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Motion capture technology plays an important role in the production field of film and television, animation, etc. In order to reduce
the cost of data acquisition and improve the reuse rate of motion capture data and the effect of movement style migration, the
synthesis technology of motion capture data in human movement has become a research hotspot in this field. In this paper,
kinematic constraints (KC) and cyclic consistency (CC) network are employed to study the methods of kinematic style
migration. Firstly, cycle-consistent adversarial network (CCycleGAN) is constructed, and the motion style migration network
based on convolutional self-encoder is used as a generator to establish the cyclic consistent constraint between the generated
motion and the content motion, so as to improve the action consistency between the generated motion and the content motion
and eliminate the lag phenomenon of the generated motion. Then, kinematic constraints are introduced to normalize the
movement generation, so as to solve the problems such as jitter and sliding step in the movement style migration results.
Experimental results show that the generated motion of the cyclic consistent style transfer method with kinematic constraints is
more similar to the style of style motion, which improves the effect of motion style transfer.

1. Introduction

Motion capture technology is based on the principles of com-
puter graphics, recording the human body motion process
through motion capture devices [1]. When the motion cap-
ture system is performing motion capture, it can track the
motion trajectory of the moving object in the three-
dimensional space and obtain the motion information of
the moving object in the three-dimensional space through
calculation processing. It has high precision, high quality,
and complete motion information when representing human
movements. The combination of motion capture data and
computer animation technology can realistically restore
actions. In recent years, it has been widely used in movies,
games, medical treatment, sports, and other fields [2, 3]. In
the field of film production, the use of motion capture tech-
nology has been particularly successful. Many animated films
that use motion capture technology have achieved good box
office results. In “Alita: Battle Angel,” the use of motion cap-
ture technology to capture actors’ actions and expressions is

processed by computer animation technology, making it dif-
ficult for viewers to distinguish the boundary between reality
and animation. In the field of game production, the applica-
tion of motion capture technology makes the characters in
the game more realistic. High-precision motion capture data
ensures the fluency of fighting actions and brings better game
experience to players [4]. In the medical field, Noitom’s “Dr.
Joint” [5] uses motion capture technology to address postop-
erative rehabilitation problems of knee patients and helps
rehabilitation training by recording the patient’s activity
and gait data. In addition, in motion training, the motion
capture system can capture the detailed sports situation of
the athletes, so as to better analyze the problems of the ath-
letes, and make corresponding adjustments to achieve better
training goals.

With the widespread application of motion capture tech-
nology in film, animation, and other production fields [3],
research institutions such as Carnegie Mellon University,
the University of Edinburgh, and the University of Bonn
have established huge human motion capture databases.
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Due to differences in collection objects and collection
sites, it is necessary to recollect motion capture data for
the same type of action, resulting in low reusability of
motion capture data and increasing the cost in practical
applications. Data-driven motion synthesis is a key tech-
nology to realize the reuse of human motion data.
Through the study of human motion synthesis methods
such as motion style transfer, motion retargeting, and
motion blending, based on the existing motion capture
data, the motion data that meets the needs of users is
synthesized [6]. The collection work that originally
required repeated collection actions or even replacement
of collection objects can now be reduced by human
motion synthesis technology, saving a lot of manpower
and material resources, and improving the production effi-
ciency of movies, animations, etc. The editing and synthe-
sis methods of motion capture data have high research
and practical application value.

At present, deep learning provides great convenience for
motion style transfer, without the need for complex data pre-
processing. However, there are still two problems with the
motion style transfer method based on deep learning: first,
because the motion capture data is time series data, the pool-
ing process of neural network reduces the temporal correla-
tion of motion data when extracting motion features,
resulting in the difference of motion of generated motion
and content motion at the same time, and the phenomenon
of generated motion lags relative to content motion; second,
the reconstruction of motion features results in the missing
of some motion data frames, which leads to some problems
such as jitter and sliding step in the generated movement
after the motion style migration. In this paper, by determin-
ing the training target of kinematic constraint loss function
and combining kinematic constraint with cyclic consistent
confrontation generation network, the problems of anima-
tion jitter and sliding step in the process of style transfer
are solved and make the style of the generated motion and
the style motion closer.

The paper contribution: by combining the cyclic consis-
tent style transfer method with kinematic constraints (KC),
the motion style transfer network based on the convolutional
autoencoder is used as the generator, and the cyclic consis-
tent generation adversarial network (CCycleGAN) is con-
structed to establish cyclical consistency constraints
between generated motion and content motion to further
improve the consistency of generated motion and content
motion; introduce kinematic constraints, standardize gener-
ated motion, solve problems such as jitter and sliding in the
result of style transfer, and improve motion style transfer
effect.

2. Related Research

With the development and application of motion capture
technology, human motion synthesis technology based on
motion capture data has attracted more and more attention
from researchers at home and abroad and has made consid-
erable progress.

