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Normal operation of the pressure sensor is important for the safe operation of the locomotive electro-pneumatic brake
system. Sensor fault diagnosis technology facilitates detection of sensor health. However, the strong nonlinearity and
variable process noise of the brake system make the sensor fault diagnosis become challenging. In this paper, an adaptive
unscented Kalman filter- (UKF-) based fault diagnosis strategy is proposed, aimed at detecting bias faults and drift faults
of the equalizing reservoir pressure sensor in the brake system. Firstly, an adaptive UKF based on the Sage-Husa method
is applied to accurately estimate the pressure transients in the equalizing reservoir of the brake system. Then, the residual
is generated between the estimated pressure by the UKF and the measured pressure by the sensor. Afterwards, the
Sequential Probability Ratio Test is used to evaluate the residual so that the incipient and gradual sensor faults can be
diagnosed. An experimental prototype platform for diagnosis of the equalizing reservoir pressure control system is
constructed to validate the proposed method.

1. Introduction

The electro-pneumatic brake system has shown the exten-
sive applications in passenger trains, metros, and heavy haul
trains because of its fast response time and high reliability
[1]. Locomotive electro-pneumatic brake is a crucial compo-
nent which has an important function for the operational
safety of the train. Faults in braking systems can lead to a
reduction in locomotive braking performance and even
induce safety accidents. Therefore, early detection and isola-
tion of faults in the braking system are necessary [2]. Pres-
sure sensors are vital components in the brake system
because their reliability and measuring accuracy are crucial
to achieving the accurate pressure control and approving
braking performance.

The fault diagnosis of the equalizing reservoir pressure
sensor is a challenging task. The brake system is composed
of the electric, pneumatic, and mechanical subsystem, show-
ing a sophisticated nonlinearity [1]. The energy transmitting

medium of the braking force is compressed air, and the com-
pressibility of air makes the system highly nonlinear [3],
which makes it difficult to build a precise mathematical
model of the brake system. Furthermore, the process noise
and measurement noise in the braking process, which are
caused by the harsh and noisy working environment, make
the fault diagnosis of the brake become more challenging.

Recent years, many studies have developed sensor fault
diagnosis methods [4–8]. There are three main categories
of sensor fault diagnosis methods: the redundancy method
and the knowledge-based method and the model-based
approaches. The redundancy method is implemented by
the comparison of measurements among several sensors,
which has been used in wireless sensor networks [9] or the
aerospace system [10], such as satellite attitude control sys-
tems [11]. The minimum degree of sensor redundancy nec-
essary to pinpoint the distinction between sensor faults and
system faults in the monitoring process is determined in
[12]. However, the redundancy methods require additional
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hardware sensors, showing less cost-effectiveness, which are
not appropriate for the locomotive electro-pneumatic brake
system [13].

The development of computer technology has provided
a new method for fault diagnosis technology. Knowledge-
based method uses an expert system to locate and diagnose
sensor faults and does not require a quantitative mathemat-
ical model. A fuzzy expert system is established to locate sen-
sor faults [14], and the residual generation and residual
evaluation are analyzed in [15], showing its instantaneous
handling capability for the fault. The problem of sensor fault
recognition is considered pattern recognition in [2]. The
sample data is acquired and trained to obtain a classifier,
and then, the data is matched according to the classification
rules. However, it is general that knowledge-based methods
require a large enough amount of data, which means that
many types and numbers of sensors need to be added in
the brake system.

For model-based methods, the Kalman filter and its
enhanced varieties are widely utilized [5, 7, 16] because of
their robustness to process and measurement noise and their
efficient real-time performance [17]. However, the Kalman
filter is not available for the brake system because of its
intrinsic nonlinear properties. Therefore, an unscented Kal-
man filter (UKF) is proposed to address the nonlinear prob-
lem. The UKF, which applies the unscented transform to
calculate the mean and variance of measurement and pro-
cess noise, has higher accuracy than the extended Kalman
filter [18, 19]. However, the process noise and covariance
matrices of measurement for UKF are generally assumed
to be stable. And it is difficult to determine the covariance
matrices in practical applications. The fault diagnosis
method will suffer from performance degradation if the
model uncertainty is not well defined by the process noise
covariance [20]. To overcome the difficulty, the adaptivity
of UKF should be improved. That is, the covariance matrices
of measurement and process noise should be adaptively
adjusted [8, 21, 22].

