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In recent years, as people’s demand for environmental quality has increased, it has become inevitable to monitor sensitive
parameters such as temperature and oxygen content. Environmental monitoring wireless sensor networks (EMWSNs) have
become a research hotspot because of their flexibility and high monitoring accuracy. This paper proposes a chaotic elite niche
evolutionary algorithm (CENEA) for low-power clustering in EMWSNs. To verify the performance of CENEA, simulation
experiments are carried out in this paper. Through simulation experiments, CENEA was compared with shuffled frog leaping
algorithm (SFLA), differential evolution algorithm (DE), and genetic algorithm (GA) in the same conditional parameters. The
results show that CENEA balances node energy and improved node energy usage efficiency. CENEA’s network energy
consumption is reduced by 8.3% compared to SFLA, 3.9% lower than DE, and 4.6% lower than GA. Moreover, CENEA
improves the precision and minimizes the computation time.

1. Introduction

The development of human society is inseparable from the
support of various resources, but in the process of continuous
development of human society, due to the continuous deepen-
ing of industrialization, the problem of environmental pollu-
tion has become increasingly serious. The human ecological
environment has been damaged to varying degrees.

Wireless sensor networks (WSNs) have the disadvan-
tages of short network life and high environmental impact.
One of the protocols of WSNs is LEACH, which uses a prob-
ability model to determine the cluster head, thereby prolong-
ing the life of the network in a complex environment. In the
LEACH protocol, the nodes in the WSNs are divided into
multiple clusters. Each cluster is composed of a cluster node
and many ordinary nodes. The ordinary nodes collect data
and then transmit them to the cluster head nodes of the
respective clusters. The node fusion compresses the received
data and transmits it to the base station [1].

A widely used energy-saving mechanism in WSNs is the
duty cycle scheme to reduce energy waste caused by idle

monitoring. However, to coordinate the sleep/wake cycle of
sensor nodes, the duty cycle scheme requires more control
packages to achieve specific application goals. Under differ-
ent network mechanisms, the duty cycle of sensor nodes
needs to be adjusted as network conditions change during
operation to achieve the desired delay and energy efficiency.
The sender node and the receiver node need to wake up at
the same time during the transmission process to complete
the data transmission. If a synchronization mechanism is
used for data transmission between nodes, to ensure that
the clocks between nodes in the network remain constant,
more control packets are required in the process of synchro-
nizing the clocks. If the asynchronous mechanism is used for
data transmission of the node, the sending node needs to first
send a data packet to inform the receiving node of the length
of time that it needs to wake up during the data transmission
process and then need to retransmit the data packet to com-
plete the data transmission [2].

EMWSNs provide a fast and convenient optional moni-
toring program for environmental protection due to their
advantages of convenient and flexible deployment. However,
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due to the limited energy of nodes, the development and
application of EMWSNs are hindered. Wireless sensor nodes
are generally deployed in unmanned areas with poor condi-
tions. Node access to the network will increase the difficulty
of network maintenance. Most of the node batteries will not
be replaced, resulting in a limited lifespan of the node in real-
ity. Clustering in EMWSNs divides the nodes in the network
into cluster heads and ordinary monitoring nodes. The clus-
ter head contacts other ordinary nodes covered by it to obtain
data and then sends the data to the terminal [3–5]. How to
use reasonable clustering to conserve the power usage of
the EMWSNs while completing the perception task has
attracted more and more attention from researchers. Conse-
quently, it is very urgent to create a new EMWSN clustering
algorithm to minimize the power usage in the system,
increase the efficiency of data transmission, and extend the
living period of the system. The CENEA proposed in this
paper can greatly improve the performance of EMWSNs.