2.1. Motion Blending. Early motion data is mainly composed
of high-level motion parameters such as joint angles and
joint coordinates. Therefore, technologies in the field of
image and signal processing are used in the design, modifica-
tion, and adaptation of motion data. Human motion data is
treated as a time series signal for editing or fusion. Troje [7]
proposed a motion synthesis framework that encodes motion
patterns and uses linear methods for motion analysis and
motion synthesis. Shapiro et al. [8] proposed an interactive
motion data editing method, which uses independent com-
ponents to analyze the motion style in the motion data and
reedit the motion data to change the motion style. Wang
and Bodenheimer [9] used the linear mixing method to
determine the transformation point on the motion sequence
by calculating the optimal weight of the basic cost metric.

Since it is difficult to directly synthesize more complex or
obviously different motion styles with the method of signal
processing on motion data, in order to solve the problem of
poor synthesis of complex motion, some scholars establish
kinematic constraints during motion generation to achieve
smooth processing of generated motion [10]. With the
improvement of animation effect requirements, in order to
deal with more complex motion data, nonlinear processing
methods [11] are applied to motion capture data with com-
plex structures.

2.2. Methods Based on Statistics and Learning. Some scholars
use statistics and learning methods to analyze the motion
data, extract representative motion features and motion pat-
terns in the motion data, and change the motion mode by
adding constraints to generate new motions while retaining
the existing motion characteristics.

Matthew and Hertzmann [12] learn the motion pattern
of each motion style from a set of motion data sequences con-
taining multiple motion styles. Each motion sequence can
have a different choreography, and each choreography ele-
ment has a different style. Through learning it can identify
the general arrangement elements in the sequence and use
interpolation to synthesize new motion data according to
the action choreography elements. Grochow et al. [13] pro-
posed an inverse kinematic system based on a human pose
learning model. Given a set of kinematic constraints, the
poses that are most likely to meet these constraints can be
generated. The system uses different motion data for learn-
ing, generates the probability distribution of the motion
sequence pose, determines the probability of a motion pose
in the motion pose space through the objective function,
and matches the pose to generate a new motion.

2.3. Motion Graph. In 2002, Kovar et al. [14] first proposed
the concept of “motion graph,” through the relationship
between different motion data constructed, search for the
optimal path in the constructed motion graph, and synthe-
size a new motion sequence. Arikan and Forsyth [15] pro-
posed a framework for synthesizing motion by editing
motion capture data. They regard motion synthesis as a com-
bination problem and combine them by randomly searching
the hierarchical structure of motion graphs. Since motion
graph can only combine and edit motion capture data to
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meet user needs, Min and Chai [16] enrich motion capture
datasets by mixing the same type of motion data or combin-
ing sketches. The construction of a motion graph requires
more on the quantity and type of motion capture data in
order to be able to express the changes of the entire motion,
and the new motion generated finally depends too much on
the existing motion dataset. Parametric motion synthesis is
to add the human body’s footing, speed, acceleration, and
other parameters to the synthesis model, control the synthe-
sis process, and improve the problems of animation jitter and
foot sliding [17].

2.4. The Deep Learning Approach. At present, applying deep
learning to human motion capture data has become the main
method of motion style transfer. Deep learning is used to
synthesize new data, and the framework based on deep learn-
ing automatically learns features from the dataset. Taylor
et al. [18] applied restricted Boltzmann machines to synthe-
size animation. On this basis, Mittelman et al. [19] proposed
a structured constrained Boltzmann machine to improve the
animation reconstruction. Subsequently, Fragkiadaki et al.
[20] used an autoencoder (AE) recursive decoder network,
which is a recurrent neural network that combines deep
learning with time dynamics and produces smooth interpo-
lated motion while reducing slipping. To further improve
the animation effect, Du et al. [21] used multisource large-
scale motion datasets to construct a hierarchical recurrent
neural network and synthesized smooth and natural motion
animation. In the motion editing method proposed by
Holden et al. [22], a single-layer convolutional autoencoder
is used for feature extraction, which also shows a better abil-
ity to express motion data, which promotes the autoencoder
(AE) using in motion synthesis. In motion style transfer, Zan
[23] establishes a self-encoding network structure with three
convolutional layers and establishes style constraints in the
feature space to realize motion style transfer. A novel data-
driven framework is present for motion style transfer [24],
which supports style extraction from videos and learns from
an unpaired collection of motions with style labels. In this
paper, Yu et al. propose that style translation is an effective
way [25] to transform adult motion capture data to the style
of child motion. Our method is based on CycleGAN.

The deep learning method based on autoencoder (AE)
improves the effect of motion data synthesis or motion style
transfer. However, encoding the motion data will cause a cer-
tain amount of data loss, which leads to jitter and slipping in
the result of motion style transfer. In this paper, the method
of movement style transfer is studied by combining kine-
matic constraints to improve the reuse rate of motion capture
data.