This paper proposes an adaptive UKF-based scheme to
detect bias faults and drift faults of the equalizing reservoir
pressure sensor. For the locomotive electro-pneumatic brake
system, different from existing UKF-based fault diagnosis
methods, the proposed scheme can detect incipient and
gradual sensor faults. The scheme introduced the Sage-
Husa mechanism to accurately estimate the pressure tran-
sients in the equalizing reservoir by filtering out the mea-
surement noise and the changing process noise of the
brake system. Further, the Sequential Probability Ratio Test
is utilized to evaluate the residual, the difference between
the estimated pressure, and the online sensor measurement.
By combining the Sage-Husa mechanism and Sequential
Probability Ratio Test, the proposed scheme can detect the
incipient and gradual sensor faults of the locomotive
electro-pneumatic brake system. The main contributions in
this paper include the following:

(i) The mechanism of the electro-pneumatic brake sys-
tem is analysed adequately, and the accurate analyt-
ical pressure model is established

(ii) The adaptive UKF is applied to estimate the system
output pressure, improving the robustness of the
fault diagnosis approach under the uncertainty
and noise

(iii) The Sequential Probability Ratio Test is introduced
to evaluate the residual to minimize the occurrence
of misinformation or false detection in fault
diagnosis

The rest of this paper is organized as follows. Section 2
gives a description of the brake system and builds the math-
ematical model. Section 3 introduces the theory of adaptive
UKF and presents the fault diagnosis scheme of the pressure
sensor bias and drift faults. Section 4 shows the experimental
results and analysis. Finally, the conclusion is drawn in Sec-
tion 5.

2. System Model and Problem Formulation

2.1. Principle of the Electro-Pneumatic Brake System. The
electro-pneumatic brake system (see Figure 1) consists of
the mechanical, pneumatic, and electric subsystem. The
mechanical subsystem is the foundation brake rigging which
mainly consists of the brake pads, drum, and shoes. The
pneumatic subsystem consists of many components, includ-
ing the main reservoir, the brake pipe and chamber, an
equalizing reservoir, a relay valve, and a compressor. The
electrical subsystem mainly contains a brake control unit
(BCU), pressure sensors, and solenoid valves (brake valve
and release valve).

2.2. Model of the Equalizing Reservoir Pressure Control
System. The ideal gas law equation is as follows:

P = nRT
V

, ð1Þ

which describes the quantitative relation among pressure, air
temperature, and volume of a chamber, where n, R, P, T , and
V represent the number of moles of the gas, the gas constant,
the absolute pressure, the absolute air temperature, and the
chamber volume, respectively. Assuming the volume V is
invariable, taking the derivative of the equation with respect
to time, we can get

_P = RT
V

qm, ð2Þ

where qm is the mass flow in the chamber. According to Ber-
noulli’s equation for adiabatic and isentropic airflow, qm is
calculated as follows [23]:
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where R and T have the same meanings as those in the ideal
gas law equation. Pd and Pu are the downstream pressure
and upstream pressure, respectively. C1 and C2 are the flow
rate coefficients. γ represents the adiabatic exponent of air,
and A represents the orifice passage area. By combining (1)
and (2), the equalizing reservoir pressure transients of the
brake system in different operating modes can be formulated
as (4), (5), and (6).

The equalizing reservoir pressure dynamics in the release
process is formulated as

_P =

PsC1A1
ffiffiffiffiffiffiffi
TR

p

V
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where P is the equalizing reservoir pressure, Ps is the main
reservoir pressure, A1 represents the orifice passage area of
the release valve, and V is the equalizing reservoir volume.

The pressure in the equalizing reservoir remains steady
in the hold mode. Then, the pressure dynamics can be
described as

_P = 0: ð5Þ

The equalizing reservoir pressure dynamics in the brak-
ing process is formulated as

_P =
−
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where Po is the atmosphere pressure, A2 represents the ori-
fice passage area of the brake valve, and C3 and C4 are the
flow rate coefficients.

From (4) and (6), we can know that the brake system is
strongly nonlinear; thus, we choose the UKF as the pressure
estimator. The mathematical model should be as accurate as
possible in order to realize an effective fault diagnosis
scheme. Therefore, the parameters in the models should be
obtained accurately. The equalizing reservoir volume, the
orifice passage areas of the release valve, and the brake valve
can be measured directly. However, the flow rate coefficients
in (4) and (6) need to be identified. In this paper, the flow
rate coefficients C1 ~ C4 are identified by the least square
method [24]. The validity of the model is tested by experi-
ments, which is described in Section 4.

