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The navigation accuracy of laser strap-down inertial navigation products declines with gyro dither, which is a bottleneck problem
for the development of the important aviation instrument. The reason is that the dither of three gyros in the product couples and
generates extra noise in the output signals of gyros. To decouple dither, this paper applies the vibration absorber in laser inertial
navigation products. First of all, an angular vibration model of the three-rigid body system, which is constructed by the gyro,
platform, and vibration absorber, is established. Then, the theoretical restriction of the absorber and the system response are
derived. Finally, considering the power limitation for dither, the total power of the vibration system is analyzed. The analytical
and experimental results show that the efficiency of the vibration absorber only relates to the frequency offset with gyros, and
the absorber does lead to a sharp power increase.

1. Introduction

The dithered ring laser gyro (DRLG) is the most important
sensor for inertial navigation products, the accuracy require-
ment of which is increasing in engineering. The characteristic
where the output of DRLG keeps zero under small angular
rate input is called the lock-in effect. To eliminate the lock-
in effect, dither is involved in the operation of DRLG [1–3].
However, dithering coupled noise causes the accuracy of
DRLG to sharply decrease in products [4]. The origin of dith-
ering coupled noise is that the dither of one gyro excited the
platform to dither, which changes the dynamic state of the
other DRLG. As a result, the accuracy of other DRLG
declines because of the platform dither [5, 6]. This paper
attempts to apply the vibration absorber in inertial naviga-
tion products to eliminate dithering coupled noise. The the-
oretical contribution of this paper is to enhance the
accuracy of DRLG in products via involving the absorber
for angular vibration.

The previous study to decline the dithering coupled
noise mainly focuses on the optimization of the damping
system [7], the rational design of the inertial principal axis
[8], the damper characteristic analysis [9], the lock-in
error correction method [10, 11], and the increase of the
moment of inertia of the platform [12–14]. The inertial
measurement unit (IMU), which consists of accelerators,
DRLG, and platform, of inertial navigation products is
drawn in Figure 1.

The main idea of the above techniques is to make the
vibration response of the platform as small as possible. The
vibration absorber makes it possible for the platform to keep
beingmotionless [6, 15]. The principle is to transfer the certain
frequency vibration of the platform to the absorber. The
absorber can be divided into the active form, passive form,
half-active form, and hybrid form. The advantages of the pas-
sive absorber are simple structure, high reliability and stability,
and no energy requirement. Therefore, the passive absorber
has been widely used in aerospace, automotive, and other
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fields. The innovation of this paper is to apply the absorber for
angular vibration to DRLG, which dithers with a certain
frequency.

This paper is organized as follows. The three-rigid
body vibration model for the DRLG, platform, and
absorber is established in Section 2, while the analytical
expression of the total power of the system is derived
in Section 3. Then, the simulations and experiments are
illustrated in Section 4.

2. Vibration Modeling and Modal Analysis

Three DRLG in the IMU are dithering at the same time
under the operational situation, as is shown in Figure 1.
The axes of dithering are orthogonal. Therefore, it is rea-
sonable to absorb the dithering of one DRLG first to sim-
plify the derivation.

In general, the damping system of IMU consists of eight
dampers under the symmetrical arrangement and the DRLG
elastically connects with the platform. The three-rigid body
system is illustrated in Figure 2. To avoid confusion, the
moment of inertia mentioned below is calculated along the
dotted line in Figure 2.

2.1. Vibration Modeling. The equation of motion for an
undamped system is

M€q tð Þ +Kq tð Þ =Q: ð1Þ

Specifically, for the angular vibration of the model along
the dotted line in Figure 2, the moment of the inertia matrix is

M =
J1 0 0
0 J2 0
0 0 J3

2
664

3
775, ð2Þ

where J1 is the moment of inertia of the DRLG, J2 is the
moment of inertia of the platform, and J3 is the moment of
inertia of the absorber. The angular stiffness matrix is

K =
k1 −k1 0
−k1 k1 + k2 + k3 −k3
0 −k3 k3

2
664

3
775, ð3Þ

where k1 is the angular stiffness of the connection between the
DRLG and the platform, k2 is the angular stiffness of the con-
nection between the ground and the platform, and k3 is the
angular stiffness of the connection between the absorber and
the platform. The modal frequencies for the DRLG, the plat-
form, and the absorber as a single DOF system are

ω1 =
ffiffiffiffiffi
k1
J1

s
,

ω2 =
ffiffiffiffiffi
k2
J2

s
,

ω3 =
ffiffiffiffiffi
k3
J3

s
:

ð4Þ

The response is

q = θ1θ2θ3½ �: ð5Þ

The generalized force is

Q = M1 M2 M3½ �: ð6Þ

2.2. Modal Analysis. The eigenmatrix of this model [16] is

M−1K =

k1
J1

−
k1
J1

0
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Figure 1: The inertial measurement unit (the accelerators are
hidden).
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Figure 2: The three-rigid body angular vibration model of the
DRLG-platform-absorber. The green rectangle stands for the
DRLG, the transparent cuboid stands for the platform, and the
yellow rectangle stands for the absorber.
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When the frequency of the absorber is equal to that of the
DRLG, namely,