3. The Whole Process of Cycle-Consistent
Motion Style Transfer Combined with
Kinematic Constraints

Style motion and content motion have more similar motion
features, so the generated motion can maintain a high level
of consistency with the content motion. However, the collec-
tion of style motion is difficult and the types of actions are

relatively few. There are relatively few content motion and
style motion with similar motion content. When performing
motion style transfer, using content motion with similar
actions for motion style transfer can improve the transfer
effect; when the content of the content motion and the style
motion is quite different, the generated motion can remain
similar to the content motion at the same time. However,
the generated movement has obvious motion lag and causes
the movement direction to deviate. Therefore, it is necessary
to improve the similarity between the generated motion and
the content motion while maintaining a high style similarity
between the generated motion and the style motion. The
transfer of motion style mainly involves problems such as
difficulty in extracting motion features, poor reconstruction
of motion effects, and establishment of motion style con-
straints. The overall process of motion style transfer of
motion feature extraction and motion reconstruction net-
work is shown in Figure 1.

It can be seen from Figure 1 that in order to transfer a
specific style motion to content motion, it is first necessary
to extract the motion features from the input motion data
and then reconstruct the motion from the motion features
to make the reconstructed motion data consistent with the
input motion data. In order to realize the transfer of motion
style, the style of the reconstruction motion to establish rea-
sonable constraint, guarantee the reconstruction motion in
reserves the content motion, content motion has the style
of motion style and outputs the generated motion of the
motion style transfer. Therefore, the motion style transfer
network has the same structure as the motion feature extrac-
tion and motion reconstruction network, and the parameters
are shared. The motion style constraints are established in
the hidden layer feature space of the network, the motion
characteristics are adjusted, and the motion style transfer is
realized through motion reconstruction.

Aiming at the data loss caused by the use of autoencoder
to encode the motion data in the process of motion style
transfer, a cyclic consistent (CC) style transfer method com-
bined with kinematic constraints (KC) proposed in this
paper mainly includes two steps: (1) construction a cyclic
consistent generated adversarial network; (2) combined with
kinematic constraints to establish a cyclic consistent style
transfer model.

4. The Construction of a Cyclic Consistent
Generated Adversarial Network

4.1. Theoretical Basis. In the field of image processing, it is
possible to use the cyclic consistent generated adversarial
network to convert two image sample domains (nonpaired
image domains) with large differences in style and improve
the effect of nonpaired image style transfer [26]. Figure 2
shows the cycle-consistent generated adversarial network
model. The cyclic consistent generated adversarial network
is used for image-to-image mapping learning, and the learn-
ing method uses unpaired images for style transfer.

First, there are two unpaired image sample spaces X and
Y with different contents. The goal of generating an adversar-
ial network is to learn the mapping from X to Y . This
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mapping is G, which corresponds to the generator in the gen-
eration adversarial network.

Ŷ =G X, Yð Þ: ð1Þ

Among them, the generator G can convert the picture in
the sample space X into a fake picture Ŷ similar to the image
sample space Y , and it is hoped that the style of the generated
image Ŷ and Y is as similar as possible.

For the generated picture Ŷ , the discriminator DfYg is
used to determine whether it is a real Y picture, thereby
forming a generated adversarial network.

LossGAN G,D,A, Bð Þ = log D Yð Þ + log 1 −D G Xð Þð Þð Þ: ð2Þ

Using only this one loss will cause the mapping G to map
all the images in the sample space X to the same image in the
Y space, invalidating the loss. Therefore, by introducing the
mapping F, Ŷ can be transformed into a picture X̂ similar
to the sample space X.

X̂ = F Ŷ , X
� �

: ð3Þ

And then establish the connection between X̂ and X,
forming a circular consistency constraint.

LossCyc G, F, X, Yð Þ = F G Xð Þð Þ − Xj jj j22: ð4Þ

The cyclic consistency constraint is applied to the image
style transfer, and the information of the content image dur-
ing the transfer can be retained as much as possible, so that
the generated image after the transfer is more complete and
natural. Applying it to motion style transfer can reconstruct
the generated motion and establish the connection between
the generated motion and the content motion through the
cyclic consistency constraint, so that the generated motion
retains more motion content and improves the consistency
of the generated motion and the content motion and
improves the effect of motion style transfer.

4.2. Establishment of Cyclic Consistency Constraint. In the
motion style transfer, two sample spaces are defined: content
motion C and style motion S. The cyclic consistency con-
straint (CC) is applied to the motion style transfer to estab-
lish a cyclic consistency style transfer model, as shown in
Figure 3.
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In the motion style transfer model, generators G and F
are all motion style transfer models based on motion capture
data. The content motion C and the style motion S are used
as inputs of the generator G to perform motion style transfer
to obtain the generated motion GM.