3. The Proposed Sensor Fault
Diagnosis Method

The theory of adaptive UKF and the proposed sensor fault
diagnosis method are introduced in this section. Firstly, the
principle of adaptive UKF is developed, and then, the algo-
rithm is applied to fault diagnosis of the equalizing reservoir
pressure sensor.

3.1. The Theory of Adaptive UKF. Based on the theory of tra-
ditional UKF, the prior statistics of the process noise is used
to compensate for the changing model uncertainty [25],
which is adaptively corrected by the Sage-Husa noise estima-
tor. The UKF is used for the discrete system generally. The
general form of a discrete nonlinear system is defined by

xk+1 = f xk, ykð Þ + qk = Fkxk + Bkuk + qk,
yk = h xkð Þ + rk,

(
ð7Þ

where uk and xk are the input vector and n-dimensional state
vector, respectively. yk is the m-dimensional observation
vector. qk and rk represent the process noise and measure-
ment noise, respectively, which are the Gaussian white noise
with zero mean.
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pressure
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Reduction valve

Brake control
unit

Release valve Brake valve

Orifice 1 Orifice 2
Atmosphere

Equalizing reservoir
pressure system
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brake rigging

Pressure sensor
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Equalizing reservoir

…

Brake pipeRelay valve
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Figure 1: The schematic of the locomotive electro-pneumatic brake system.
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Normally, the statistics of the measurement noise and
process noise is unvarying in the UKF. However, the pro-
cess noise of the brake system is varying and difficult to be
determined. The measurement noise lies on the accuracy
of the pressure sensor and is relatively constant. The sta-
tistics of process noise is described by the covariance
matrices Q. Similarly, the measurement noise R can be cal-
culated from historical measurements. Then, the Sage-
Husa method is applied to tune the covariance matrices
Q adaptively. The Sage-Husa suboptimal noise estimator
is depicted as follows [26]:

dk =
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1 − bk

� � ,

vk = yk − h �xk∣k−1
� �

,
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where b ∈ ð0:95,0:99Þ is the forgetting factor and Kk is the
Kalman gain.

The more the process and measurement noise change,
the higher the value of b. The Sage-Husa noise estimator
cannot normally work when the prior statistical characteris-
tic of noises is unknown; otherwise, the filter will diverge
[27]. The statistics of the measurement noises in the brake
system can be obtained according to historical
measurements.

3.2. Residual Evaluation through the Sequential Probability
Ratio Test. In order to minimize the occurrence of misinfor-
mation or false detection in fault diagnosis, [28] proposed an
improved Sequential Probability Ratio Test (SPRT) method.
In this method, statistical hypothesis tests are used, where
H0 and H1 are supposed to be the nonfault hypothesis and
faulty hypothesis, respectively [29]. The residuals under
fault-free condition conform to a normal random variable
(variance value σ and mean value μ0), while the residuals
in faulty condition have the same variance value σ, whose
mean value is μ1. The log-likelihood ratio is calculated as fol-
lows:

L kð Þ = ln p ri ∣H0ð Þ
ri ∣H1ð Þ = k �rk − μ0ð Þ2

2σ2 , �rk =
1
k
〠
k

i=1
ri: ð9Þ

The fault detection is then converted into detecting the
changes of the residual mean. When there is no fault, LðkÞ
is near to zero. When there is a fault, �rk would be away from
μ0 and LðkÞ would be away from zero.

A fault is detected when LðkÞ ≥ TðH1Þ, where TðH1Þ is
the threshold, PM is the missing report rate, and PF is the
false alarm rate. In this paper, we set PM = 0:01, PF = 0:01,
and TðH1Þ = 4:595. When k is too large, LðkÞ will exceed
TðH1Þ even though a small deviation between �rk and μ0
exists. In order to solve the issue, we set an upper bound,
2000 on k, and the upper bound is calibrated through
experiments.

3.3. The Proposed Sensor Fault Diagnosis Method. The sche-
matic of the proposed sensor fault diagnosis approach is
described in Figure 2. It is assumed that the process and
measurement noise of the equalizing reservoir pressure sys-
tem is the Gaussian white noise. Thus, an adaptive UKF can
be employed to estimate output pressure according to the
inputs and outputs of equalizing reservoir pressure system.
The inputs of the equalizing reservoir pressure system are
generated by the brake control unit. The outputs of the
equalizing reservoir pressure system are measured by a pres-
sure sensor. Then, the residual is generated by subtracting
the pressure sensor measurement from the adaptive UKF
pressure estimation. Afterwards, the residual is passed
through the Sequential Probability Ratio Test to increase
the sensing sensitivity. By comparing the preset threshold,
the fault detection result can be obtained.