Within the traditional clustering algorithm, the choice
associated with the cluster head will be arbitrary during the
establishment phase regarding the cluster [6–8]. The influ-
ence factors such as the point transmission distance are not
considered, resulting in an improper selection of the cluster
head as well as excessive power usage of the common nodes
in EMWSNs. In the stage of cluster establishment, CENEA
introduces parameters such as node transmission distance
to select cluster head nodes to minimize EMWSNs power
usage. With the rapid development of EMWSNs, the research
of clustering algorithm technology in the network has also
achieved outstanding results. The focus of research on clus-
tering algorithms is to optimize the choice of cluster head
nodes and the establishment associated with clusters as well
as decrease the power usage of nodes in the system [9–11].
Some scholars have proposed new clustering and routing
schemes, which provide excellent ideas for improving the life
cycle of networks [12–17]. With these years of research and
development, the swarm intelligence majorization model
has been well utilized in the clustering technology of
EMWSNs. Many scholars have optimized the traditional
clustering algorithm to increase efficiency, decrease complex-
ity, and improve the algorithm [18]. SFLA, DE, and GA are
currently a research focus of clustering algorithms. Using
optimization algorithms can quickly discover the optimum
way for data transmission as well as extend the life of the
network.

For some EMWSNs, researchers are more concerned
about the single-round power usage of the EMWSNs after
clustering. It is hoped that the energy consumption of sensors
per unit time is minimal to reduce the cost. Assuming that
EMWSNs are made up of a huge quantity of sensing nodes,
a small number of cluster head nodes, and a single gateway
node. The gateway node usually has strong signal transceiv-
ing capabilities and a fixed location. How to select a small
quantity of cluster head nodes from a huge quantity of
EMWSN nodes to minimize the power usage of a data collec-
tion on the entire network is an important issue in practical
applications.

El Alami et al. [19] proposed an improved routing proto-
col, which can greatly improve the performance of mobile

nodes in WSNs, improve network life and energy efficiency,
and reduce packet loss to a large extent. Lee et al. [20] pro-
posed an improved clustering protocol, which has an excel-
lent performance in mobile sensor networks. Even during
the movement of the node, the packet loss rate can be kept
at a low level. El Alami et al. [21] proposed a new clustering
hierarchy algorithm to save network energy by changing
the sleep and working time of nodes. It has an excellent per-
formance in homogeneous and heterogeneous networks. Lee
et al. [22] proposed an improved clustering protocol. This
protocol can effectively increase the lifetime of the network
and has a good performance in large-scale WSNs.

Liu et al. [23] proposed a model of cluster head selection
and path planning based on DE. Improve the performance of
each part of the algorithm by reducing the amount of calcu-
lation and unifying system energy consumption. In [24], the
neural network algorithm is applied to the WSN data fusion
process, and the algorithm significantly improves the data
processing efficiency. Fattoum et al. [25] use GA to establish
a routing mechanism between cluster heads, which reduces
energy consumption between clusters.

However, DE, GA, and neural network algorithms can-
not dynamically adjust the crossover and mutation probabil-
ities according to the fitness of individuals and populations
and tend to fall into premature convergence, resulting in
higher energy consumption for the final clustering scheme.

Islam et al. [26] proposed the idea of the main cluster
head and a below cluster head. A below cluster head is
selected in a cluster to share the energy consumption of the
major cluster head nodes and avoid the main cluster head
nodes through perishing because of excessive energy con-
sumption. Huamei et al. [27] proposed a cluster head election
mechanism based on SFLA, which allows the cluster heads to
be reelected after the previous round of cluster heads meet
certain conditions, reducing the energy consumption caused
by each round of cluster head selection.

However, the operations of these two algorithms are too
complicated, and the change of the cluster head does not take
into account the complex environment in the actual situa-
tion, so the reliability of the algorithm is poor.

Wang et al. [28] proposed a multihop routing protocol,
which allows the distant node to choose a node closest to
itself for data forwarding, reducing the distance of direct
communication with the terminal. In [29], after the nodes
are divided into clusters, they have grouped again in each
cluster according to the distance and data similarity between
the nodes, and a representative node is selected again in each
group to deliver the information to the cluster head nodes.