GM=G C, Sð Þ: ð5Þ

The discriminator D judges the style difference between
the generated motion GM and the real style motion S
through equation (6), so that the motion style of the gener-
ated motion is close to the motion style of the input S.

LossStyle = Gram Hsð Þ −Gram R Hsð Þð Þj jj j22: ð6Þ

The motion featureHs of the input style motion S and the
motion feature HGM of the generated motion GM are
obtained through the discriminator D to obtain the confron-
tation loss:

LossGAN = log D Hsð Þ + log 1 −D HGMð Þð Þ: ð7Þ

Generative adversarial networks generally measure the
generation effect through the log loss function [27].

The use of the discriminator for training will emphasize
the features of the motion style, making it difficult for the
generator to retain the motion content and structure of the
content motion, and it is necessary to add cyclic consistency
constraints to encourage the content of the motion to be
retained in the alignment process. The generated motion
GM is transferred to the generation network F, the motion
style of the content motion C is transferred to the generated
motionGM, the motion style of the style motion S in the gen-
erated motionGM is removed, and the reconstructed motion
CM of the generated motion GM is obtained.

CM = F GM, Cð Þ: ð8Þ

The paradigm L2 is used to establish the consistent loss of
the reconstructed motion CM and the content motion C,
thereby effectively achieving cyclic consistency, so that the
generated motion GM has more motion features of the con-
tent motion during reconstruction:

Losscyc = CM − Cj jj j22: ð9Þ

The cyclic consistency constraint makes the generated
motion after the style transfer reconstitutes the original input
content motion. By establishing the cyclic consistency con-
straint, the transferred motion style in the generated motion
is removed to form a cycle. In this way, let the network learn
the process of motion style transfer and then remove, so that
the generated motion has more content motion features.

5. Cyclic Consistent Style Transfer Method
Combined with Kinematic Constraints

The cyclic consistency constraint can establish the connec-
tion between the content motion and the generated motion
and enhance the consistency of the generated motion and
the content motion. However, due to the complex structure
of the motion capture data, the inheritance relationship
between the bone joint points makes the motion data highly
correlated, and the data of the autoencoder is lossy, resulting
in a gap between the motion generated after the encoding
and decoding operation and the content motion. The result-
ing motion data frame is unreasonable, the action content is
incomplete, and problems such as jitter and sliding footsteps
occur.

At present, the method of solving motion jitter and foot
slippage in motion synthesis is to add constraints to the
motion synthesis results and standardize the motion data.
By establishing kinematic constraints (KC), dynamic con-
straints and spatiotemporal constraints, and other methods
[28], constraints are added to the generated motion to obtain
complete and smooth and natural motion data. Lee and Shin
[29] first used inverse kinematics to establish kinematic con-
straints for each frame of motion data and used multilevel
spline curve interpolation to achieve smooth complete
motion. Tak and Ko [30] added dynamic constraints on the
basis of the previous kinematic constraints and transformed
the spatiotemporal optimization problem into a constraint
state estimation problem. Choi and Ko [31] based on inverse
kinematics to calculate the joint angle change from the posi-
tion of the extremity to realize the editing of motion data.
Gleicher [32] realized motion synthesis based on spatiotem-
poral constraints but did not consider the kinematics and
dynamic constraints of the generated motion and lacked
the reality of motion. Zhang et al. [33] propose a motion
retargeting method based on spatiotemporal constraints,
which imposes spatiotemporal constraints on joint positions
to avoid unreasonable motion. The kinematic constraints
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Adversarial
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Figure 3: Cyclic-consistent style transfer model.
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established by Grochow et al. [13] use end effectors to clarify
the position that the extremity needs to reach. Zhou et al.
[34] construct a variety of kinematic constraints to edit
motion data to realize motion retargeting.

Among kinematic constraints (KC), dynamic constraints,
and spatiotemporal constraints, the motion synthesis
method based on spatiotemporal constraints is computation-
ally expensive and time-consuming. Dynamic constraints
require fine-grained parameter control of the motion frame.
Usually, dynamic parameters such as speed and acceleration
are used to directly modify the motion features. It is neces-
sary to rely on experience to achieve parameter control, and
the generated results are uncertain. Kinematic constraints
are further constraints on the consistency between the gener-
ated motion and the content motion and are targeted con-
straints. By determining the kinematic constraints to
generate the motion, it provides a more reasonable generated
motion for the cyclic consistent constraint and improves gen-
eration of the consistency of motion and content motion.
Kinematic constraints have a large range of optional con-
straints and strong applicability. In this paper, three common
constraints, such as smooth constraint, bone length con-
straint, and trajectory constraint, are selected for smoothing
processing in character animation. Kinematic constraint loss
function training objective is determined to combine kine-
matic constraint with cyclic consistent resistance generation
network to solve the problems of jitter and sliding. The style
transfer model is shown in Figure 4.

