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The application of industrial wireless sensor networks (IWSNs) frequently appears in modern industry, and it is usually to deploy a
large quantity of sensor nodes in the monitoring area. This way of deployment improves the robustness of the IWSNs but
introduces many redundant nodes, thereby increasing unnecessary overhead. The purpose of this paper is to increase the
lifetime of IWSNs without changing the physical facilities and ensuring the coverage of sensors as much as possible. Therefore,
we propose a quantum clone grey wolf optimization (QCGWO) algorithm, design a sensor duty cycle model (SDCM) based on
real factory conditions, and use the QCGWO to optimize the SDCM. Specifically, QCGWO combines the concept of quantum
computing and the clone operation for avoiding the algorithm from falling into a local optimum. Subsequently, we compare the
proposed algorithm with the genetic algorithm (GA) and simulated annealing (SA) algorithm. The experimental results suggest
that the lifetime of the IWSNs based on QCGWO is longer than that of GA and SA, and the convergence speed of QCGWO is
also faster than that of GA and SA. In comparison with the traditional IWSN working mode, our model and algorithm can
effectively prolong the lifetime of IWSNs, thus greatly reducing the maintenance cost without replacing sensor nodes in actual
industrial production.

1. Introduction

As industrial wireless sensor networks (IWSNs) have more
and more applications in the factories, the way to prolong
the lifetime of IWSNs without changing the physical facilities
has become a hot issue [1, 2]. The content of this paper
includes the design of a sensor duty cycle model (SDCM)
for IWSN modeling and a novel group intelligence algorithm
based on grey wolf optimization for optimizing the SDCM.
By using the SDCM, we can conveniently increase the
lifetime of the IWSNs in the factory, thus avoiding the very
time-consuming, labor-intensive, and sometimes impossible
operations in real life [3]. In addition, the use of an artificial
intelligence algorithm to optimize the established model
can effectively prolong the lifetime of the IWSNs, thereby
reducing the maintenance cost of the IWSNs and increasing
the benefit of the factory [4, 5]. Furthermore, making full use
of existing devices can reduce the generation of discarded

equipment and protect the environment on the basis of
reducing resources.

In this research, we investigate the IWSNs frequently
used in factories, such as chemical sensors that monitor the
content of harmful gases, pressure sensors in industrial
production, and ultrasonic sensors in the field of industrial
automation. We find that these IWSNs are basically placed
by using the traditional wide-spreading method and then
periodically control some sensors to enter the sleep state for
saving energy [6]. This approach has two disadvantages,
one is that it cannot meet the requirements of full coverage,
another is it cannot minimize the energy consumption of
the sensors.

The goals of this article are to increase the lifetime of
IWSNs and reduce the cost of factory replacement of sensor
devices. The above goals are motivated by the actual needs
in the factory [7, 8]. In general, the purpose of using wire-
less sensors in factories is to monitor the production
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environment for ensuring safe production conditions. How-
ever, to achieve full coverage of the monitoring in the
production workshop, the factory has to place redundant
sensors to ensure the performance of the IWSNs, which
causes a lot of waste of sensor energy and speeds up the
replacement of sensors [9]. In this case, it is necessary to pro-
pose a method that can effectively utilize redundant sensors
for reducing the number of sensor replacements.

In the issue of improving the lifetime of IWSNs, it is
necessary to ensure high coverage of targets first and
then perform a sensor node duty cycle [10–12]. When
establishing the SDCM, we comprehensively consider
the sensor’s monitoring range and working time, then
give a mathematically measurable lifetime of the IWSNs.
Therefore, we can use an artificial intelligence algorithm
to optimize the lifetime of IWSNs through the SDCM.
The designed model has been verified by a series of
simulation experiments. For a given set of IWSN data,
it can be input into the SDCM by the sensor’s ability
of working time and coverage, then use our proposed
algorithm to optimize the SDCM for a longer lifetime
of the IWSNs.

The innovations of this research are as follows: (i) The
sleep mode of industrial wireless sensor nodes is modeled,
and the sensor duty cycle model is proposed. Through the
SDCM, the lifetime of IWSNs can be prolonged by using an
intelligent algorithm, thereby effectively reducing the fac-
tory’s maintenance costs for IWSNs. (ii) A novel GWO-
based intelligent algorithm is proposed, which uses the
quantum probability amplitude in quantum computing and
the clone concept in biology to avoid falling into local opti-
mum, thereby increasing the usability of the algorithm. In
addition, the performance of the proposed algorithm has
been compared with GA and SA.

The paper’s structure can be expressed as follows.
Relative researches on the duty cycle of sensors are given in
Section 2. Subsequently, Section 3 shows the evaluation
method of IWSN lifetime and the establishment of the
SDCM. In Section 4, in order to obtain the optimal IWSN
lifetime, we introduce a novel group intelligent algorithm
based on grey wolf optimization. Section 5 presents the
performance of the proposed model and algorithm through
simulation experiments and makes discussion. Finally, in
Section 6, the conclusion part is given.