ω = k1
J1

= k3
J3
, ð8Þ

the eigenmatrix can be written as

M−1K =
c1 −c1 0
−c2 c3 −c4
0 −c1 c1

2
664

3
775: ð9Þ

For simplification, the expression of the eigenmatrix takes
the following variable substitutions:

c1 =
k1
J1

= k3
J3
,

c2 =
k1
J2
,

c3 =
k1 + k2 + k3ð Þ

J2
,

c4 =
k3
J2
:

ð10Þ

One of the eigenvalues for the eigenmatrix is

λ = c1: ð11Þ

The corresponding eigenvector is

φ = −
c4
c2

0 1
� �

= −
k3
k1

0 1
� �

= −
J3
J1

0 1
� �

:

ð12Þ

The eigenvector is the modal shape. And the correspond-
ing modal frequency is

ω =
ffiffiffi
λ

p
: ð13Þ

Under the operational situation of IMU, the DRLG is dith-
ering at the resonant frequency. Based on the theory of modal
analysis, the mode according to ω will be excited and other
modes will be suppressed. As a result, the response can be
approximately written as

q = A −J3 0 J1½ � sin ωtð Þ, ð14Þ

where A is a constant related to the amplitude.
Equation (14) shows that when the absorber works, the

resonance of the system occurs at the dithering frequency
of DRLG. Since the platform keeps motionless, the design is
not dependent on the limitation of its moment of inertia any-
more. The amplitude of DRLG is inversely proportional to its
moment of inertia, as well as the absorber.

3. Energy Analysis

Since the power to keep DRLG stably dithering is limited, the
absorber cannot cost energy too much. The damper is the
only dissipative cell. This section will analyze the total power
of the system from the view of the damper.

3.1. Three-Rigid Body Model. According to the theory of
modal analysis of the viscous damping assumption [16], the
damping ratio of a single DOF system satisfies

ξ = d

2
ffiffiffiffiffiffiffi
mk

p , ð15Þ

where ξ is the damping ratio, d is the damping coefficient, m
is the mass, and k is the stiffness.

The damping coefficients in Figure 2 can be calculated
according to a single DOF system.

d1 = 2ξ1
ffiffiffiffiffiffiffiffiffi
J1k1

p
,

d2 = 2ξ2
ffiffiffiffiffiffiffiffiffi
J2k2

p
,

d3 = 2ξ3
ffiffiffiffiffiffiffiffiffi
J3k3

p
:

ð16Þ

Then, the damping matrix of the three-rigid body model
can be written as

C =
d1 −d1 0
−d1 d1 + d2 + d3 −d3
0 −d3 d3

2
664

3
775: ð17Þ

The equation of motion with damper is

M€q tð Þ +C _q tð Þ +Kq tð Þ =Q: ð18Þ

In steady-state vibration, potential energy and kinetic
energy are reciprocally conversed to keep the conservation
of system energy. The external input of energy is completely
consumed by the damper. Regardless of the starting proce-
dure, this paper focuses on the dissipation of dampers under
the stably operating situation.

According to Equation (14) of the expression of the
response, the damping torque is

Qc =C _q = ωA

d1 −d1 0
−d1 d1 + d2 + d3 −d3
0 −d3 d3

2
664

3
775

−J3
0
J1

2
664

3
775 cos ωtð Þ:

ð19Þ

Assuming the response of the system is dq in a very short
time interval, the work of the damping torque in this interval is
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dE =Qc
Tdq = ωA2
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Specifically, the work in a quarter period can be integrated
as

E1 = ωA2
ðωt=π/2
ωt=0

−J3

0

J1
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Taking τ = ωt, Equation (21) can be written as

E1 = ωA2

−J3

0

J1
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Solving this integration, we can get

E1 =
π

4 ωA
2

−J3
0
J1
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In addition, the total power can be calculated from the
work in a quarter period.

p1 =
E1
T/4 : ð24Þ

The period and frequency keep the relationship below:

T = 2π
ω

: ð25Þ

By substituting Equations (23) and ((25)) into Equation
((24)), we obtain the expression of power:

p1 =
1
2ω

2 AJ3ð Þ2 d1 +
J1
J3

� �2
d3

 !
: ð26Þ

3.2. Two-Rigid Body Model. Considering the power of single
DRLG dithering for classical IMU, we simplify the system to
the DRLG-platform two-rigid body model. As the stiffness of
the damping system is far smaller than the stiffness between
the DRLG and the platform, the working mode of the system
can be regarded as a free mode. Therefore, the approximate
response of the system is

q2 = B −J2 J1½ � sin ωtð Þ: ð27Þ

Repeating the derivation in Section 3.1, we obtain the
power of the two-rigid body model:

p2 =
1
2ω

2 BJ2ð Þ2 d1 +
J1
J2

� �2
d1 + d2ð Þ

" #
: ð28Þ

Comparing the expressions of power for two models, we
notice that when the amplitude of DRLG is a constant, i.e.,
AJ3 = BJ2, the power decreases with the increase of themoment
of inertia of the absorber for the three-rigid body model, while
the power decreases with the increase of the moment of inertia
of the platform for the two-rigid body model.