The adaptive UKF is applied as the state estimator in this
paper. Based on the conventional UKF algorithm, the mea-
surement noise and process noise covariance is adaptively
tuned according to (7) by using the Sage-Husa method.
The fault diagnosis scheme is based on the equalizing reser-
voir pressure system models (3), (4), and (5). Since the sys-
tem is nonlinear, we choose the Runge-Kutta methods to
discretize the system models. Because the UKF algorithm
can achieve third-order accuracy of the covariance and pos-
terior mean [18], we use the second-order Runge-Kutta
method [30], whose local truncation error is Oðh3Þ and h
is the step size. The process of the proposed sensor fault
diagnosis scheme is depicted in Algorithm 1, where the
equalizing reservoir pressure, P, is chosen as the state vari-
able, and the system state equations (3), (4), and (5) are sim-
plified as _x = f ðxÞ. The observation equation is y = x, where y
is the pressure sensor measurement. T = 0:02 (second) is the
step size.

4. Simulation Results and Discussions

We construct an experimental platform for the equalizing
reservoir pressure system and verify the effectiveness and
feasibility of the proposed sensor fault diagnosis strategy.
The experimental platform (see Figure 3) is part of the real
locomotive electro-pneumatic brake.

The detailed parameters of the mathematical models are
shown in Table 1, and the flow rate coefficients of the system
are identified by the least square method. Firstly, the validity
of the mathematical model of the equalizing reservoir pres-
sure system is verified by experiments. Then, bias faults
and drift faults are injected into the equalizing reservoir
pressure sensor, and fault diagnosis performance of the pro-
posed method is evaluated. Finally, fault diagnosis perfor-
mance of the proposed method is compared with that of
the Luenberger observer.

4.1. Model Verification. Figure 4 depicts the equalizing reser-
voir pressure transients, where the red line represents the
equalizing reservoir pressure measured by a normal sensor
and the blue line represents the pressure calculated from
the mathematical model. The relative error between sensor
measurement and model output is described by the green
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line. The equalizing reservoir pressure transients in the brak-
ing process are illustrated (see Figure 5), and the relative
error between sensor measurement and model output is
plotted by the green line. It can be found that the accuracy
of the system model is high adequately.

4.2. Bias Fault Detection. The residuals resulted from sensor
bias faults in the release process are shown (see Figure 6),
and the bias faults are injected to the sensor at the third sec-
ond after the release operation. In this figure, the blue line
describes the residuals resulting from the bias fault whose
magnitude is 1 kPa, and the residuals resulting from the bias
fault of 2 kPa magnitude are depicted by the red line. We see
that the amplitude of the residuals changes after the bias
fault occurs (see Figure 6). The larger the fault magnitude,
the larger the residual magnitude. The fault detection result
of sensor bias faults with different magnitudes is shown in
the release process (see Figure 7). In this figure, we can see
that the bias fault whose magnitude is 2 kPa is detected,
while the bias fault of 1 kPa magnitude has not been
detected. This is because the model is not accurate enough.
To improve the sensitivity of fault detection, the model
needs to be sufficiently accurate.

The residuals of sensor bias faults in the braking process
are depicted (see Figure 8), and sensor bias faults with differ-
ent magnitudes occur at the eighth second after the braking
operation. The blue line represents the residuals of the bias
fault whose magnitude is 1 kPa, and the bias fault of 2 kPa
magnitude is represented by the red line. We can know that

Brake control
unit

Inputs Equalizing reservoir
pressure system

Pressure
sensor

Pressure

Estimated pressureAdaptive UKF

Sequential probability
ratio test

Fault detection result

Residual

Figure 2: Schematic of the proposed sensor fault diagnosis method.