2. Related Work

The current research on the duty cycle of IWSNs can be
divided into three types. The first and most used one is to
design a routing protocol for reducing the unnecessary
communication overhead of sensors; the second type uses
artificial intelligence methods to process sensor data for
obtaining a suitable mode of duty cycle; the third type applies
mathematical approaches to model IWSNs, then optimizes
the duty cycle of sensor nodes.

Firstly, a proper routing protocol can reduce communi-
cations of sensors in IWSNs. In [13], the authors use a three-
fold method to improve the lifetime of the IWSNs by
adjusting the duty cycle process of sensor nodes, then switch

between the active mode and the sleep mode according to the
trust value obtained by the nodes. On the other hand, to
better improve the service quality of IWSNs, the paper [14]
proposes an AODV routing protocol for surplus energy,
which realizes the reduction of energy consumption of
IWSNs through cross-layer design. Similar to the paper
[18], another cross-layer routing method is also proposed.
In [15], the authors adjust the wake-up and sleep of nodes
in the forwarding stage through the cooperation of routing
andMAC layer. Then, the paper [16] proposes a routing pro-
tocol for anycast. Each sensor node decides how to transmit
data based on its local information and dynamically changes
the node’s duty cycle status. What is more, for the purpose of
solving the problem of excessive energy consumption of the
nodes around the sink node in the IWSNs, the paper [17]
proposes a method based on the path optimization of the
sink node and establishes a corresponding energy consump-
tion model. From other perspectives, the paper [18] uses
multihop communication to reduce the long-distance
communication overhead of nodes, proposes a routing pro-
tocol for clustering nodes, and uses a multihop simulated
annealing algorithm to select intermediate nodes. In [19],
the authors propose a perceptual routing protocol including
network scheduling and task cycle, which helps sensor
nodes to continuously monitor. However, the above
methods for improving the duty cycle model by using
routing protocol do not consider the way of placement
for wireless sensors in the real environment. They only
reduce the energy consumption of each sensor node but
ignore the premise that there is a large quantity of redun-
dant nodes in the IWSNs.

Secondly, artificial intelligence technology can also effec-
tively improve the duty cycle of sensor nodes. In [20], the
authors use reinforcement learning to maximize the sensing
quality of the sensor nodes, then perform duty cycle based
on the available energy, and use the collected energy to make
the nodes continuously adapt to the changing environment.
With the same purpose of prolonging lifetime of the IWSNs,
the paper [21] expresses the position distribution of sensors
as an optimization problem and then proposes a cuckoo
algorithm to solve the problem, thereby obtaining the
optimal position of sensor nodes. In [22], the authors use
Q-learning technology and linear regression function to
design a MAC protocol. The protocol takes the relation-
ship between load conditions and performance into
account and makes up for the disadvantage of Q-learning,
and it can do low-latency sensor scheduling. Although
these methods can improve the lifetime of the IWSNs,
they do not consider the convergence speed of the algo-
rithm, and they also fail to make good use of redundant
nodes in the IWSNs.

Finally, there are some researches to optimize sensor
duty cycle from other aspects. In [23], the authors con-
sider the asymmetry of the asynchronous duty cycle,
obtain the upper and lower limits of the node’s duty cycle,
and use block design to establish the duty cycle model.
The paper [21] uses empirical data to find the noise rela-
tionship between the maximum discovery time and the
duty cycle by analyzing the error of the proposed model,
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and it concludes that the same duty cycle value in an
asymmetric scenario can achieve low latency. However, it
only considers how to use a node duty cycle to obtain
low-latency information transmission and does not pay
attention to prolonging the lifetime of the IWSNs.

The previous researches only solve the problem of
reducing the communication overhead of each sensor
node, thereby achieving the purpose of increasing the
lifetime of the IWSNs. They do not make good use of
the large quantity of redundant nodes and do not con-
sider solving the problem from the entire network. We
can go a step further on the basis of the previous work.
On the premise of meeting the requirements of indus-
trial production, we use duty cycle to shut down redun-
dant nodes and reduce the communication overhead of
each node, hence the maximum of the lifetime in the
IWSNs.

In this paper, we start from the entire wireless sensor
network and model the real factory IWSNs. Particularly,
our model not only considers the coverage capability of
the sensor nodes but also makes the lifetime of the sensor
nodes measurable, which is more convenient for subse-
quent optimization. To reduce sensor communications,
we design a novel heuristic optimization algorithm, which
can effectively improve the convergence performance and
avoid falling into the local optimum, so that the lifetime
of the IWSNs can be prolonged.