However, once the power of the inner sensor nodes is
tired, the outer sensor nodes with a large amount of energy
remaining will not be able to work normally because of the
too-long transmission distance because it cannot be relayed.
It takes a long time to set up a cluster, has a long delay, and
consumes a lot of node energy. Also, multiple detection steps
before transmitting data packets will increase the delay of
data transmission, so it is not appropriate for EMWSNs that
require great live performance.

Majeed et al. [30] combine energy and node location to
introduce a cost function and uses GA to perform cluster
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head election. So that nodes with higher energy and better
locations are elected as cluster heads, making the tasks of
each node more reasonable. Ghahramani and Laakdashti
[31] proposed a routing protocol based on the DE in WSN
to minimize power usage as well as extend the system living
cycle.

However, the quality of the cost function will determine
the efficiency of the way, and the capabilities of the cost func-
tion will be poor in a complex environment. Each time the
algorithm needs to send a data packet, the source node will
discover and establish a cluster. Therefore, it takes a certain
time to establish the corresponding cluster, and the cluster
will be removed after a certain time. A lot of node energy will
be spent in the process of cluster establishment.

The computational time of the cluster head selection
problem increases exponentially with the increment of clus-
ter head nodes. To reduce the network power usage rate, we
present a CENEA. An objective function is formulated to
maximize the reduced network energy consumption rate
under multiple constraints. This paper also gives advanced
operators by employing elite operators and chaotic map
operators in each iteration of the evolutionary procedure.
The CENEA combines the merits of the elite evolution and
chaotic map. CENEA is a kind of swarm algorithm, which
has a strong global search capacity. To denote the advantages
of CENEA, experiments are conducted for the cluster head
selection problem and performance comparisons are made
with SFLA, DE, and GA. Simulation simulations reveal the
superior performance of the presented CENEA in both the
reduced network energy consumption rate and fast
convergence.

The main contributions of this paper are as follows.

(1) This paper proposes a new clustering algorithm.
CENEA can reduce the energy consumption of
EMWSNs and improve network performance.
CENEA has less time complexity and can complete
the selection of EMWSN cluster heads and cluster
coverage in a short time

(2) This paper designs a new clustering model of
EMWSNs. The model coding adopts the real number
coding scheme of sensor position information. In
EMWSNs, sensors are randomly placed in the envi-
ronmental monitoring area to simulate complex situ-
ations in reality, so it is closer to the situation of
environmental monitoring in reality

(3) This paper verifies the excellent performance of
CENEA in EMWSNs through simulation experi-
ments. CENEA can improve the viability of
EMWSNs and propose a new clustering scheme for
the development of EMWSNs

The structure of this paper is as follows. Section 2 intro-
duces the clustering model of EMWSNs and the selection
mechanism of cluster heads. Section 3 uses CENEA to opti-
mize the clustering algorithm. Section 4 gives the results of
simulation experiments and discusses the performance of
CENEA. Then, Section 5 concludes.

2. EMWSN Clustering Model

The distribution of cluster head nodes in EMWSNs deter-
mines the energy consumption of network communication.
This section will introduce the network clustering model.
The network distribution area studied in this paper is a
square, and a certain number of sensor nodes are aimlessly
dispersed in the square region. The typical network structure
is as follows.

As shown in Figure 1, EMWSNs usually adopt a clustered
structure. The sensing nodes are divided into multiple clus-
ters within the monitoring range, and each cluster has a clus-
ter head [32]. In the uplink transmission phase, the sensing
nodes randomly distributed within the monitoring range
complete the sensing of the monitoring target and gather
the sensing outcomes to the head of the cluster. The cluster
head node collects relevant information from the sensing
nodes in the cluster and uploads the information to the gate-
way node within a direct or multihop manner [33]. The gate-
way node summarizes the information through every cluster
head and transmits it to the user for further analysis and pro-
cessing. In the downlink transmission stage, the user releases
monitoring tasks in the downlink through the gateway node
and uniformly allocates monitoring targets and various
resources in the network. The gateway node distributes the
monitoring task to the sensing nodes in the cluster through
the cluster head node and completes the downlink distribu-
tion process of the monitoring task.

