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In high-speed train safety inspection, two changed images which are derived from corresponding parts of the same train and
photographed at different times are needed to identify whether they are defects. The critical challenge of this change
classification task is how to make a correct decision by using bitemporal images. In this paper, two convolutional neural
networks are presented to perform this task. Distinct from traditional classification tasks which simply group each image into
different categories, the two presented networks are capable of inherently detecting differences between two images and further
identifying changes by using a pair of images. In doing so, even in the case that abnormal samples of specific components are
unavailable in training, our networks remain capable to make inference as to whether they become abnormal using change
information. This proposed method can be used for recognition or verification applications where decisions cannot be made
with only one image (state). Equipped with deep learning, this method can address many challenging tasks of high-speed train
safety inspection, in which conventional methods cannot work well. To further improve performance, a novel multishape
training method is introduced. Extensive experiments demonstrate that the proposed methods perform well.

1. Introduction

Traditional classification tasks using supervised learning
methods, such as neural networks and support vector
machines, generally require that all categories are available
and the number of samples is sufficient. However, in the area
of high-speed train safety inspection, abnormal targets that
indicate there are underlying dangers while the train is run-
ning are scarce. Thus, we do not have a sufficient number
of samples to implement deep learning to detect the abnor-
mal targets. Instead, we devised a method based on the struc-
tural similarity method (SSIM) in the previous work [1]. In
this method, the historical train images without malfunction
are taken as baselines. When the current images are obtained
and compared against the baselines, the changes occurring to
the current trains are detected. As trains are exposed to the

open air, there are various complex factors that cause the
train surface to change. Therefore, most of the changes are
not abnormal targets (correct alarm) but safety changes (false
alarm) such as stains and marks, as shown in Figure 1(a)
(row 1 and row 2). Besides, in order to obtain superior imag-
ing quality, we photograph the train with supplementary
lighting that usually leads to luminance difference. The lumi-
nance changes are usually mistakenly detected as abnormal
targets, as shown in Figure 1(a) (row 3).

Although the previous work [1] saves plenty of man-
power, there remains a need for inspectors to spend time
classifying which changes are dangerous. To further reduce
labor cost, this work is aimed at an automatic identification
of the correct alarms with deep learning. There are various
challenges in this task. The correct alarms are the compo-
nents that are either loose (movement or rotation) or lost
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(a)
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Figure 1: Examples of changes: (a) correct alarms; (b) false alarms.
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and foreign bodies that appear on power installations such as
the pantograph, as shown in Figure 1(b). These abnormal
targets can lead the train to stop or even cause the train to
turn over. Therefore, the abnormal target detection is
extremely significant. However, correct alarms are incapable
to be recognized by traditional classification methods,
because their input is only one image (state). According to
one state, algorithms cannot analyse whether the compo-
nents are loose or lost. As for the false alarms, the algorithm
should not just judge whether there are stains or luminance
differences, because these existing signs do not indicate that
there is no looseness, loss, etc. Therefore, the change infor-
mation between two stages is required to assist the deci-
sion-making.

There are many components and equipment fitted on the
train, especially at the bottom of the trains. That makes the
image information of high-speed trains too complex to
extract satisfactory edge information. Furthermore, without
stable features, it is difficult to describe stains, luminance, for-
eign bodies, and component state changes. Actually, we can-
not describe all kinds of shapes of the stains, but we can
describe an abnormal condition of a component, even if
describing all is unwise. Therefore, the manually designed
descriptors, such as SIFT [2], may be not considered as an
optimal method due to the factors mentioned above. On
the other hand, it is effortless to obtain a large dataset that
contains corresponding image pairs from the algorithm
designed according to the previous work [1]. Therefore, deep
learning [3] is adopted.

The paper is organized as follows. Section 2 explores
other works that are somewhat like ours. Section 3 describes
the two proposed convolutional neural networks (CNNs) for
change classification in detail. Then, the experimental results
and analyses are presented in Section 4. Finally, Section 5
gives the conclusions drawn from performing this study.