1: Determination of the system state equation and observation equation: the system state equation _x = f ðxÞ and the observation equa-
tion y = x;
2: Discretization of the system equation and observation equation: discretized system equation xk+1 = xk + ðT/2Þ × ðk1 + k2Þ, k1 = f ðxkÞ
and k2 = f ðxk + T × k1Þ, T = 0:02 ; discretized observation equation yk = xk;
3: Initialization: for k = 0, set: �x0 = E½x0�, initial estimation error covariance P0 = E½ðx0 − �x0Þðx0 − �x0ÞT �, initial process noise covari-
ance Q0 = 0:1, measurement noise covariance R = 0:03;
4: Time update and measurement update for k = 1, 2,⋯;
5: residual generation by making a difference between the pressure sensor measurement and the UKF estimation rk = �xk − yk;
6: residual evaluation through Sequential Probability Ratio Test;
7: gotoTime update and measurement update

Algorithm 1: The procedure of sensor fault diagnosis.

Figure 3: The experimental platform for the equalizing reservoir
pressure control system, which is part of the real locomotive
electro-pneumatic brake, including the following: (a) upper
computer, (b) brake control unit, (c) value and installation gas
circuit plate, (d) pressure sensor, (e) equalizing cylinder, and (f)
cylinder to simulate a train pipe.

Table 1: Parameters of the system model.

Parameter Value Parameter Value

Ps 650 kPa Po 101.33 kPa

A1 4mm2 A2 3mm2

T 293K R 287 J/(kg·K)
γ 1.403 V 1.5 L

C1 0.4593 C2 0.4362

C3 0.2505 C4 0.1905
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the residual magnitudes change after the bias fault occurs
(see Figure 8). The fault detection result of sensor bias faults
with different magnitudes is shown in the braking process

(see Figure 9). From the figure, we can see that the bias fault
of 2 kPa magnitude has been detected, while the bias fault
whose magnitude is 1 kPa has not been detected.

4.3. Drift Fault Detection. In this part, the drift fault detec-
tion is implemented in the braking and release processes,
which is simulated by injecting a varying error to the mea-
surement process, and the error magnitude increases each
sampling period.

The residuals resulting from a sensor drift fault in the
release process are described (see Figure 10), and the sensor
drift fault occurs at the third second after the release opera-
tion. The measurement error increases artificially by
0.02 kPa each sampling period to simulate the drift fault. It
can be seen that the residual changes slightly after the drift
fault occurs (see Figure 10). The sensor drift fault detection
results are shown in the release process (see Figure 11),
where the log-likelihood ratio, LðkÞ, changes after the fault
occurrence. The drift fault is detected about 2.5 seconds after
its occurrence. Then, we can conclude that the Sequential
Probability Ratio Test method has excellent performance
in detecting the gradual fault. The drift fault detection result
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Figure 4: Pressure transients measured by a sensor and calculated by a mathematical model in the release process.
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Figure 5: Pressure transients measured by a sensor and calculated by a mathematical model in the braking process.
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of the equalizing reservoir pressure sensor in the braking
process is similar to that in the release process.

4.4. Performance Comparison of Sensor Fault Diagnosis
Methods. In order to compare the performance of different
fault diagnosis methods, the residual of the proposed fault
diagnosis method is compared with that of the Luenberger
observer during the brake release procedure. Residual com-
parison of different methods is carried out when the
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locomotive electro-pneumatic brake system is operated
under normal conditions. In the experiment, the residuals
are generated by subtracting the sensor measurement from
the equalization cylinder pressure estimated by the observer
and the proposed method based on the adaptive unscented
Kalman filter, respectively.

In Figure 12, the blue line describes the residuals of the
fault detection method based on the adaptive untraceless
Kalman filter. The black line represents the residuals of the
Luenberger observer. And the red line represents the fault
detection threshold. From Figure 12, it can be seen that there
are many false error detections when using the Luenberger
observer for fault detection, because the error of the mecha-
nism model is too large. If the threshold is increased to
reduce the false positive rate of the Luenberger observer
method, the sensitivity of the Luenberger observer method
will be reduced. On the contrary, the residual error of the
proposed method is much smaller than that of the Luenber-
ger observer method and fluctuates little. By comparing the
residuals generated by the two methods and analysing the
fault detection results, the conclusion can be drawn that
the proposed fault detection method has better accuracy
and sensitivity than the Luenberger observer method. This
is because the adaptive unscented Kalman filter can filter
out the changing process noise and measurement noise
and accurately estimate the pressure of the equalizing air
cylinder.