3. System Model

3.1. Problem Description. In the real factory scene, the tar-
get coverage of IWSNs can be divided into two types.
One is full coverage, which means every target being cov-
ered and monitored by at least one sensor node at every
moment. The other is to improve coverage rate, which is
often used in environments where full coverage is impos-
sible. In most cases, the placement of factory sensors is
redundant, which aims to decrease the occurrence of
accidents. Redundant placement often meets the require-
ment of full coverage. Under the premise of redundant
nodes, we can perform duty cycle operation on sensor
nodes for saving energy, thereby prolonging the lifetime
of the IWSNs.

In this paper, with the aim of facilitating the modeling of
the sensor node duty cycle problem from a mathematical
perspective, we propose a concept of measurable sensor life-
time, which can be explained as follows: general industrial
sensors have their service lifetime, different types of sensors
have different values, and even the same type of sensors will
have different lifetime values. However, to make the sensors
produced by factories more competitive in the market, man-
ufacturers often give the theoretical lifetime of the sensors.
Working under more severe conditions than usual, the theo-
retical lifetime can be obtained by converting the working
lifetime with a certain calculation formula. Therefore, with
the theoretical lifetime of the sensors, we can divide the life-
time and mathematically model it through the operation of
the duty cycle.

To better understand the sensor duty cycle model
(SDCM), we use an example to illustrate it. In Figure 1, three
targets are monitored by three sensor nodes with circular
monitoring radii, and the monitor requirement is full cover-
age. The sensor nodes N1, N2, and N3 are, respectively, rep-
resented by points located at the center of the circle, the
monitored targets T1, T2, and T3 are symbolized by trian-
gles, and the circle stands for the monitoring radius of the
sensor node.

According to Figure 1, we can know that N1 covers T1
and T2, N2 covers T2 and T3, and N3 covers T1, T2, and T
3. Assume that the lifetime of each sensor node can be
divided into two rounds. If the duty cycle operation is not
performed, the total working time of the entire IWSNs is
two rounds, which are as follows: the first round, we turn
on N1, N2, and N3, and the second round, we also make N
1, N2, and N3 in active mode. However, under the premise
of ensuring full coverage, if we divide the sensors into differ-
ent coverage sets and only turn on one coverage set in each
round, we can prolong the lifetime of the IWSNs through
duty cycle operation. Specifically, in the above case, N1 and
N2 can form a coverage set, and N3 can be another one. In
the first and second rounds, we can only switch on N1 and
N2 and turn off N3 for saving energy. At the end of the sec-
ond round, the energy ofN1 andN2 is exhausted; in the third
and fourth rounds, we turn on theN3 node. At the end of the
fourth round, the energy of the three sensor nodes has been
exhausted. Obviously, the lifetime of the IWSNs has
increased from the previous two rounds to four rounds
through the duty cycle operation while ensuring the full cov-
erage of the targets.

In modern IWSNs, with the increase of redundant
nodes and the improvement of sensor coverage, the duty
cycle operation of sensor nodes plays a more and more
important role. Subsequently, we establish a mathematical
model for using an artificial intelligence algorithm to opti-
mize the SDCM.

3.2. Sensor Duty Cycle Model. Suppose there are X sensor
nodes and Kmonitoring targets in the IWSNs. In the SDCM,
in order to ensure that the sensors complete full coverage of
the targets, we first create a matrix S for expressing the

N1 N2

N3

T1

T2

T3

Figure 1: Coverage relationship between sensors and targets.
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coverage relationship between sensors and targets, which can
be shown as

S =

s1,1 s1,2 ⋯ s1,K−1 s1,K

s2,1 s2,2 ⋯ s2,K−1 s2,K

⋮ sx,k ⋮

sX−1,1 sX−1,2 ⋯ sX−1,K−1 sX−1,K

sX,1 sX,2 ⋯ sX,K−1 sX,K

2
666666664

3
777777775

sx,k ∈ 0, 1f gð Þ,

ð1Þ

where sx,k represents the monitoring relationship between the
xth sensor and the kth target. sx,k = 0 means that the sensor
cannot detect the target node, and sx,k = 1 means that the
target node is within the monitoring range of the sensor.

However, a coverage relationship matrix is not enough
for establishing the SDCM, it is also necessary to create a duty
cycle sequence matrix. Combining the previously described
concept of measurable lifetime, we divide the theoretical
lifetime of each sensor into N rounds. It is not difficult to
conclude that the maximum life of the entire wireless sensor
network is XN rounds, where X is the number of sensors.
The duty cycle sequence matrix can be expressed as

where ti,x = 1 indicates that, in the ith round, the xth sensor
node is in the active state, and ti,x = 0 denotes that the xth
sensor node is in the sleep state in the ith round.