The kinematic constraints in the style transfer model
shown in Figure 4 mainly include three aspects:

(1) Motion smoothing constraint

Villegas et al. [35] found that the data frames of continu-
ous motion are highly dependent on the previous and subse-
quent data frames when performing motion retargeting, that
is, the motion of each frame in the motion data is slightly
changed compared with the motion of the previous frame,
which can be generated by generating motion and content
motion. The speed changes of the front and back data frames
are used to the motion smoothly constrain and solve the
problem of generating motion sliding. The smoothing con-
straint is defined as follows:

LossSmooth Hð Þ =〠
j

∥vj − vj−1∥
2−∥vj ′ − vj−1 ′∥2: ð10Þ

Among them, vj ′ is the motion speed of the joint point j
in the three-dimensional space coordinate system in the con-
tent motion, and vj is the motion speed of the joint point j in
the three-dimensional space coordinate system that gener-
ates the motion.

(2) Bone length constraint

The motion capture data collected by the same motion
capture device has the same bone hierarchy, but the length
of the bones is not the same. The generated motion data
needs to be consistent with the bone data of the content

motion. When Villegas et al. [35] use motion features to
reconstruct motion data, it uses bone length constraints to
ensure that the bones that generate motion will not be
deformed and avoid the jitter of generated motion. This
paper uses the three-dimensional space coordinates of the
joint points as input data and imposes bone length con-
straints between adjacent joint points to maintain the stiff-
ness of the body, so that the movement body that generates
the motion will not cause movement dislocation due to
deformation. The loss function of the bone length constraint
is defined as follows:

LossBone Hð Þ =〠
i

〠
b

∥pib1 − pib2∥−lb
�� ��2: ð11Þ

Among them, i represents the number of motion frames,
b represents the number of human bones, and pib1 and p

i
b2 are

the two end joint points that generate a segment of bone in
motion. lb is the length of bone b.

(3) Motion trajectory constraint

The motion style transfer hopes that the generated
motion follows the motion trajectory of the content motion,
so that the motion postures of the generated motion and the
content motion are synchronized. Therefore, the motion
needs to be precisely restricted to a certain trajectory. Holden
et al. [22] edit and generate the motion data of the given tra-
jectory through the high-level motion parameter of the given
trajectory and generate the trajectory route of the motion
through trajectory constraints. The motion trajectory con-
straint loss function is defined as follows:

LossTraj Hð Þ = ∥w −w′∥2+∥vr − vr ′∥2: ð12Þ

Among them, w is the axis angular velocity of the gener-
ated motion around the y axis, w′ is the axis angular velocity
of the content motion, vr is the motion speed of the generated
motion root joint point, and vr ′ is the motion speed of the
content motion root joint point.

Therefore, the loss of the three kinematic constraints
combined with smoothing constraint, bone length con-
straint, and trajectory constraint is defined as follows:

LossKC = arg min
H

LossSmooth Hð Þ + LossBone Hð Þ + LossTraj Hð Þ:
ð13Þ

Through training, kinematic constraint loss is mini-
mized to obtain kinematic constraint motion features of
the hidden layer, which can constrain the joint to the
desired position while maintaining the stiffness of each
bone. The kinematic constraints are adjusted to generate
the motion backpropagation to the feature H of the hid-
den layer, until the hidden layer feature that can minimize
the kinematic constraint value is obtained to realize the
kinematic constraint. Therefore, the overall transfer loss
of the circular consistent style transfer model combined
with kinematic constraints is as follows:
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LosscycGAN = LossKC + min
G

max
D

LossGAN + Losscyc: ð14Þ

Among them, LKine is the kinematic constraint loss,
LossGAN is the adversarial loss, and Losscyc is the cyclic
consistency loss.

The specific network structure of the cyclic consistent
style transfer model combined with kinematic constraints is
shown in Table 1. The generated network takes the content
motion and the style motion as the input of the generator
to get the generated motion, and the discriminant network
judges the style difference between the generated motion
and the real style motion, so that the generated motion style
is close to the input motion style. The two-generation net-
works have the same network structure as the motion style
transfer network based on convolutional autoencoding, and
the network parameters are shared. The discriminant net-
work structure and motion feature extraction are the same
as the coding network structure of the motion reconstruction
model, sharing network parameters.