5. Conclusions

This paper proposes an efficient and novel model-based sen-
sor fault diagnosis algorithm based on UKF for the locomo-
tive electro-pneumatic brake system. For this purpose, the
accurate pressure mathematical model is first built. Then,
an adaptive UKF is applied to estimate the pressure tran-
sients of the equalizing reservoir to improve the algorithm’s
robustness. The residuals are calculated, and the residual
evaluation is implemented by an improved Sequential Prob-
ability Ratio Test method. The proposed algorithm can effi-
ciently detect drift faults and bias faults of the equalizing
reservoir pressure sensor. Experiments validate the feasibil-
ity and effectiveness. The future work that needs to be inves-
tigated is to improve the fault detection sensitivity for minor
and gradual fault.

Data Availability

The data used to support the findings of the manuscript are
available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by one grant from the
National Natural Science Foundation of China (No.

61803394) and one general project of Hunan Natural Sci-
ence Foundation (No. 2021JJ30876).

References

[1] C. Siva Chaitanya, S. C. Subramanian, P. Karthikeyan, and
N. Jagga Raju, “Modelling an electropneumatic brake system
for commercial vehicles,” IET Electrical Systems in Transporta-
tion, vol. 1, no. 1, pp. 41–48, 2011.

[2] G. Zhiwei, C. Cecati, and S. X. Ding, “A survey of fault diagno-
sis and fault-tolerant techniques part i: fault diagnosis with
model-based and signal-based approaches,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

[3] A. Ilchmann, O. Sawodny, and S. Trenn, “Pneumatic cylin-
ders: modelling and feedback force-control,” International
Journal of Control, vol. 79, no. 6, pp. 650–661, 2006.

[4] L. Wu and D. Ho, “Fuzzy filter design for ItÔ stochastic sys-
tems with application to sensor fault detection,” IEEE Transac-
tions on Fuzzy Systems, vol. 17, no. 1, pp. 233–242, 2009.

[5] G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor
fault detection and isolation method in interior permanent-
magnet synchronous motor drives based on an extended Kal-
man filter,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 8, pp. 3485–3495, 2013.

[6] B. Pourbabaee, N. Meskin, and K. Khorasani, “Sensor fault
detection, isolation, and identification using multiple-model-
based hybrid Kalman filter for gas turbine engines,” IEEE
Transactions on Control Systems Technology, vol. 24, no. 4,
pp. 1184–1200, 2015.

[7] Z. Liu and H. He, “Model-based sensor fault diagnosis of a
lithium-ion battery in electric vehicles,” Energies, vol. 8,
no. 7, pp. 6509–6527, 2015.

[8] P. Lu, L. Van Eykeren, E. J. Van Kampen, Q. P. Chu, and B. Yu,
“Adaptive hybrid unscented Kalman filter for aircraft sensor
fault detection, isolation and reconstruction,” in AIAA guid-
ance, navigation, and control conference, p. 1145, National
Harbor, Maryland, 2014.

[9] C. Huang, G. Huang, W. Liu, R. Wang, and M. Xie, “A parallel
joint optimized relay selection protocol for wake-up radio
enabledWSNs,” Physical Communication, vol. 47, no. 3, article
en8076509, p. 10320, 2021.

[10] R. J. Patton, “Fault detection and diagnosis in aerospace sys-
tems using analytical redundancy,” in IEE Colloquium on Con-
dition Monitoring and Fault Tolerance, p. 1, London, UK,
1990.

[11] R. Wang, Y. Cheng, and M. Xu, “Analytical redundancy based
fault diagnosis scheme for satellite attitude control systems,”
Journal of the Franklin Institute, vol. 352, no. 5, pp. 1906–
1931, 2015.

[12] M. Taiebat and F. Sassani, “Distinguishing sensor faults from
system faults by utilizing minimum sensor redundancy,”
Transactions of the Canadian Society for Mechanical Engineer-
ing, vol. 41, no. 3, pp. 469–487, 2017.

[13] D. Li, Y. Wang, J. Wang, C. Wang, and Y. Duan, “Recent
advances in sensor fault diagnosis: a review,” Sensors and Actu-
ators A: Physical, vol. 309, article 111990, 2020.

[14] Y. L. Ou, “Fault diagnosis with fuzzy expert system,” Applied
Mechanics and Materials, vol. 48, 2011.

[15] M. Geetha and J. Jerome, “Fuzzy expert system based sensor
and actuator fault diagnosis for continuous stirred tank

8 Journal of Sensors



reactor,” in 2013 International Conference on Fuzzy Theory
and Its Applications (iFUZZY), pp. 251–257, Taipei, Taiwan,
2013.