To obtain the monitoring matrix between the xth sensor
node and the kth monitored target in each round, we need
to multiply the matrix T and the matrixC. The reason for this
approach is that T is a duty cycle sequence matrix with XN
rows and X columns, and S is a sensor coverage matrix
with X rows and K columns. To obtain the monitoring

relationship matrix TS between the sensor node and the
monitored target, it is necessary to multiply the T matrix by
the S matrix to obtain a matrix of XN rows and K columns.
The rows of the TS represent the monitoring relationship
of the sensor to the target in the round. If the elements in
the ith row are all 1, i ∈ ð1, XNÞ, it means that the sensor net-
work has completed full coverage in the ith round and
reached the set goal. If there is 0 in the ith row, the task fails
in the ith round. The monitoring matrix can be shown as

In equation (3), ∑X
x=1ti,xsx,k = 0 means that the kth monitored

target in the ith round is not monitored by any sensor, and
∑X

x=1ti,xsx,k = pðp > 0Þ represents that the kth monitored target

in the ith round is monitored by p sensors. The requirement
of full coverage shown in the matrix TS is that the elements in
a row are all positive numbers.

T =

t1,1 t1,2 ⋯ t1,X−1 t1,X

t2,1 t2,2 ⋯ t2,X−1 t2,X

⋮ ti,x ⋮

tXN−1,1 tXN−1,2 ⋯ tXN−1,X−1 tXN−1,X

tXN ,1 tXN ,2 ⋯ tXN ,X−1 tXN ,X

2
666666664

3
777777775

ti,x ∈ 0, 1f gð Þ, ð2Þ

TS =

〠
X

x=1
t1,xsx,1 〠

X

x=1
t1,xsx,2 ⋯ 〠

X

x=1
t1,xsx,K−1 〠

X

x=1
t1,xsx,K

〠
X

x=1
t2,xsx,1 〠

X

x=1
t2,xsx,2 ⋯ 〠

X

x=1
t2,xsx,K−1 〠

X

x=1
t2,xsx,K

⋮ 〠
X

x=1
ti,xsx,k ⋮

〠
X

x=1
tXN−1,xsx,1 〠

X

x=1
tXN−1,xsx,2 ⋯ 〠

X

x=1
tXN−1,xsx,K−1 〠

X

x=1
tXN−1,xsx,K

〠
X

x=1
tXN ,xsx,1 〠

X

x=1
tXN ,xsx,2 ⋯ 〠

X

x=1
tXN ,xsx,K−1 〠

X

x=1
tXN ,xsx,K

2
66666666666666666666664

3
77777777777777777777775

: ð3Þ
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To calculate the lifetime of the IWSNs, we define the
fitness function first zero to represent the number of
rows where the first element 0 appears in the matrix TS
and define the restriction condition. Therefore, the SDCM
can be expressed as a fitness function (4) and restriction
condition (5).

f Tð Þ = first zero TSð Þ − 1, ð4Þ

〠
XN

x=1
ti,x ≤N , x = 1⋯ X, ð5Þ

where T represents the duty cycle sequence matrix, and N
denotes the lifetime cycle number of each sensor. The reason
of the fitness function (4) is because under the requirement of
sensor node full coverage, only the elements in the row of
matrix TS are all 1, which means that the task is completed.
Since the coverage cannot appear gaps, the lifetime value of
IWSNs is the number of rows where the first zero element
appears minus 1. Equation (5) shows the working lifetime
of each sensor does not exceed N rounds.

Subsequently, due to the complexity of the sensor duty
cycle increases exponentially with the number of sensor
nodes and working lifetime, we decide to use a novel heuristic
algorithm to solve this problem.

4. QCGWO-Based Duty Cycle in IWSNs to
Maximize Network Lifetime

In IWSNs, obtaining the longest network lifetime of sensors
in the duty cycle problem is obviously an NP-difficult prob-
lem. For the purpose of gaining the optimal solution of the
sensor duty cycle, we design a heuristic optimization algo-
rithm based on the gray wolf optimization (GWO) algo-
rithm. The GWO is a group intelligent optimization
algorithm proposed in 2014, and it has the characteristics
of simple operation and few parameters. However, the tradi-
tional GWO is prone to falling into the local optimum, and
its global search ability is difficult to control. To overcome
these disadvantages, we combine the concept of quantum
computing and clone with GWO, then propose a quantum
clone gray wolf optimization (QCGWO) algorithm.

The description of the process for QCGWO are problem
coding, population initialization, fitness calculation and class
division, update wolf population and algorithm parameters,
quantum probability amplitude and quantum revolving gate,
clone expansion, and termination operation.