The power usage of EMWSNs primarily arrives through
delivering data, getting data, and transmission paths. The
node has receiving consumption and sending consumption
and part of the energy consumption from the amplifier. This
part of the energy consumption is closely related to the trans-
mitting range. If a is under a offered parameter aset, the send-
ing amplifier uses the energy of free space. When a is greater
than aset, the transmitting amplifier adopts the energy con-
sumption model of multipath attenuation. When the data
of n bit needs to be sent and the distance from the sender
to the destination is a, the energy consumption of the sender
is

LTx n, að Þ = L Tx−elecð Þ nð Þ + L Tx−ampð Þ n, að Þ

=
n × Lelec + n × βfs × a2, a < aset,

n × Lelec + n × βamp × a4, a ≥ aset:

8<
:

ð1Þ

In equations (1), a is the data transmission distance on
the path, Lelec is the power consumed through the transmit-
ting signal, βfs and βamp correspond to different energy trans-
mission models, βfs corresponds to the energy transmission
model of free space, and βamp corresponds to the energy
transmission model of multipath attenuation, where aset
determines which energy transmission model the sender
adopts, as shown in

aset =
ffiffiffiffiffiffiffiffiffi
βfs
βamp

s
: ð2Þ
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The amount of energy consumed by data transmission on
the path is represented by

L n, að Þ = LTx n, að Þ + LRx nð Þ: ð3Þ

In equations (3), LTxðn, dÞ represents the power ingested
through the node to deliver information. LRxðnÞ represents
the power taken through the node to obtain information.
Power usage is mainly composed of two parts, the signal
energy consumption LT−elecðnÞ and the transmission ampli-
fier circuit energy consumption LT−ampðn, aÞ. The size of
LTxðn, dÞ is shown in

LTx n, dð Þ = LT−elec nð Þ + LT−amp n, að Þ: ð4Þ

The receiver is different from the sender, and the energy
consumption of the receiver has nothing to do with the dis-
tance. Therefore, the energy required to receive the data of
n bit can be obtained as

LRx nð Þ = n × Lelec: ð5Þ

3. CENEA for Reducing Network Energy
Consumption in EMWSNs

In this work, our CENEA follows the framework of the con-
ventional stochastic methodology. Two novel programs were
produced, namely, chaos mapping and elite programs. In the
cluster head selection problem of EMWSNs, elite technology
can be used to find feasible solutions close to the ideal solu-
tion. These procedures are effective strategies, easy to under-
stand and to implement, extensively utilized in the
optimizing of cluster head node distributions. The novel pro-
cedures of the CENEA are qualified to create a feasible solu-
tion for EMWSNs in a computationally acceptable time.

Compared to conventional optimization algorithms like
calculus-based techniques as well as exhaustive techniques,

CENEA can effectively deal with some complex problems that
are not able to be resolved through conventional methods. The
standard technique to resolve the optimization issue is to
design an objective function so that the objective function
can be modeled reasonably while combining various con-
straints and then transform the optimization problem into
finding the maximum value. CENEA simulates the natural
biological evolution model, using real number coding to
obtain the initial population, cross mutation operation, and
group iteration based on the greed criterion to realize the func-
tion of search and optimization. Real number coding is more
universal in the type of problem solving than binary coding.
The greedy selection criterion will retain the best solution indi-
vidual in the current search space and will not stop until the
preset number of iterations is reached. For the problem to be
solved, a fitness function is designed, and then the fitness func-
tion was taken as the evaluation objective. Retain elite individ-
uals with better fitness values in the iterative process to induce
the final solution to approach a better direction. This process
makes CENEA have better dynamic tracking. The many
advantages of CENEA make it unnecessary to make use of
the feature info of the issue to a certain extent, effectively solv-
ing the optimization problem in the complex environment.