2. Related Works

2.1. Convolutional Neural Networks. CNNs, a family of algo-
rithms especially suited to image analysis, have been applied
in different ways, including image classification, object detec-
tion, and semantic image segmentation. Due to its strong
ability of automatically learning high-level feature represen-
tations of images, CNNs can extract enough features for
image classification [4–7] and perform better than traditional
algorithms such as SIFT, HOG, and SURF. Moreover, it has
the unique characteristic of preserving local image relations
while performing dimensionality reduction. This makes it
easy for CNNs to capture important feature relationships in
an image and reduce the number of parameters the algorithm
has to compute. CNNs are able to take as inputs and process
both 2-dimensional images and 3-dimensional images; Ref.
[8] proposed a 3DCNN to classify computed tomography
(CT) brain scans which are 3-dimensional volumes. Based
on the above, CNNs are the most popular machine learning
in image recognition tasks. In object detection, there are also
some excellent models such as Faster R-CNN [9], YOLO
[10], and SSD [11]. Inspired by the successes of CNNs in
above computer vision tasks, many researchers [12–15] make

their efforts in different fields by using CNNs and achieve the
state-of-the-art.

2.2. Change Classification. CNNs have been applied in differ-
ent contexts for the comparison of image pairs [11–15].
Despite achieving state-of-the-art results in their tasks with
two images, CNNs have yet to be applied to classifying
change to the best of our knowledge. In Refs. [16], [17],
and [18], CNNs are performed for change detection in the
area of earth observation image analysis. By using a pair of
coregistered aerial images taken at different times, the net-
works can infer the change map. It can be used to analyse
the evolution of land use, urban coverage, deforestation, etc.
In Refs. [19] and [20], the networks are trained to determine
if two images correspond to each other by learning their sim-
ilarity metric. They are widely used in image retrieval and
face verification. By leveraging the convolution neural net-
work, a variety of different challenges, for instance, changes
in viewpoint, illumination problem, shading, and camera set-
ting difference, are circumvented.

In brief, the first work is to detect where the changes
occur, and the second one is to compute how similar they
are. Our task is to recognize what kinds of changes happen
or judge if these changes are dangerous. It needs to be
emphasized that despite our use of change classification to
identify abnormal targets for high-speed trains, it can be used
for recognition or verification applications where decisions
should be made over change information. In addition,
although the inference process of the networks is comprised
of one stage, they inherently divide the task into two parts,
learning change information and classifying the change. We
will show it in Sections 4 and 5.

3. Proposed Method

In this paper, two convolutional neural networks with refer-
ence to the residual network (ResNet) are presented [21, 22]
to perform the change classification. There are two major dif-
ferences between the change classification task and the tradi-
tional ones. First, the input of the networks should be two
images instead of one that is required for the traditional clas-
sification task. Second, besides extracting image features, the
proposed networks should learn to compare the image pairs
to detect the change information.

The most straightforward way of improving the perfor-
mance of the neural networks is to increase the depth [21–
26], for which our networks are designed to have 32 layers.
By extensive experiments, it is demonstrated that, as for our
task, networks going deeper and wider (more units at each
layer) cannot bring higher test accuracy but overfitting. The
depth and width of our ultimate networks are optimal. The
networks are trained end-to-end with 16k image pairs, and
the number of samples is enough for a sufficient convergence
with 80k iterations. Pretraining with other datasets is not uti-
lized due to the differences between the conventional classifi-
cation tasks and ours, and the considerable type differences
between our dataset and the publicly available datasets such
as ImageNet and MS COCO. In addition, according to Ref.
[27], if the dataset is large enough (>10k), pretraining only
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helps accelerate convergence but does not improve test accu-
racy or reduce overfitting. Thus, our designs are deemed rea-
sonable. Moreover, a multishape training method is
introduced to improve the performance.

3.1. Architectures. As mentioned above, the input to the
CNNs is a pair of images. In this case, the main problem is
how to integrate the two-image information to feed into the
networks. The images we use are 1-channel grayscale images.
The first idea is cascading the two images to be a “two-
channel image.” Although the “two-channel image” does
not exist, it is convenient to process in the CNNs using
two-channel convolution kernels. This architecture is called
a cascaded model as shown in Figure 2(a). In the cascaded
model, the two-channel image is processed by convolution
layers to obtain the feature maps that contain change infor-
mation. In order to reduce the overfitting, the global average
pooling [16] is used for these feature maps to derive the final
feature vector. Finally, the change category is outputted by
the fully connected layer (FC).