[16] K. Xiong, C. Chan, and H. Zhang, “Detection of satellite atti-
tude sensor faults using the UKF,” IEEE Transactions on Aero-
space and Electronic Systems, vol. 43, no. 2, pp. 480–491, 2007.

[17] F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson,
T. Orlowska-Kowalska, and S. Katsura, “Industrial applica-
tions of the Kalman filter: a review,” IEEE Transactions on
Industrial Electronics, vol. 60, no. 12, pp. 5458–5471, 2013.

[18] E. A. Wan and R. Van Der Merwe, “The unscented Kalman fil-
ter for nonlinear estimation,” in Proceedings of the IEEE 2000
Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373), pp. 153–158, Lake
Louise, AB, Canada, 2000.

[19] R. Van Der Merwe and E. A. Wan, “The square-root unscented
Kalman filter for state and parameter-estimation,” in 2001 IEEE
international conference on acoustics, speech, and signal process-
ing, pp. 3461–3464, Salt Lake City, UT, USA, 2001.

[20] L. Zhentong and H. Hongwen, “Sensor fault detection and iso-
lation for a lithium-ion battery pack in electric vehicles using
adaptive extended Kalman filter,” Applied Energy, vol. 185,
no. 2, pp. 2033–2044, 2017.

[21] A. Mirzaee and K. Salahshoor, “Fault diagnosis and accommo-
dation of nonlinear systems based on multiple-model adaptive
unscented Kalman filter and switched MPC and h-infinity
loop-shaping controller,” Journal of Process Control, vol. 22,
no. 3, pp. 626–634, 2012.

[22] F. Sun, X. Hu, Y. Zou, and S. Li, “Adaptive unscented Kalman
filtering for state of charge estimation of a lithium-ion battery
for electric vehicles,” Energy, vol. 36, no. 5, pp. 3531–3540, 2011.

[23] T. Nguyen, J. Leavitt, F. Jabbari, and J. E. Bobrow, “Accurate
sliding-mode control of pneumatic systems using low-cost
solenoid valves,” IEEE/ASME Transactions on Mechatronics,
vol. 12, no. 2, pp. 216–219, 2007.

[24] F. Alonge, F. D’Ippolito, and F. M. Raimondi, “Least squares
and genetic algorithms for parameter identification of induc-
tion motors,” Control Engineering Practice, vol. 9, no. 6,
pp. 647–657, 2001.

[25] K. Myers and B. Tapley, “Adaptive sequential estimation with
unknown noise statistics,” IEEE Transactions on Automatic
Control, vol. 21, no. 4, pp. 520–523, 1976.

[26] S. Yong and C. Han, “Adaptive UKF method with applications
to target tracking,” Acta Automatica Sinica, vol. 37, no. 6,
pp. 755–759, 2011.

[27] Y. Yang and W. Gao, “An optimal adaptive Kalman filter,”
Journal of Geodesy, vol. 80, no. 4, pp. 177–183, 2006.

[28] L. Kunpeng and Z. Qinghua, “An improved sequential proba-
bility ratio test method for residual test,” Electronics Optics &
Control, vol. 16, no. 8, pp. 36–39, 2009.

[29] A. Wald and J. Wolfowitz, “Optimum character of the sequen-
tial probability ratio test,” The Annals of Mathematical Statis-
tics, vol. 19, no. 3, pp. 326–339, 1948.

[30] M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W. S. Don,
“The theoretical accuracy of Runge–Kutta time discretizations
for the initial boundary value problem: a study of the boundary
error,” SIAM Journal on Scientific Computing, vol. 16, no. 6,
pp. 1241–1252, 1995.

9Journal of Sensors


	Sensor Fault Diagnosis of Locomotive Electro-Pneumatic Brake Using an Adaptive Unscented Kalman Filter
	1. Introduction
	2. System Model and Problem Formulation
	2.1. Principle of the Electro-Pneumatic Brake System
	2.2. Model of the Equalizing Reservoir Pressure Control System

	3. The Proposed Sensor Fault Diagnosis Method
	3.1. The Theory of Adaptive UKF
	3.2. Residual Evaluation through the Sequential Probability Ratio Test
	3.3. The Proposed Sensor Fault Diagnosis Method

	4. Simulation Results and Discussions
	4.1. Model Verification
	4.2. Bias Fault Detection
	4.3. Drift Fault Detection
	4.4. Performance Comparison of Sensor Fault Diagnosis Methods

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