CENEA is mainly used to solve global optimization prob-
lems of continuous variables. It is an intelligent evolutionary
algorithmwith dynamic tracking and random search. CENEA
is aimed at denoting good chromosomes through this evolu-
tionary process. The CENEA utilizes various simple proce-
dures to simulate evolution. The main steps are as follows:

(Step 1) In the initialization stage, the initial population
is generated by the chaotic map operator and
generally satisfies the condition that it can cover
the whole search space

(Step 2) In the mutation stage, a certain number of indi-
viduals are selected from the population to pro-
duce mutant individuals

Environmental monitoring area

Cluster

Perception node

Cluster head node

Gateway node

Figure 1: EMWSN cluster structure.
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(Step 3) In the crossover stage, the target individual and
the variant individual are mixed concerning
the crossover probability criterion to obtain the
test individually

(Step 4) In the individual evaluation stage, the result
function value of this offspring is evaluated

(Step 5) In the selection stage, determine the superior
new iteration using the greedy method and save
elite individuals

(Step 6) In the final stage of the iteration, judge the stop
criteria; if termination criterion is attained, then
stop the procedure

The flow chart of CENEA is shown in Figure 2.

3.1. Population Initialization Operation of CENEA. The first
step of the CENEA is to establish a proper chromosome rep-
resentation. To utilize a CENEA to match the cluster head
node distribution to the EMWSNS, it is necessary to produce
an effective encoding scheme and a result function, which
will allow the algorithm to choose the fittest solutions. The
individual code of CENEA is a string of limited length and
limited precision that is usually indicated like Pk = ½p1, p2,⋯
,pM� mathematically. K is the quantity of populations, Pk is
called a chromosome, M is called the number of genes on
the chromosome, and pM is called a gene on the chromo-
some. ym signifies the cluster head node of the mth cluster
in the chromosome. In CENEA, each solution is referred to
chromosome. Every chromosome represents a feasible solu-
tion of cluster head node distribution for the cluster head
selection problem. In the d generation, the entire population
can be expressed by

P dð Þ =

y1,1

y2,1

⋮

yK−1,1

yK ,1

y1,2

y2,2

⋮

yK−1,2

yK ,2

⋯

⋯

yz,j

⋯

⋯

y1,M−1

y2,M−1

⋮

yK−1,M−1

yK ,M−1

y1,M

y2,M

⋮

yK−1,M

yK ,M

2
66666666664

3
77777777775

=

P1 dð Þ
P2 dð Þ
⋮

PK−1 dð Þ
PK dð Þ

2
66666666664

3
77777777775
:

ð6Þ

3.2. Chaotic Map Operation of CENEA. The chaotic map
operator is used to generate K initial population combina-
tions of lengthM. The length of the chromosome is the same
as the quantity of cluster head nodes within EMWSMs,

which means that each value of the final optimized individual
maps the selection of each cluster head node.

Chaotic motion is a common nonlinear random phe-
nomenon. It looks complicated and chaotic on the outside.
But in reality, it contains exquisite laws, which have good
randomness, ergodicity, and regularity. The randomness
and ergodicity of chaotic motion can traverse all states within
a certain range without repetition. It is these characteristics of
chaotic that provide a broad new idea for optimization calcu-
lations and various optimization algorithms. Highly sensitive
to initial conditions, boundedness, randomness, and ergodic-
ity are the four most distinctive characteristics of chaotic. The
chaotic map used in this paper is the sinusoidal map. The
chaotic map iteration is

sx+1 = θsx
2 sin πsxð Þ: ð7Þ

In equation (7), x is the number of iterations. When the θ
value is 2.3 and the s1 value is 0.7, it can be expressed as

sx+1 = sin πsxð Þ: ð8Þ

The value range of the chaotic value jumps out of the spe-
cial limitation of the sine function range of [-1,1], and its
value range becomes (0,1).