The second architecture is inspired by Zhan et al. [28], in
which two parallel networks are used to learn the pixel
domain and wavelet domain information, and are cascaded
by a fusion layer to implement image deblocking. Distinct
from their work, the two parallel networks are involved to
extract feature maps of the historical image (baseline) and
current image as shown in Figure 2(b). Identical to the cas-
caded model, each branch applies a series of convolution
layers and global average pooling. Then, the two branch out-
puts are concatenated and given to the top network that con-
sists of FC. The two branches can be viewed as two feature
extractors and the top network as a classifier. Consistent with
Siamese and pseudo-Siamese networks [16–20, 26, 27],
according to whether the weights of the two branches are
shared, this architecture can be categorized into two types.
Their performance is shown in Section 4.2.

3.2. Network Details. At present, ResNet [21, 22] and incep-
tion network [29–32] are accepted as excellent architectures.
Therefore, while designing our networks, we refer to both of
them. Owing to efficient convergence performance and con-
cise structure, the residual module is primarily utilized in our
networks. We adopt the bottleneck block that consists of two
1 × 1 and one 3 × 3 conv kernels [33]. The two 1 × 1 kernels
are involved in dimensionality reduction and increment
[21, 22, 29, 31, 32] to reduce the computation workload.
The reason why we choose 3 × 3 conv kernels is that it has
been demonstrated that multiple 3 × 3 conv kernels have
the same receptive field as the larger one and have better non-
linear expressiveness due to activation function being used
multiple times [24, 31]. Figure 3 presents the details of the
block, in which batch normalization (BN) [30] is used as pre-
activation to improve the regularization of our models. The
block can be expressed as

xi+1 = xi + F xi,Wið Þ, ð1Þ

where F indicates a series of BN, ReLU, and convolution
operation; xi and xi+1 are the input and output of the block;

and Wi is the parameter which the model needs to learn.
Recursively, Equation (1) is transformed into

xm = xn + 〠
m

i=n
F xi,Wið Þ: ð2Þ

Thus, the feature xm of any deeper layer can be denoted as
the feature xn of any shallower layer n plus a residual func-
tion. Moreover, Equation (2) contributes to nice backward
propagation properties. Denoting the loss function as l, we
can obtain

∂l
∂xn

=
∂l
∂xm

1 +
∂l
∂xn

〠
m

i=n
F xi,Wið Þ

 !
, ð3Þ

so that the loss can be directly propagated back to any shal-
lower layer and the gradient of a layer cannot vanish [22].
At the end of the networks, the SoftMax layer is used to gen-
erate the pseudoprobability distribution, and by computing
the cross-entropy, the loss is obtained to train the networks.

3.3. Multishape Training. The image pairs are directly pro-
vided by the previous work [1], and the shape is arbitrary.
Namely, the height-width ratio is uncertain, for which our
network should adapt to different shapes. To address the
issue of different image shapes in training, we utilize three
shapes: 180 × 360, 256 × 256, and 360 × 180. Roughly the
same total pixels of the three shapes ensure that the compu-
tation is approximate in training. Thanks to the global aver-
age pooling, before being fed into FC, three shapes can be
converted to the same length vector. In training, image pairs
are alternately reshaped to the three shapes. While testing,
image pairs are reshaped to the closest one.

In doing so, the dataset is augmented to some extent, and
the benefit is twofold. In addition to improving the test accu-
racy due to a larger amount of data, it is conducive to change
learning. However, in many previous works, such as R-CNN
[34] and SPP-net [34], warping is not recommended due to
the veridicality change. In contrast, our task is to recognize
not what it is but the changes. Thus, after deformation, the
change learning remains unaffected. In particular, stains,
luminance changes, and foreign bodies have no stable fea-
ture. As a result, if the shape is changed, we could be unable
to realize that. The examples are shown in Figure 4.