6. Experiment and Analysis

6.1. Data Processing and Model Training. In this paper, the
CMU motion capture dataset [36] was used, with 2600 sets
of BVH motion data of about 3 million frames as training
data. The input motion capture data dimension is 73, consist-
ing of 21 bone joints, plus the initial coordinate value of the
bone root joint to form the data dimension. In order to pro-
cess input data with large dimension, the number of hidden
units in the neural network is generally more than twice of
the data dimension, that is, the number of hidden units
should be greater than 146, so the number of hidden units
is set as 256. The collection frequency of the motion capture
dataset in this paper is 120 frames per second. A human body
motion will last for about 1 second to 2 seconds. In order to
maintain a certain degree of integrity and continuity of the
motion data of each batch, all motion data will be split once
every two seconds and retain the action content of the second
one after the previous motion, that is, the data is split by a
50% overlap window of 240 frames, and the motion data seg-
ment with less than 240 frames is filled with the last frame of
the current data segment. Therefore, the size of the filter in
the network is 5 ∗ 5 ∗ 1, corresponding to about half a second
of motion data, which is a reasonable sequence length for

most motion [11]. Due to the large training dataset, in order
to improve the training speed, gradient descent uses Adam to
update the parameters W0 and b0 and sets the learning rate
alpha = 0:01 [37]. Use all datasets for 100 complete training,
that is, epoch = 100, and use all the data to update the net-
work parameters in each backpropagation, that is, batchsize
= 1. The initialization of W0 ∈ Rm∗d∗w0 selects a small ran-
dom value, and the initialization of b0 ∈ Rm is 0.

Although the Euler angle representation method of BVH
motion capture files is intuitive and convenient in animation
playback, the Euler angle rotation component performs
poorly in characterizing the spatiotemporal characteristics
of motion. Therefore, this paper first transforms the BVH
Euler angle data into three-dimensional space coordinates
of joint points.

At the same time, in order to make the trained network
have better stability, the motion capture data is normalized
when constructing the dataset used for autoencoder training
[22]. All spatial coordinates in BVH dataset are normalized
as follows:

X =
Xinput − Xmean

Xstd
, ð15Þ

where Xinput is the input motion capture dataset, Xmean is
the average value of the input motion data, Xstd is the stan-
dard deviation of the input motion data, and X is the stan-
dard motion data after processing.

This paper selects three styles of old people, zombies, and
orangutans and transfers them to ordinary people’s walking
and running, respectively, and analyzes the effect of the cyclic
consistent style transfer method combined with kinematic
constraints. That is, the three kinds of motions of old people,
zombies, and orangutans are style motions, and ordinary
people’s walking is the content motion. The style motion
and content motion are used as the input data of the network
to transfer the motion style to obtain the generated motion.

6.2. Experimental Analysis Process. This paper is mainly from
the following six aspects of the experiment.

(1) Analysis on the results of motion style transfer

The migration results of ordinary people’s walking and
the three styles of motion are shown in Table 2. The three
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motion C

Generation
motion GM 

Reconstruction
motion CM

Cycle
consistent loss 

Adversarial
loss 

Style
motion S Discriminator D

Kinematic
constraint 

Figure 4: Cyclic-consistent style transfer model with kinematic constraints.
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styles of motion are transferred to ordinary people’s walk-
ing movement through the cyclic consistent style transfer
model combined with kinematic constraints. Compared
with the style transfer results without constraints, the
motion poses of the three style motion transfer results
are closer to those of the content motion, and the style
transfer effect is good.

It can be seen by performing the style transfer of the old
people with or without constraints on the same posture that
the difference in the effect of the constrained style transfer
compared with the unconstrained style transfer is mainly
reflected in the processing of complex motions, especially in
the last column of the turning action; the constrained style
transfer can maintain high consistency between generated
motion and content motion. In contrast, unconstrained style
transfer, although the motion posture is close to the content
motion, is affected by the style motion, and there is room
for improvement in the relative positions of joints and
human body orientation; the obvious difference in the results
of zombie style motion with and without constraint style
transfer is the orientation of the generated motion and
the content motion posture. In this group of forward
and turn motions, the generative motion of unconstrained
style transfer is relatively lagging. When the content
motion turns, the generated motion is still going straight.
Obviously, the style transfer effect with kinematic con-
straints is better for the posture constraints at the same
time; the style transfer result of the orangutan style
motion is with or without constraints, although the gener-
ative motion is with unconstrained style transfer. The pos-
ture and orientation are close to the content movement,
but the relative positions of the feet are different compared
to the content motion. In the constrained style transfer
result, the relative positions of the feet of the generated
motion are clearer and the footing point is more clear.

(2) Analysis on the effect of cyclic consistent constraint
and kinematic constraint

In order to verify the effect of cyclic consistent constraint
and kinematic constraint, the motion style transfer result
(unconstrained transfer result) based on convolutional auto-
encoder is compared with the cyclic consistent style transfer
result (constrained transfer result) combined with kinematic
constraint.

The results of motion style transfer on the same level are
mainly analyzed by observing the posture and footsteps of
the human body. From the migration results of uncon-
strained migration and constrained migration in Table 3, it
can be seen that the constrained generated motion and con-
tent motion in the style transfer of old people walking are
more consistent in posture; the footsteps of generated motion
in the style transfer of zombie walking. The horizontal con-
tact is normal, which effectively solves the problem of ground
penetration; the generated motion in the style transfer of the
orangutan walking can move according to the position of the
content motion.