3.3. Fitness Calculation of CENEA. In the EMWSM clustering
scheme for optimizing the power usage of a solitary circular
transmission, the major consideration is how to decrease
the power consumption of a single round of communication
through clustering. At the same period, the Euclidean length
via the common sensor node to the corresponding cluster
head node is considered. Assigning a common node to the
nearest cluster head node helps sensor nodes consume less
energy when communicating with cluster head nodes. There-
fore, the common nodes are assigned to their corresponding
cluster head nodes; the average length T from the sensor
node to the cluster head node is

T = 1
G
〠
G

g=1
Fg: ð9Þ

In equation (9), G represents the overall number of ordi-
nary common nodes distributed in EMWSNs, and Fg repre-
sents the length through the sensor node to its corresponding
cluster head node.

The smaller the average distance, the better the clustering
scheme. The fitness function of CENEA can be expressed as

H Pð Þ = δ × T: ð10Þ

In equation (10), δ is the proportional coefficient. With-
out loss of generality, set the value of δ to 1.

3.4. Mutation Operation of CENEA. To keep the number of
cluster heads constant and introduce randomness, the muta-
tion operation uses a certain mutation probabilityQ to replace
a random bit of the individual with other nonduplicate nodes.
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The newly selected sensor node is regarded as the cluster head
node. For a single individual, a random number Qr is gener-
ated according to the chaotic mapping. Then, the operation
is performed in

yz,j =
yz,j, Qr >Q,
ynew, Qr <Q:

(
ð11Þ

In equation (11), ynew represents the newly generated clus-
ter head node, and ynew does not overlap with the existing clus-
ter head node in the individual.

3.5. Crossover Operation of CENEA. First, perform a logical
AND operation on two individuals to get an intermediate
individual P′. Secondly, perform the logical XOR operation
on the two individuals to obtain another intermediate indi-
vidual P″. Finally, the cluster head node position in the inter-
mediate individual P″ obtained by the exclusive OR
operation is allocated to the new cross individual P′″ by the
crossover probability C. The fresh individual Pnew obtained
after the crossover could be indicated as

Pnew = P′ + P′″: ð12Þ

The crossover probability has an excellent impact on the
searchability and convergence efficiency of the formula. In
this paper, the relative value depending on the individual fit-
ness benefit of the parent and the average fitness benefit of
the group is used for adjustment. The next-generation cross-
over probability set update strategy is shown in

Cd+1
k =

Ck
d , H Pkð Þd <Hd

m,

Ck
d μ2 + μ2 − μ1ð Þð Þ, H Pkð Þd >Hd

m:

(
ð13Þ

In equation (13), Cd+1
k is the crossover probability of the k

th individual in the next generation.HðPkÞd symbolize the fit-
ness value of the present kth individual and Hd

m represent the
average fitness value. When the fitness benefit of the current
individual is better than the average fitness benefit, the cross-
over probability of the next-generation individual remains
unchanged. Otherwise, the crossover probability will change
with a certain coefficient until the fitness benefit of the next
generation chromosome is better. μ1 and μ2 are the higher
and lesser limitations of the crossover probability. When
the fitness value of the current individual is higher than the
average fitness value, their constituent coefficients affect the

Start

Initialize the population of
CENEA using chaotic mapping

Whether the termination
conditions are met

N

Output the best result

Use chaotic mapping to generate parameters to select
individuals in CENEA for mutation operations

Dynamically adjust the crossover probability to perform
crossover operations on individuals in CENEA

Y

Use greedy algorithm to select newly
generated offspring individuals

Save the globally optimal individuals
in CENEA as elite individuals

Number of iterations G = G + 1

End 

Calculate the fitness of each
individual 

Figure 2: Process of the CENEA.
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change of the crossover probability of the next generation of
individuals.