From Figure 4, it can be seen that after warping, the new
stains, luminance changes, and foreign bodies are generated,
and they all look natural. Certainly, the backgrounds may be
anamorphic. However, they are desirable and make the net-
works more capable of learning changes instead of back-
ground category. For instance, as for the looseness such as
what is shown in Figure 1(d), after training, the network
may not learn what changes occur but learn that these com-
ponents are usually in trouble, that is, even though the com-
ponents in Figure 1(d) do not rotate, it can be recognized as a
correct alarm. It is confirmed that this situation does not
occur in Section 4.5.
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Figure 2: Two architectures: (a) cascaded model; (b) parallel model.
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4. Experimental Results and Analysis

As compared to tradition classification tasks, it has different
input and a different goal. Thus, it is meaningless to compare
our networks with state-of-the-art networks such as ResNet
[21, 22] and inception network [29–32] which are all applied

on conventional classification tasks. The point of our experi-
ments is to determine the optimal configuration and to
explore the reasonable pretreatment methods for change
classification.

All networks are trained with Adam [35]. An exponential
decay learning rate is used. The initial value is 0.01, and the

(a)

(b) (c)

Figure 4: Examples of deformation: (a) stain; (b) luminance change; (c) foreign body.
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decay rate is 0.99. Except for the first conv layer, before con-
volution, BN and ReLU are performed in the first place, and
the batch size is 96. To prevent overfitting, the L2 regulariza-
tion is adopted and weights are initialized with the Xavier
initializer [36]. All experiments are implemented six times
using TensorFlow with an Nvidia GTX1080ti GPU and Intel
i7-7700 CPU. The source code is publicly available at https://
github.com/vivids/change_classification.

The experimental metrics used in our model are accu-
racy, precision, recall, and F1 score. The calculation method
is shown as follows:

accuracy =
TP + TN

TP + TN + FP + FN
, ð4Þ

presicion =
TP

TP + FP
, ð5Þ

recall =
TP

TP + FN
, ð6Þ

F =
α2 + 1
� �

× accuracy × precision
α2 × accuracy + precisionð Þ , ð7Þ

where TN, TP, FN, and FP are indicated in Table 1. F is a
kind of comprehensive evaluation metrics. If α is equal to 1
in (7), it is the F1 score.

4.1. Data Sets and Data Processing.With the assistance of our
previous work [1], about 18k image pairs that are the corre-
sponding parts of the same high-speed train were collected
at different times. These images are all taken from the high-
speed train’s body and its key components, such as the loco-
motive running gear, bogie, wheel, fastening bolt, and pipe-
line. Due to the different sizes of different key components,
the acquired images have different resolution sizes, ranging
from tens to thousands. The most defects contained in this
dataset are the forebody, which is brought by a tree branch,
the body of birds and other animals, plastic bag and other
light garbage, and so on. In movement and rotation, one of
the defects is a loose fastening component loose and a loose
bolt, respectively.

While labeling the image pairs, it was found out that the
category of many pairs is ambiguous as a result of cooccur-
rences of multiple circumstances such as the first image pair
in Figure 1(a), where a stain and a luminance change appear
simultaneously, so that the exacting correct multiclassifica-
tion dataset is not available. Considering that we are not con-
cerned about what kinds of changes occur, but in terms of
whether they are dangerous, the change classification can
be regarded as a binary classification task, a correct alarm
or a false alarm. As the correct alarms are all structure
changes whereas the false ones are nonstructure changes,
the binary classification is feasible. Our experiments are pri-
marily aimed at binary classification. Multiclassification
experiments (with unsatisfactory multiclassification dataset)
are also executed to demonstrate that the network can recog-
nize different kinds of changes and assess the detail perfor-
mance of the networks.

As for the multiclassification task, the dataset is split into
six categories, stain, luminance, mark, rotation, movement,
and foreign body. Concerning binary classification, the first
three categories are merged as false alarms while the rest as
correct ones. There are more false alarms than correct ones,
for which we discard some false ones for equity purpose. In
both multiclassification and binary classification, we select
about 10% data to test the networks, and the details are
shown in Table 2.

In a traditional classification task, before training, the
images are usually standardized to the same distribution
where the mean is 0 and the variance is 1. However, it can
eliminate the brightness difference between an image pair,
so it hinders the networks from learning luminance changes.
Instead, we merely normalize all image pixel values to [0, 1].
The images are resized to (256×256) for single-shape training
and are alternately resized to (180×360), (256×256), and
(360×180) for multishape training.