4.1. Problem Coding. In the sensor duty cycle problem, the
key is to control the sensor to turn on at an appropriate
time, so that redundant nodes can be fully utilized and
the energy consumption of the sensor network can be
reduced. Assuming that different sensors in IWSNs can
be divided into the same number of lifetime rounds, since
the opening and the closing are a group of Boolean values,
we decide to use binary coding in the duty cycle problem.
Zero means that the sensor is turned off in this round;
otherwise, 1 means that the sensor is turned on in this
round. There are two core matrices in the above-

mentioned sensor duty cycle problem, one is the sensor
coverage matrix S, and the other is the sensor duty cycle
sequence matrix T. The coverage matrix S is generated
only once in the algorithm, and subsequent duty cycle
operations are based on it. Each wolf in QCGWO carries
a sequence matrix T, and the matrix T is optimized
through the proposed algorithm until the algorithm ends
and an optimal solution is obtained. To enhance the
understanding of the sequence matrix T, we gave an
example for illustrating. Suppose that the working lifetime
of each sensor is 2 rounds and there are 2 sensors in
IWSNs, then the rows of the matrix T are 2 × 2 = 4, and

𝛼

𝛽

𝛿

𝜔

Figure 2: Diagram of wolf population level.
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Clone operation

After clone

𝛼

𝛼

𝛽

𝛽

𝛽

𝛿
𝛼

𝛽

𝛿

𝜔

𝜔

𝜔

𝜔

𝛿

Figure 3: Clone operation.
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the columns are 2. The encoding of matrix T can be
expressed as

T =

0 1
1 1
1 0
0 0

2
666664

3
777775: ð6Þ

In (6), the sum of 1 in each column is 2, which means that the
lifetime of the sensor is 2 rounds. The first column indicates
that the first sensor turns on in the second and third rounds,
and the second column represents that the second sensor
turns on in the first and second rounds.

4.2. Population Initialization. In the QCGWA, every wolf is
a potential optimal solution. Due to each wolf carries a
two-dimensional matrix T, the population adopts a
three-dimensional encoding method. First, it is necessary
to calculate the distance between the sensor node and
the monitored target; then, the sensor coverage matrix S
is generated according to the monitoring range of the sen-
sor. In addition, because of the particularity of the sensor
duty cycle problem, we need to ensure that each sensor is
turned on to its maximum number of lifetime rounds;
hence, the initial wolf population is required to meet cer-
tain restrictions. Supposing that there are X sensor nodes
in IWSNs and the maximum lifetime of each sensor node
is N rounds, then the initialized individual in the popula-
tion can be represented by

In (7) and (8), p is a binary bit of the individual, and it
indicates the on state of the sensor, 0 means the sensor is
off, and 1 means the sensor is on.

4.3. Fitness Calculation and Class Division. The proposal of
QCGWO is based on the characteristics of gray wolves in
nature. Gray wolves are a group of animals, and they have a
strict social hierarchy in the population, as shown in
Figure 2. There are differences in quantity and work duty of
wolves in different classes. Specifically, the wolf with the
highest rank is called the Alpha wolf or the dominant wolf.
What is more, the Alpha wolf is not necessarily the strongest
wolf in the population, but the optimum at managing the
group, and its role is to make decisions about group activities.
The wolves in the second class are Beta wolves, which help
Alpha wolves make decisions and are potential candidates
for Alpha wolves. The wolves in the third class are called
Delta wolves, and they usually obey the command of Alpha
wolves and Beta wolves. At last, the Omega wolves are in
the lowest level; they have the lowest status but help maintain
the overall combat ability of the wolves.

In QCGWO, it is necessary to calculate the fitness of each
individual in the wolf group for obtaining different levels of
wolves. After initializing the population, we can calculate
the fitness of each individual according to equation (4), and
then, the individual with the highest fitness is divided into
Alpha wolves, and the remaining individuals are divided into

Beta wolves, Delta wolves, and Omega wolves according to
their fitness.

4.4. Update Wolf Population and Algorithm Parameters. In
the update mechanism of QCGWO, the process of encircling
prey by wolves is imitated; specifically, the QCGWO con-
siders the location of the wolves and the location of the prey.
Each update operation of the population is carried out
according to the position of the prey, so that the search for
the solution space of the problem is realized. In the sensor
node duty cycle problem, the prey refers to the individual
with the highest fitness. Subsequently, the update process
can be represented by

L = C ∗Oprey genð Þ −O genð Þ�� ��, ð9Þ

O gen + 1ð Þ =Oprey genð Þ − A ∗ L: ð10Þ
In (9) and (10),O andOprey represent the current positions of
the wolf and the prey, respectively, gen is the current itera-
tion number, and L stands for the distance between the wolf
and the prey. A and C are two vector coefficients, they can be
expressed as

A = 2a ∗ rand1 − a,

C = 2 ∗ rand2,
ð11Þ

individual =

p1,1 p1,2 ⋯ p1,X−1 p1,X

p2,1 p2,2 ⋯ p2,X−1 p2,X

⋮ pi,x ⋮

pXN−1,1 pXN−1,2 ⋯ pXN−1,X−1 pXN−1,X

pXN ,1 pXN ,2 ⋯ pXN ,X−1 pXN ,X

2
666666664

3
777777775

pi,x ∈ 0, 1f g� �
, ð7Þ

〠
XN

i=1
pi,m =N , m ∈ 1, 2,⋯,Xf g: ð8Þ
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where a is the convergence factor that decreases with the
number of iterations from 2 to 0, and rand1 and rand2 are
random numbers in [0,1].

