field of nonlinear fusion, image decomposition and rep-
resentation, and field information weighting, respectively
[31–34]. In the experiment, the image decomposition level
is set to level three, and all parameter settings refer to the
settings in the reference. In addition, the algorithm running
environment is Core i7 2630, 4G RAM. The adopted “UN
Camp” data set images cover 256 grey levels, all of which are
infrared and visible light images, and are used as test images
in a large number of documents. For more precise fusion
results, the watermark in the Octet image collection is cut.

4.1. Simulation and Results of Subjective Evaluation of Multi-
Sensor Image Fusion Effect. The comparison of the fusion
results of the “UN-Camp” image set is shown in Figure 7.
In these images, Figures 7(a) and 7(b) represent the original
visible light image and infrared image, respectively, and
Figures 7(c)–7(f) represent the fusion results of six fusion
algorithms, including the IFNSCT algorithm proposed in
this chapter.

Obviously, the visible light image depicts the background
information of the environment well, while the infrared
image highlights the target information of the characters
hidden in the bushes. It can be seen that all the fusion algo-
rithms retain the main information of the original image in
the fusion image. However, there are still significant differ-
ences in details. The contrast of Figure 7(c) is the worst,
because the low-frequency average fusion rule compresses
the grey-scale range of the image. The overall grey scale of
Figure 7(d) is too bright, so that more dark part information
is lost. Figure 7(e) has a good visual effect and sense of hier-
archy, but there is serious blur in some areas. This is because
the PCNN algorithm enhances visual contrast but ignores
texture details. In contrast, Figure 7(f) has the best perfor-

mance in terms of contrast, image sharpness, target defini-
tion, and edge details, which reflects that the fusion rule is
applicable to infrared and visible light fusion.

4.2. Simulation and Results of Objective Evaluation of
Multisensor Image Fusion Effect. Subjective evaluation indi-
cators can often provide humans with an intuitive compari-
son, but due to differences between individuals, determining
the best results may be difficult and even controversial.
Therefore, an effective objective evaluation index can give
us a quantitative analysis of the fusion quality. In this part,
three objective evaluation indicators including MI, VIF
,and SSIM are used to objectively evaluate the quality of
the above fusion results.

Based on the statistical data in Figure 8 and the above
analysis, it is obvious that the IFNSCT algorithm proposed
in this chapter is very effective in retaining useful informa-
tion, reducing image distortion and maintaining reasonable
image contrast, and it is better than existing subjective and
objective evaluations. The image fusion algorithm is better.
The detailed results are shown in Table 1.

Table 1 is the performance comparison data of the
results of the five fusion methods. It can be seen from the
experimental data in Table 1 that compared with the image
fusion algorithm based on wavelet transform and NSCT
transform, the fusion algorithm based on fast NSCT achieves
higher EFQI and WFQI. In particular, the fusion algorithm
proposed in this paper has the highest EFQI and WFQI,
which shows that the algorithm proposed in this paper can
better extract the edge information of the image and is more
in line with human visual characteristics. Higher perfor-
mance fusion images are obtained.

(a) Visible light picture (b) Infarred image
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Figure 9: Oil drilling test results based on the IFNSCT multiimage fusion algorithm.
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4.3. Feature Extraction Experiment and Result of Oil Drilling
Monitoring Video Image. Based on the above analysis and
simulation experiments, the effectiveness and superiority of
the proposed IFNSCT multisensor image fusion algorithm
are verified. The proposed algorithm is applied to the oil
drilling monitoring system to optimize the image processing
capability of the monitoring system. The video security
monitoring system of the drilling well site is mainly used
to supplement manual duty. If the monitoring result is the
same as the algorithm setting rules, it will automatically
prompt the monitoring system and give specific processing
methods to achieve linkage alarm and manual intervention.
Add a video intelligent analysis module to the intermediate
media processing layer platform and make it the core of
the system. At the same time, focus on analyzing illegal
intrusions, high-altitude operations, hot work, smoking
behavior, etc. and implement key monitoring on them to
achieve active early warning. The algorithm in this paper
provides a theoretical basis for these functions, and the test
results are shown in Figure 9.

Obviously, it can be seen from Figure 9 that the pro-
posed IFNSCT algorithm can process the frame images in
the surveillance video very well. For different types of
monitoring equipment, visible light monitoring equipment,
and infrared monitoring equipment, although the extracted
gradient features will be different, the overall trend is almost
the same, and the fusion of their features can better reflect
the actual situation of the oil drilling site. Furthermore,
Figures 9(c) and 9(d) mainly show the image features of
the original image and infrared image processed based on
the IFNSCT algorithm. It can be seen from the figure that
although the infrared image accelerates the processing speed
of the algorithm to a certain extent, the accuracy is obviously
a little lower than that of the original image.

5. Conclusion

The research on the oil drilling intelligent auxiliary decision-
making monitoring system has effectively improved the
intelligent monitoring level of offshore drilling, greatly
reduced the difficulty of drilling in complex formations,
reduced the complexity, effectively avoided the occurrence
of engineering accidents, and made a contribution to the
realization of safe and efficient drilling operations. Starting
from the multisensor image fusion algorithm, this paper first
studies the composition of the monitoring system of oil dril-
ling, then analyzes the basic framework of the multisensor
fusion algorithm, and studies the fusion of multi-image
information based on the multiscale analysis algorithm of
the improved fast nonsubsampled contourlet transform.
The feature information of the whole image is directly calcu-
lated, and the fusion weight is directly calculated through the
difference between the pixel and the overall information of
the image, which greatly improves the efficiency of the algo-
rithm on the basis of improving the fusion performance.
Finally, the image information of the visible light monitoring
equipment and the infrared monitoring equipment in the oil
drilling monitoring system is fused to improve the recogni-
tion accuracy of the monitoring system.
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