4.2. Two Architectures. The depth and width of neural net-
works are hyperparameters. To explore the optimal settings,
we conduct many experiments. In Table 3, taking the cas-
caded model as an example, some typical settings are listed.
In this section, we design two architectures based on the slim
model (see Table 3 for details) to compare their performance
and will demonstrate that the slim model can perform well in
both speed and accuracy in Section 4.3. The two architectures
are shown in Figure 2.

From Table 2, we can clearly see that cascadedmodel out-
performs the parallel ones by a large margin in all metrics,
which is attributed to the independent feature extraction of
both branches, a result of which the parallel models cannot
learn change information well. To further validate that the
independent feature extraction hampers the learning for
changes, we construct a hybrid model as displayed in
Figure 5. In the front part of the network, two images are
processed independently. In this way, the network can better
extract the fundamental information, such as edges, of the
two images. The rest is the same as the cascaded model, so
this network has enough layers to detect and process the
change information. However, from Table 4, it can be seen
that independent feature extraction indeed does a disservice.

The Siamese models used in Refs. 16, 17 and 18 are sim-
ilar to the parallel models, but they can perform well in
change detection which is due to the difference between the
two tasks. Moreover, it is also suggested that the change
information is primarily extracted in the first few layers, for
which these layers are significant to our proposed networks.
We will demonstrate that the first convolutional layer is
responsible for detecting change information in Section 4.5.
Thus, we should integrate the two-image information early.

Table 1: Confusion matrix.

Predicted label
Positive Negative

True label
True TP FN

False FP TN
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4.3. Architecture Optimization. With networks going deeper,
the performance is usually improved [23–26]. However, they
are proven by training and testing with some very large data-
sets such as ImageNet and MS COCO. The reason is not only
the deep networks having better nonlinear representation
ability but also the shallow networks being underfit for a large
dataset. In this section, we demonstrate that as for a small
dataset, the deeper and wider network cannot improve the
performance but can cause overfitting and bring more com-
putation. We explore six networks of varying depth and
width as shown in Table 3. For quantitative analysis of the
complexity of the proposed method, we analyse the FLOPs
of our networks. In our networks, the 101 layers (deepest)
and 32 layers (thin) are the largest and smallest networks
with FLOPs 7:5 × 109 and 6:8 × 108, respectively.

Table 5 presents the quantitative evaluation of the above
six models. Each of them is tested six times to ensure objec-
tivity. The modified ResNet-50 model [21, 22] is applied in
the experiment. The modification is that the channel number
of the first conv kernel is modified from 64 to 75 to be consis-
tent with the slim model. The result reveals that the slim
model is the most appropriate. Although the fat model
achieves an excellent precision rate, it does poorly in the
recall metric, as a result of which, the F1 rate is reduced as
well. Moreover, the fat model is time-consuming. Owing to
overfitting, the models that have more parameters may
ignore the learning of category generality but memorize the
training images. Thus, while testing, the results are not desir-
able. On the contrary, if the model is excessively thin or shal-
low, it is not qualified for the change classification task, that
is, the model is underfitting.

4.4. Data Preprocessing. Preprocessing is effective in prevent-
ing the model from being affected by the irrelevant factors to
some extent. For most recognition tasks, the data preprocess-
ing can augment the dataset to improve the performance of
the models. The common pretreatment methods include flip-
ping, grayscale transformation, standardization, cropping
[37], etc. However, regarding our task, the learning for differ-
ent categories can be disrupted by some preprocessing
methods. The methods of changing grayscale values are not
suitable for luminance changes. Considering that the abnor-
mal targets usually occupy a small part of our images, the
cropping is not reasonable. In this section, we first implement
training with standardization to validate that it can cause
hindrance to the learning for luminance changes. Then, we
train our model with image flipping horizontally and verti-
cally to verify that it can improve accuracy. The results are
listed in Table 6.