In QCGWO, the approximate position of the prey is in
the middle of Alpha, Beta, and Delta wolves. Subsequently,
all wolves in the population surround the estimated position.
The movement process of wolves can be expressed as

Lα = C1 ∗Oα −Oj j, ð12Þ

Lβ = C2 ∗Oβ −O
�� ��, ð13Þ

Lδ = C3 ∗Oδ −Oj j, ð14Þ

O1 =Oα − A1 ∗ Lα, ð15Þ

O2 =Oβ − A2 ∗ Lβ, ð16Þ
O3 =Oδ − A3 ∗ Lδ: ð17Þ

In equations (12)–(17), O1, O2, and O3 represent the
positions of Alpha, Beta, and Delta wolves, respectively. Lα,

Begin

Initialize the algorithm parameters and the
population, and make the current iteration gen=1

Calculate the population fitness, find 𝛼, 𝛽, and 𝛿 in
the wolf population, set their positions as O

𝛼,
O

𝛽, and O
𝛿, respectively, and let Y= 𝛼

Is the current 𝛼 higher than the 
previous generation?

Update individual position according
to equation (19)

Let Y= 𝛼 update the position of the
wolf population

Calculate the population fitness, find
𝛼, 𝛽, and 𝛿 in the wolf population,

set their positions as O
𝛼, O𝛽, and O

𝛿,
respectively

Update the parameters A, C, and a of
the algorithm 

Update quantum probability
amplitude, execute quantum

revolving gate

gen=gen+1

Perform cloning and then mutate on
a large scale

No Yes Has gen reached the maximum
number of iterations? 

Output Y 

End

No
Yes

Figure 4: Steps of QCGWO.

Table 1: The experimental conditions in Figure 5.

Sensors Targets
Maximum
lifetime

Monitoring
radius (m)

Figure 5(a) 40 12 10 150

Figure 5(b) 50 15 10 150

Figure 5(c) 60 20 10 150

Figure 5(d) 100 30 10 150

Table 2: The experimental conditions in Figure 6.

Sensors Targets
Maximum
lifetime

Monitoring
radius (m)

Figure 6(a) 30 10 15 180

Figure 6(b) 45 15 15 180

Figure 6(c) 60 20 15 180

Figure 6(d) 75 25 15 180

Table 3: The experimental conditions in Figure 7.

Sensors Targets
Maximum
lifetime

Monitoring
radius (m)

Figure 7(a) 30 10 20 130

Figure 7(b) 50 15 20 130

Figure 7(c) 70 25 25 130

Figure 7(d) 100 30 25 130
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Lβ, and Lδ denote the distance from the current individual to
Alpha, Beta, and Delta wolves, respectively. What is more,
the process of wolves rounding up prey is shown in

Ogen+1 =
O1 genð Þ +O2 genð Þ +O3 genð Þ½ �

3 : ð18Þ

In (18), gen represents the current number of iterations.

4.5. Quantum Probability Amplitude and Quantum
Revolving Gate. QCGWO uses the natural parallel mecha-
nism of quantum computing to update the population.
Compared with the traditional gray wolf optimization algo-
rithm, the addition of quantum probability amplitude greatly
enhances the global parallel search capability of QCGWO,
which is a big difference between QCGWO and traditional
GWO. By combining qubits and quantum superposition

states, the convergence speed can be effectively improved
when solving the problem of a large-scale sensor duty cycle.
Furthermore, QCGWO represents each wolf in the popula-
tion with a set of binary quantum probability amplitude bits.
In the initial wolf population, all qubit probability amplitudes
on each wolf are produced by logistic chaotic mapping,
which is shown in

qz+1 = bqz 1 − qzð Þ, z = 0, 1,⋯, X: ð19Þ

In (19), b = 4 indicates that the mapping is in a chaotic state,
q represents the generated quantum probability amplitude,
and X is the number of sensors.

After all the wolves in the population are updated, in
order to enhance the population diversity, the quantum
revolving gate needs to be updated according to the qubits
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Figure 5: Network lifetime in comparison of the three algorithms: (a) 40 sensors and 12 targets; (b) 50 sensors and 15 targets; (c) 60 sensors
and 20 targets; (d) 100 sensors and 30 targets.
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on the Alpha wolves in the current population. The update
process can be shown as

y1
after

y2
after

" #
=

cos ε −sin ε

sin ε cos ε

" #
y1

y2

" #
: ð20Þ

In (20), y1 and y2 represent the quantum probability
amplitude before revolving, and ε is the angle of quantum
revolving.