4. Simulation and Experiment

Based on engineering experience, the damper, which is made of
rubber, keeps a damping ratio of ξ2 = 0:1, and the other connec-
tions are made of spring steels with a damping ratio of 0.005. In
the simulations, the dithering frequency, moment of inertia, and
dithering amplitude of the DRLG are assumed to be 500Hz,
J1 = 10−3kg · m2, and 1 arc-minute, respectively. Themodal fre-
quency of the damping system is assumed to be 50Hz.

4.1. Simulation. First of all, the changing of modal frequen-
cies and absorber response with the moment of inertia are
illustrated in Figure 3.

It can be seen that with the increase of the moment of
inertia of the absorber, the fundamental modal frequency
and the second modal frequency remain constant, while the
third modal frequency increases and the response of the
absorber decreases. For the consideration of the control logic
and reducing the structural deformation, it is better to
enlarge the gap between the second modal frequency and
the third frequency and depress the response of the absorber.
Therefore, the moment of inertia of the absorber should be as
large as possible. However, this does not coincide with the
lightweight principle for the design of inertial navigation
products. The eclectic principle is to enlarge the radius of
gyration in the design of the absorber.

To ensure a single variable below, the moment of inertia
of the absorber is assumed to be J3 = 10−3kg · m2.
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Secondly, it is valuable to discuss the performance of the
absorber under the situation that its frequency is not exactly
equal to the DRLG’s frequency. When the modal frequency
of the absorber is changed from 480Hz to 520Hz, the modal
shapes of higher modes are illustrated in Figure 4.

It shows that for the second mode, the dithering of the
DRLG and absorber is opposite in phase and the dithering
of the platform is depressed. For the third mode, the dither-
ing of the DRLG and absorber is identical in phase and the
dithering of the platform is enlarged. To make the absorber
work, it is important to change the control logic of the DRLG,
which must dither at the second mode.

Finally, the total power of the mode with the absorber and
the one without the absorber is calculated according to Section 3.

It is inevitable that the frequency of the absorber does not
exactly match the frequency of the DRLG. To illustrate the

influence of mismatching of frequencies, the response of
the platform under different frequencies of the absorber is
drawn in Figure 5.

From Figure 4, we can see that the frequency bandwidth
for the platform keeping lower vibration is about 1Hz.
Therefore, a frequency bias of 1Hz between the absorber
and the DRLG is set in power discussion. To verify the state-
ment in Section 3.2 that the working mode of the two-rigid
body system can be regarded as a free mode, the error of this
assumption is shown in Table 1.

The table shows that the error of this assumption is about
1%. It is reasonable to employ moments of the platform and
DRLG to derive the total power of the two-rigid body mode.
When the moment of inertia of the platform is changed, the
total power of both models is shown in Table 2.

It is shown that the total power of the two-rigid body
mode dramatically decreases with the increase of the
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Figure 3: The changing of the modal frequency and the amplitude of the absorber.
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moment of inertia of the platform. It matches with the fact
that when the platform is light, the DRLG is not able to dither
normally. The total power of the three-rigid body mode does
not change a lot with the moment of inertia of the platform,
and the extra power caused by the absorber is acceptable.

4.2. Experiment. To verify the feasibility of the absorber in
inertial navigation products, an experiment is designed. In
this experiment, two selfsame DRLG connect with a light
platform, the upper one plays the role of the absorber via
removing the dithering driver, and the under one is a normal
DRLG, as is shown in Figure 6.

The control logic of the under DRLG is modified to avoid
system resonance at the third mode. The result shows that
the under DRLG works well without loss of accuracy, the
platform keeps motionless, and even the upper DRLG, who
is employed as the absorber, keeps normal accuracy.

5. Conclusion

The vibration absorber for the DRLG is discussed in this
paper to solve the following problem: the dithering coupled
noise pollutes the measured signal of DRLG. The accuracy
of the DRLG in products can be improved with an absorber.
It is promising that a well-designed DRLG with an absorber
can be employed as the Zerolock Laser Gyro (ZLG) in prod-
ucts. A model of the DRLG, platform, and absorber is built

for modal analysis first. Then, energy analysis is presented
for engineering practicability. Finally, the simulation and
experiment contribute the conclusions below:

(1) The design of the absorber should follow the princi-
ple that the frequency of the absorber should be equal
to that of the DRLG and the radius of gyration should
be as long as possible

(2) The system must resonate at the second mode.
Therefore, the control logic of the DRLG needs to
be modified to avoid system resonance at the third
mode

(3) The absorber energy cost is acceptable for the driver
of the DRLG, and the DRLG can operate well with
the absorber
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