It is obvious that through flipping, the performance of the
network is improved, and by means of standardization, the

performance is degraded by a large margin. To further
explore the influence of standardization, we implement
six-category classification experiments. From Table 2, it
can be seen that the number of the six categories is uneven,
especially for the mark and foreign body. We first select
350 image pairs as the test data and then augment the
number of marks, foreign bodies, and movements in the
training set by means of grayscale transformation and crop-
ping to equalize the dataset. As aforementioned, these aug-
ment methods are not suited to all scenarios, for which it
cannot be used in training. However, we can augment the
images in the disk and select the ideal ones. Because the test
set is selected in advance, the experiments are considered
reasonable.

Table 7 reveals that, as predicted, the recall of luminance
drops sharply and the recall of stain decreases from 84.00% to
79.71%. Due to the decrease of brightness difference, the
model finds it is more difficult to classify stain and lumi-
nance. According to Figure 6, we can find that, after stan-
dardization, there are more instances of luminance
predicted as stains, as well as stains predicted as luminance.
For instance, in Figure 6(a), 12.57% of luminance examples
are predicted as stains, and 9.43% of stain examples are pre-
dicted as luminance. Based on Figure 6(b), after using stan-
dardization, the error rate increases to 18% and 12.29%.
However, owing to the decrease of brightness difference,
the network can learn some categories better, such as the
movement and mark. For example, in the confusion matrix
(Figure 6), less mark examples are classified as stain and
luminance. The rate at which mark examples are classified
as stain or luminance has decreased by 1.14% and 1.41%,
respectively. Some categories can be targeted to use the stan-
dardization method, but it will lead the training set to have
nonuniform distributions that are not beneficial for training
[30]. Therefore, in our experiments, we do not adopt the
standardization method.

4.5. Multishape Training.Multishape training is conducive to
learning change information from different shape images.
First, it can augment the dataset. Second, owing to being
warped, the backgrounds are anamorphic, but the change
information is almost unaffected. Certainly, we should
reshape the images properly; otherwise, the change informa-
tion will be harmed as well. Last, while testing, thanks to the
ability to process multiple shapes, we can convert the image
to the ideal shape for prediction. If high speed is not required,
we can make inference with all shapes to vote which category
it is. Furthermore, if the precision is pursued, only when the
results predicted with all shapes are consistent will the final
decision be made. Otherwise, it should be submitted to the
inspector to judge.

Table 2: Dataset details.

2-cls 6-cls
False Correct Stain Luminance Mark Rotation Movement Foreign body

Train 7857 7770 3449 3533 1824 3433 2636 1651

Test 1000 1000 350 350 350 350 350 350
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To have a better understanding of multishape training,
we implement the controlled experiments based on the slim
model to show how it affects the network performance. Mul-
tishape training can improve the performance of our net-

works. Comparing the experiments 1 and 4 in Table 8 with
the slim model in Table 5, it can be discovered that all scores
of different metrics are increased. Similar to other data aug-
ment methods, multishape training can especially improve
the performance for small datasets, the samples of which
are not easy to obtain. We implement additional experiments
with ideal shape inference on both binary and six-category
classification datasets. We halve the data number of the
binary classification dataset and carry out experiments with-
out and with multiscale training successively. From Table 9,
it can be seen that the performance is improved by a consid-
erable margin. Besides, comparing Figures 7 and 6(a), the
rate that the stain and luminance are wrongly predicted as
each other goes down further. Comparing the recall of the
six-category classification in Table 9 with that in Table 7,
the same conclusion can be reached. Moreover, it is also
revealed that multishape training is suitable for all categories
according to the increase in all category recall rates.

More shapes do not indicate better performance. Accord-
ing to experiments 1, 3, 4, 5, and 6, although (148×442) and
(442×148) shapes are included, the performance barely chan-
ged. Imagining that if we continue to add shapes such as
(128×512), some images with an aspect ratio of 4 : 1 will be
reshaped to the ratio 1 : 4. In this case, the change informa-
tion may be damaged, thus rendering this sample useless
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Figure 5: Hybrid model.

Table 4: Results of the three architectures. Both parallel and hybrid models have two versions according to whether the weights are shared (s)
or unshared (u).