4.6. Clonal Expansion. The purpose of clonal expansion is to
maximize the preservation of individuals with high adapt-
ability, which can obviously increase the convergence perfor-
mance of the QCGWO. At the same time, under the effect of
the quantum probability amplitude, the application of the
clone operator will not reduce the algorithm’s global search
ability, and the combination of clone and quantum effectively

improves the performance of QCGWO. In addition, the
selection of the clone parent is based on the fitness of the
individuals in the current population. The higher the fitness,
the more likely the individual is to be selected. For the same
purpose of increasing the diversity of the population, the tra-
ditional clone operation is updated in QCGWO, and the
cloned population is optimized through multilevel cloning.
The specific cloning operation can be expressed as Figure 3.

4.7. Termination Operation. In each iteration, QCGWO will
repeat the above process. If the QCGWO reaches the speci-
fied number of iterations, it will be terminated.

4.8. Steps of the Algorithm. The detailed process of QCGWO
is shown below.

Step 1. Initialize the parameters in QCGWO, randomly ini-
tialize the positions of the sensors and the targets, then
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Figure 6: Network lifetime in comparison of the three algorithms: (a) 30 sensors and 10 targets; (b) 45 sensors and 15 targets; (c) 60 sensors
and 20 targets; (d) 75 sensors and 25 targets.

9Journal of Sensors



generate the sensor coverage matrix S, and randomly gener-
ate the initial population. The initial quantum probability
amplitude is 0.5, and the initial iteration gen = 1:

Step 2. Calculate the fitness of each wolf in the population,
find α, β, and δ in the current population, and set their posi-
tions as Oα, Oβ, and Oδ, respectively.

Step 3. Update the positions of all individuals according to
equation (18).

Step 4. Calculate the fitness of wolves in the population, find
α, β, and δ in the current population, and set their positions
as Oα, Oβ, and Oδ, respectively.

Step 5. Update the parameters a, A, and C of the algorithm.

Step 6. Sort the fitness, and select the individuals with the
highest fitness as the parent to perform the clone operation.

Step 7. Perform large-scale mutation operations on the clonal
population. The mutation process uses the quantum proba-
bility amplitude.

Step 8. Calculate the fitness of the cloned population, and use
the cloned population as the population for the next iteration
process.

Step 9. Update the quantum probability amplitude according
to the individual with the highest fitness, and execute the
quantum revolving gate.

Step 10. gen = gen + 1, if the maximum number of iterations
is reached, terminate the algorithm, otherwise go to step 3.
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Figure 7: Network lifetime in comparison of the three algorithms: (a) 30 sensors and 10 targets; (b) 50 sensors and 15 targets; (c) 70 sensors
and 25 targets; (d) 100 sensors and 30 targets.
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The algorithm flow chart of QCGWO is shown in
Figure 4.

5. Results and Discussion

The QCGWOmethod we propose on solving the sensor duty
cycle problem will take a series of experiments, and QCGWO
has been compared with GA and SA for proving its effective-
ness. The comparison for the algorithms is carried out under
the conditions of different quantity of sensors, monitored
targets, different maximum sensor lifetime, and monitoring
area radius. In addition, all test cases are completed on the
machine with a R7 4800H 2.9GHz CPU, and the fitness used
in the algorithms is calculated according to formula (4).

With the purpose of enabling the three algorithms to be
compared under the same experimental conditions, we uni-
formly define the parameters commonly used in the sensor
duty cycle problem in the IWSNs. The number of iterations
is set to 100 generations, and the population size is 40. The
monitoring area of IWSNs is set as a square area with a side
length of 200, and the coordinates of the sensors and the tar-
get nodes are randomly generated in the area. In QCGWO,
the initial value of the quantum probability amplitude is set
to 0.5, the probability of the quantum revolving gate is set
to 0.05, and the mutation rate of the clone operation is 0.3.
In GA, the mutation rate of the population is 0.1, and the
crossover method is two-point crossover. In SA, the initial
temperature is 200, the annealing method is exponentially
decreased and the annealing factor is 0.95.

Tables 1–3 show the experimental conditions of
Figures 5–7, respectively.