(3) The trajectory of motion style transfer results

In order to further illustrate the effect of motion style
transfer, the motion trajectory diagram is visualized.
Figure 5 is a trajectory diagram of ordinary people walking
and three styles of motion.

The following moves the walking movement of ordinary
people to the three styles of old people, zombie, and orangu-
tan. The results of the migration trajectory are shown in
Table 4.

Compared with unconstrained style migration, the tra-
jectory diagram of constrained style migration is closer to
the content motion and the trajectory is more complete.
Compared to the content motion, generated with constraint
style migration movement trajectory distance is shorter,
and generated trajectory diagram is small; this is mainly
due to the old style, zombie style speed slowly, leading to gen-
erated movement of the whole movement distance is short,

Table 1: Cyclic-consistent style transfer networks with kinematic constraints.

Layer Shape Param

Generated network

Input (none, 256, 73)

Encoder network

DropoutLayer Dropout = 0:25
Conv1DLayer (none, 73, 240)

Pool1DLayer (none, 256, 240)

Decoder network

Depool1DLayer (none, 256, 240)

DropoutLayer Dropout = 0:25
Conv1DLayer (none, 256, 240)

Output (none, 256, 73)

Discriminant network

Adversarial network

DropoutLayer Dropout = 0:25
Conv1DLayer (none, 73, 240)

Pool1DLayer (none, 256, 240)
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Table 2: Comparison of unconstrained and constrained transfer results between ordinary people walking and the three styles of motion.

Motion type Motion I Motion II Motion III Motion IV

Content motion: ordinary people’s walking

Walking style of the old people

Unconstrained

Constrained

Walking style of zombies

Unconstrained

Constrained

Walking style of orangutans

Unconstrained

Constrained

9Journal of Sensors



but from the whole, adding constraints for generated move-
ment can effectively promote the migration effect.

Due to the characteristics of the orangutan style move-
ment with large strides and fast speed, the movement dis-
tance of unconstrained generated movement is significantly
larger, so the movement range exceeds the trajectory collec-

tion range. However, since the movement speed is faster than
that of the old man and the zombie style, the constrained
generated movement trajectory is closer to the content move-
ment trajectory, and the migration effect is good. In addition,
the constrained generated motion is significantly larger in
distance between the feet and the stride length compared

Table 3: Results of unconstrained and constrained movement style migration.

Behavior
Content
motion

Unconstrained migration Constrained

Old people—walking
migration

The generated motion poses are similar, but the orientation is
obviously different

Although the generated motion can maintain a posture similar
to the content motion, the motion is lagging

Zombies—walking
migration

Motion lag

The overall position of the generated motion at the same level is
lower than that of the content motion, and the right foot

penetrates the horizontal plane

Orangutans—walking
migration

The problem of large distance between footholds is prone to
occur, leading to slipping
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with the content motion, which is also in line with the char-
acteristics of the large stride length of the orangutan style,
indicating that the style feature retention effect is good.

According to the above analysis, unconstrained style
transfer is prone to problems such as jitter and slippage
caused by unclear foothold position, foot end penetration,
and motion lag. The constrained style transfer can effectively
solve the constraints on joint positions and motion trajecto-
ries, thereby further improving the effect of style transfer.

(4) Analysis of the style transfer results of unpaired
motion data

In order to verify the style transfer effect of the unpaired
input motion data, this paper takes the running motion that
is different from the content motion of the three styles as the
content motion. Due to the cyclic consistency constraint, the
training is carried out by reducing the difference between the
generated motion and the content motion. Therefore, the
constrained generated motion should be closer to the posture
of the content motion than the unconstrained generated
motion. The following is to judge the consistency of the
motion posture of the generated motion and the content
motion based on the footsteps in the trajectory diagram
and transfer the three styles of motion to running. The trajec-
tory diagram of the input motion data is shown in Figure 6. It
shows the running motion of ordinary people. The walking

motion of old people, the walking motion of zombies, and
the walking motion of orangutans are the same as in Figure 5.

The following three styles of motions are transferred to
ordinary people’s running motions through a circular consis-
tent style transfer model combined with kinematic con-
straints. The migration results are shown in Table 5.

The unconstrained style transfer results of the old peo-
ple’s style motions are poor. Compared with the content
motion trajectory graph, the footsteps and the ground are
in intensive contact, indicating that the motion content of
the generated motion and the content motion is quite differ-
ent. The generated motion trajectory of the constrained style
transfer is closer to the trajectory diagram of the content
motion, indicating that the cyclic consistency constraint still
has a better migration effect on the style motion and the con-
tent motion that have different action content; zombie,
orangutan style motion, and running motion are quite differ-
ent, so there is a big difference between the unconstrained
generated motion trajectory graph and the content motion
trajectory graph, and it is impossible to determine the start-
ing position of the movement and the similar trajectory par-
agraph. Constrained generated motion trajectory graphs still
maintain a good migration effect, and the trajectories of gen-
erated motion and content motion are highly similar.