Architecture Accuracy (%) Precision (%) Recall (%) F1 (%) Training time (h) Inference time (GPU/CPU, s)

Cascaded 92.02 94.08 89.71 91.83 7.05 0.0041/0.0461

Parallel (s) 84.06 88.67 78.15 83.06 17.85 0.0058/0.0792

Parallel (u) 83.94 86.38 80.60 83.38 19.45 0.0057/0.0798

Hybrid (s) 90.75 93.03 88.10 90.50 11.09 0.0039/0.0551

Hybrid (u) 90.90 93.84 87.55 90.58 10.73 0.0039/0.0565

Table 5: Results of cascaded models.

Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

32 layers (fat) 91.67 94.39 88.60 91.40

50 layers (ResNet) 90.82 92.95 88.33 90.58

32 layers (slim) 92.02 94.08 89.71 91.83

32 layers (thin) 90.43 92.47 88.03 90.20

23 layers (shallow) 91.16 93.98 88.00 90.88

101 layers
(deepest)

90.57 93.56 87.13 90.22

Table 6: Result of different data preprocessing methods.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Slim 92.02 94.08 89.71 91.83

Slim_std 86.93 88.65 84.90 86.63

Slim_flip 93.07 95.42 90.45 92.89
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Table 7: Recalls of six-category classification experiments.

Method Accuracy Stain Luminance Rotation Movement Foreign body Mark

Slim 86.05 84.00 82.29 83.43 86.00 87.14 93.43

Slim_std 85.52 79.71 72.86 84.86 94.00 84.29 97.43
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Figure 6: Normalized confusion matrix of six categories: (a) slim method; (b) slim-std method.
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for training. Therefore, it is mainly the rest shapes that con-
tribute to the better performance of our networks.

Ideal shape inference can help improve the test score.
In Table 8, we predict the change category using four
strategies: only using shape (256×256) (1-shape inference);
using the closest predefined shape adopted in training (ideal
shape inference); using shapes (256×256), (180×360), and
(360×180) (3-shape inference); and using 5-shape inference
that has two additional shapes: (148×442) and (442×148). It
is revealed by experiments 1 and 2 that converting the origi-
nal image to the closest predefined shape is beneficial for the
network to recognize changes.

Voting can give the prediction a boost. The idea is similar
to multiview testing in SPP-net23. Instead of multiview
images cropped from an original image, we feed multishape
images reshaped from a test image to the network to predict
its category. Finally, the final decision is made according to
the majority. From experiments 1, 3, 4, and 5, it is obvious
that voting can increase the test scores.

Currently, the best result is outputted by experiment 8
whose F1 score reaches 94.96. According to Tables 7–9, it is
demonstrated that as the samples continue to be accumu-
lated, the performance can be further improved.

4.6. Robustness. In order to verify the robustness of our
model, we tested twelve pairs of images with luminance or

rotation in our cascaded model. The results are shown in
Figure 8.

As shown in Figure 8(a), there are 6 pairs of images with
different light intensities. For example, in Row 1, the 3 pairs
of images are affected by strong luminance, and almost more
than half the area is covered by it. The 3 pairs of images with
a little luminance in Row 2 are compared. We can see that the
confidences of six-pair examples are slightly different with
the highest score 99.99% and the lowest score 98.02%. They
are all accurately predicted as luminance.

From human knowledge, rotation is easy to classify as
movement that is an abnormal change needs to be detected.
As well as luminance, in Figure 8(b), we selected six-pair
rotation examples with different rotation angle. From the
results, it can be discovered that the confidence of per image
pairs is very close. It denotes that our cascaded model has
strong robustness.

4.7. Analysis. It has been demonstrated that the features
extracted by different layers are hierarchical [38]. For exam-
ple, layer 1 may extract the fundamental features such as
edges. Layer 2 responds to corners, and the deeper layers
may capture similar textures and more class-specific varia-
tion. Usually, the function of the first few layers is uniform,
so it is the common practice to freeze them when fine-
tuning [9, 39]. To find out what our networks have learned,

Table 8: Effects of various design options on the slim model.