In Figures 5(a)–5(d), the convergence speed of the three
algorithms is shown. Specifically, Figure 5(a) indicates that
QCGWO converged faster than GA and SA, and QCGWO
has maintained a fast convergence rate during the iterative
process. In contrast, SA fell into premature convergence in
the 40th iteration, and GA also fell into premature conver-
gence in the 60th iteration, so they are unable to find the opti-
mal solution. In Figure 5(b), the maximum network lifetime

obtained by QCGWO is 32.56 rounds. However, the optimal
solution obtained by GA is 25.08 rounds, and the optimal
solution obtained by SA is 23.14 rounds. The solutions of
QCGWO are 28% and 39% higher than GA and SA, respec-
tively. In Figure 5(c), GA and SA fell into the local optimum
in about 30 iterations, while QCGWO effectively jumped out
of the local optimum by its good global search ability. What is
more, in Figure 5(d), QCGWO has maintained rapid conver-
gence speed until the 90th generation finds the optimal solu-
tion 45.68; however, due to the premature convergence and
weak ability for jumping out of the local optimum, the high-
est solutions obtained by GA and SA are 33.43 and 28.59,
respectively, which are lower than the network lifetime of
QCGWO. The comparison of the solution quality of the
three algorithms in Figure 5 is shown in Table 4.

According to Table 4, it is obvious that the quality of the
solution obtained by using QCGWO is better than that of GA
and SA. Particularly, when the scale of IWSNs expands, the
advantages of QCGWO become more prominent.

Figures 6(a)–6(d) show the trend of the three algorithms
more clearly in the form of line charts. According to
Figure 6(a), in the 10th generation, QCGWO’s network life-
time value is already higher than GA and SA. Since then,
QCGWO has maintained a leading position and found the
optimal solution 40.10. Subsequently, Figure 6(b) shows
that GA and SA fall into premature convergence in the
40th generation, which leads to the local optimal solutions
of 36.47 and 27.89, respectively, while QCGWO effectively
obtains the optimal solution 51.66. In Figures 6(c) and
6(d), during the early iterations, QCGWO, GA, and SA
all converged very quickly, but it is obvious that both
GA and SA have fallen into local convergence. Therefore,
both GA and SA only got local optimal solutions, while
QCGWO obtained better solutions than them. In general,
QCGWO has better performance than GA and SA, and
the convergence speed of the three algorithms in Figure 6
can be shown as Table 5.

According to Table 5, we can find that in the same exper-
imental conditions, the number of iterations of QCGWO for

Table 4: Solution quality comparison.

The percentage of QCGWO’s solution
better than that of GA

The percentage of QCGWO’s solution
better than that of SA

Lifetime in Figure 5(a) 11.81% 16.23%

Lifetime in Figure 5(b) 27.46% 41.19%

Lifetime in Figure 5(c) 21.45% 57.71%

Lifetime in Figure 5(d) 33.04% 57.14%

Table 5: The comparison of convergence speed in Figure 6.

The specified lifetime rounds The number of iterations of QCGWO The number of iterations of GA The number of iterations of SA

30 rounds in Figure 6(a) 10 17 27

30 rounds in Figure 6(b) 8 18 22

40 rounds in Figure 6(c) 14 26 33

40 rounds in Figure 6(d) 14 24 28
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reaching the specified number of lifetime rounds is always
less than that of GA and SA, which proves the good conver-
gence performance of QCGWO.

With the purpose of making the network lifetimes obtained
by the three algorithms more obvious, Figures 7(a)–7(d) use
bar charts to display the data. In Figure 7(a), themaximumnet-
work lifetime values obtained by QCGWO, GA, and SA are
42.40, 31.50, and 30.30, respectively. In Figures 7(c) and 7(d),
the network lifetime obtained by QCGWO is also the highest,
with values of 49.35, 62.90, and 87.67, respectively. Moreover,
the values obtained by GA are 35.30, 50.40, and 61.33, respec-
tively, and the solutions obtained by SA are 31.50, 47.60, and
53.67, respectively. Therefore, under the specified experimen-
tal conditions, QCGWO always performed better than GA
and SA.

6. Conclusions

The purpose of this paper is to prolong the lifetime of the
IWSNs. Therefore, we modeled the industrial sensor network
in the real factory, proposed a quantum clone gray wolf opti-
mization (QCGWO) algorithm, designed the sensor duty
cycle model from a different perspective compared with the
previous works, and proposed a concept of measurable sen-
sor lifetime. The algorithm we proposed has the advantages
of high solution accuracy, strong convergence performance,
and strong global search ability. What is more, the QCGWO
learns from the traditional gray wolf optimization algorithm
(GWO), but we have achieved important innovations of
combining the GWO with some current popular technolo-
gies, including quantum operator and clone operator,
thereby effectively making up for the weakness of GWO that
is easy to fall into local optimum.

The effectiveness of the proposed model has been verified
by different experimental conditions in Section 5, and the
results suggested that the proposed model can achieve a
longer network lifetime. In addition, in order to prove the
advantages of the proposed algorithm in solving the sensor
duty cycle problem, we compare QCGWO with GA and
SA. The results show that the QCGWO is more competitive
than GA and SA in improving the lifetime of IWSNs. Finally,
we would like to highlight that the proposed model and the
QCGWO can successfully solve the sensor duty cycle prob-
lem, and the approach proposed in this paper provides a
new perspective for prolonging the network lifetime in
IWSNs.
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