According to the results of the migration of the three
styles of movement to the running movement, compared
with the content movement, the generated movement of
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Figure 5: Content motion and style motion trajectories.
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the unconstrained style transfer has lower similarity
between the movement posture and the movement trajec-
tory, and it is difficult to judge similar trajectory para-
graphs. The cyclic consistent style transfer method
combined with kinematic constraints has a good overall
transfer effect. The generated motion retains style charac-
teristics while ensuring a high degree of similarity of
motion posture and motion trajectory.

(5) Motion style transfer training loss

Figures 7–9 show the changes in the loss values of the
three styles of motion transfer to walking and running
through the migration model. The solid line represents the

Table 4: Results of moving movement migration.

Style motion Unconstrained Constrained
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Figure 6: The ordinary human being running trajectory.
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change of the migration loss value of the walking content
motion, and the dotted line represents the change of the
migration loss value of the running content motion.

In Figures 7–9, loss value with the increase of the
number of iterations quickly converge, and the top 50 iter-
ation training effect is relatively obvious; since the number
of iterations is 100 times, loss value change is leveling off,
and three style movement of migration loss value can drop
to a lower level from three style movement migration loss
value variation that can be seen; as the movement style
complexity increases, the initial loss value is more and
more big, and in the old man and the zombie migration

style, loss value is changing, due to differences in content
and style motion increases, leading to loss of migration
to the running value slightly higher than the migrated to
loss value of the walking motion. Since the action content
of orangutan style was close to that of running, there was
no significant change in the loss value of moving to the
two content motions.

(6) Evaluation of similarity of movement style transfer

Through equations (16) and (17), we calculated the style
similarity of the generated movement from three styles of

Table 5: Style migration results of unpaired motion data.

Trajectory of content
motion
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motions to running.

DS =
Dstyle

Dstyle +Dcontent
, ð16Þ

DC =
Dcontent

Dstyle +Dcontent
, ð17Þ

where DS is the style similarity between the generated
movement and the style movement, and DC is the style sim-
ilarity between the generated movement and the content
movement.

From the calculation results of style similarity in
Figure 10, it can be seen that the style similarity value of
the generated motion and the style motion of the circular
consistent style transfer method combined with the kine-
matic constraint is lower than the style similarity value of
the generated motion and the content motion, indicating
the generated motion similar to the motion styles of the three
styles of motions. In order to ensure the migration effect, the
kinematic constraint and the cyclic consistency constraint
are added, so that the generated motion and the content
motion are more similar in the action content. In addition,
the action content of running and the three styles of motion
is quite different, while the action content of the walking and
the three styles of motion is small, which leads to an increase
in the style similarity value of the generated motion and the
content motion.

In order to compare the effect of style transfer, this paper
compares with Zan [23], Hu [38], Guo et al. [39], and Holden
et al. [22]. Guo et al. [39] proposed a style transfer method
combined with inverse kinematic constraints. First, the
motion sequence is aligned through dynamic time warping,
and then, the motion sequence is edited by establishing
inverse kinematic constraints to realize the motion style
transfer. Holden et al. stack a feedforward neural network
on a single-layer convolutional autoencoder and edit the
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motion sequence through high-level parameters to generate
the target motion sequence. Through the above five methods,
the elderly style motions are transferred to running motions,
and then, the style similarity is compared. From the calcula-
tion results of style similarity in Figure 11, it can be seen that
the generated movement and content movement of Zan [23]
and Guo et al. [39] are more similar, and the effect of style
transfer is not ideal. The method of this paper and Hu [38]
generates relatively small values of similarity between the
movement and the style movement, and the effect of style
transfer is better.

7. Conclusion

Aiming at the problem of generated motion postures lagging
behind content motion at the same time and generated
motion jitter sliders in the motion style migration method
based on convolutional autoencoder, a cyclic consistent style
migration method combining kinematic constraints is pro-
posed. By constructing a cyclic consistent generation adver-
sarial network, the motion style transfer network based on
the convolutional autoencoder is used as a generator to estab-
lish a cyclic consistency constraint between the generated
motion and the content motion, which improves the consis-
tency of the generated motion and the content motion, and
eliminates generated motion lagging. Kinematic constraints
are introduced to standardize the generation of motion,
which solves the problems of jitter and sliding in the results
of motion style transfer and improves the effect of motion
style transfer.

In the cyclic consistent style transfer model combined
with kinematic constraints, physical factors are not consid-
ered, and physical constraints on generated motion are lack-
ing. For example, when constraining the position of joint
points, it did not consider whether the matching between
footing point and motion speed is reasonable after the
motion style transfer, the change of human muscles, gravity,
and other factors. Reasonable physical constraints are also a
way to improve the effect of generated motion, which is
planned to be the content of subsequent research.
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