Options 1 2 3 4 5 6 7 8

Include (180,360), (360,180) shapes? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Include (148,442), (442,148) shapes? ✓ ✓ ✓

1-shape inference? ✓

Ideal-shape inference? ✓ ✓ ✓

3-shape inference? ✓ ✓ ✓

5-shape inference? ✓

Flipping? ✓ ✓

Accuracy (%) 93.67 92.90 94.05 93.67 94.00 94.08 94.38 95.08

Precision (%) 94.44 93.16 95.41 95.17 95.18 95.27 94.71 95.73

Recall (%) 92.76 92.60 92.55 92.00 92.71 92.75 94.60 94.21

F1 (%) 93.59 92.88 93.96 93.56 93.92 94.00 94.35 94.96

Table 9: Additional experiments with ideal shape inference.

(a)

Binary classification with a half dataset
Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Slim 83.13 83.78 81.87 82.81

Slim with 3-shape training 88.86 89.37 88.17 88.76

(b)

Six-category classification with 3-shape training
Accuracy Stain Luminance Rotation Movement Foreign body Mark

Recall (%) 89.78 87.43 83.62 85.98 92.19 91.76 97.71
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we visualize all feature maps. Owing to the features extracted
by the deep layers being too abstract to understand for us, we
show four feature maps extracted by the first layers in
Figure 9. We can find that our networks can not only extract
the basic edge information but also learn to detect the

changes (column 6). For example, in Figure 9(a) (R1, C6
and R3, C6), the component rotation is detected. As for
(R2, C6) and (R4, C6), the change parts are segmented. In
Figure 9(b) (C6), the position with stains and luminance
changes is intensively responsive. Although we intuitively
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Figure 7: Normalized confusion matrix of six-category classification with 3-shape training.
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Figure 8: Twelve-pair examples for robustness verification: (a) luminance; (b) rotation. C: confidence.
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think that, compared with the early independent feature
extraction methods, cascaded models may suffer from
extracting the fundamental information of the two images,
with difficulty, from Figure 9, we can see that the cascaded
model can perform well in extracting the features of each
image and in detecting the change information. Therefore,
the cascaded model is superior.

The image content of trains is complex, which makes it
unlikely to recite all situations for the networks. However,
most of the abnormal targets appear in some fixed place such
as the bolt, so it is reasonable to doubt whether our networks

indeed learn how to recognize the changes. To verify that our
networks do not memorize the components that usually go
wrong but can identify the changes, we show three-pair
examples that are the same components of the train in
Figure 10. We can find that our networks are confident and
can make the correct decision. In (R1, C2), even though there
exists a luminance difference between the two bolts, the net-
work remains capable to recognize that the bolt is loose. It is
demonstrated that the networks have the sense of priority,
namely, if the safety change and dangerous change simulta-
neously occur, the network will judge it as a correct alarm.

Curr Hist Feature 1 Feature 2 Feature 3 Feature 4

(a)

Curr Hist Feature 1 Feature 2 Feature 3 Feature 4

(b)

Figure 9: Feature maps extracted by the first convolutional layer for eight particular examples: (a) correct alarms; (b) false alarms. The red
rectangles denote the difference of each image, such as, in (a) (R2, C1), there are forebodies; in (b) (R3, C1), the rectangle denotes the area with
stain.
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However, if the dangerous change only occupies a very
small part of the whole image while the safety change
occupies the majority, such as what is shown in Figure 11,
the network may not assess it as dangerous. In Figure 11,
after glancing, we may treat it as a false alarm triggered by
stains. However, if we look carefully, we will find one bolt
loose. We will further study how to address this problem
in the subsequent work.

5. Conclusions

In this paper, a cascaded model and a parallel one are pre-
sented to achieve change classification. According to the
experimental results and network analysis, it is found out
that the cascaded model is superior. Based on the cascaded
model, extensive experiments are implemented to explore
the optimal setting including the depth, width, and pre-
treatment methods. These experiments also demonstrate
the differences among change classification task, traditional
classification, and related works such as change detection.
In addition, a novel training strategy is tailored to change
classification, i.e., the multishape training method. It is
experimentally validated that this strategy can improve
the performance by a large margin and it is suitable for
all categories.

Although we apply change classification to the task of
high-speed train safety inspection, it is also suited to other
classification scenarios where the decisions cannot be made
with a single state. Change classification can also be consid-
ered as a solution to the tasks with rare positive samples.
Our future direction is to explore how to address the false

negative problem caused by structural changes occupying
small areas in large images.
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