3.6. Selection Operation of CENEA. The selection operation
determines which of the target individual and the newly gen-
erated individual will survive to the next generation. Use the
greed principle to determine whether the newly generated
individual replaces the old individual. The operation rule is
shown in

Pk =
Pk, H Pkð Þd <H Pkð Þd−1,
Pnew, H Pkð Þd >H Pkð Þd−1:

(
ð14Þ

In equation (14), HðPkÞd represents the fitness of the kth
individual in the d generation. HðPkÞd−1 represents the fit-
ness of the kth individual in the d − 1 generation.

3.7. Elite Operation of CENEA. A global variable is set in
CENEA to store the optimal individual in the iterative pro-
cess. The global variable is the elite individual. After the selec-
tion operation is performed, CENEA judges whether the
fitness of the optimal individual in the population is lower
than the fitness of the elite individual. Corresponding opera-
tions were performed according to different results, and the
operation rules are as in

Pbest =
Pbest, H Pd

t

� �
>H Pbestð Þ,

Pd
t , H Pd

t

� �
<H Pbestð Þ:

8><
>: ð15Þ

In equation (15), Pbest represents an elite individual, and
Pd
t represents the best individual in the d generation. Hð

PbestÞ represents the fitness of elite individuals, and HðPd
t Þ

represents the fitness of the best individuals in the popula-
tion. If the fitness of the elite individual is smaller than the fit-
ness of the best individual in the population, the elite
individual is retained; otherwise, the best individual replaces
the elite individual. To make the CENEA iterative process
always update the population positively, it is necessary to
save the elite individuals in the population. The operation
of saving elite individuals is as in

Pd
i = Pbest: ð16Þ

In equation (16), Pd
i represents the ith individual in the d

generation population. The value of i is generated by the cha-
otic map.

3.8. Niche Algorithm of CENEA. The niche algorithm means
that in CENEA, the population is divided into several sub-
populations, and each subpopulation completes the evolu-
tion independently. In every few generations, the best
individuals will be exchanged among subpopulations. The
niche algorithm can effectively enhance the performance of
the formula and prevent the formula from falling into the
local optimum.

4. Results and Discussion

To verify whether the CENEA optimized clustering formula
could efficiently save the power usage of EMWSNs in the
cluster head selection problem. The simulation software is
implemented in this section, and the CENEA optimized
routing clustering algorithm is compared with SFLA, GA,
and DE, optimization algorithms for comparison and analy-
sis. In the simulation experiment, this paper compared
CENEA, SFLA, GA, and DE. In this paper, a simulation
experiment is carried out on the MATLAB R2018b software
and Intel Core i7 processor platform. After several simulation
experiments, the optimal values of the parameters were
taken. The environmental parameters of the EMWSNs
experiment are shown in Table 1.

The simulation adopted the clustering method based on
CENEA, SFLA, GA, and DE. The setting area is 400m ×
400m. In CENEA, the number of algorithm iterations is
100, and the number of individuals in the population is
100. In SFLA for comparison, the total number of frogs is
100, the population is 20, and the number of frogs in each
population is 5. The maximum step size is 40m. In GA, the
population numbers are 100. The roulette method is used
for selection, the crossover operation is a single point cross-
over, and the mutation probability is 0.1. In DE, the popula-
tion numbers are 100. The crossover factor is 0.3, and the
scaling factor is 1.

The cluster head ratio is set to 0.05. The simulation result
is shown in Figures 3(a)–3(d), respectively, representing the
cases where the number of sensor nodes is 100, 200, 300,
and 400.

Figure 3 shows the complete network communication
power ingested through all sensor nodes in CENEA, SFLA,
GA, and DE when the cluster head ratio is 5% and the quan-
tity of sensor nodes varies with the number of algorithm iter-
ations. From the simulation outcomes, it could be observed
which SFLA has a certain decline in the initial stage of algo-
rithm iteration, but after the number of iterations reaches a
certain number, it repeatedly falls into evolutionary stagna-
tion, and the finally obtained clustering scheme has a large
network communication energy consumption. GA and DE
have a relatively stable performance during operation, but fail
to dynamically adjust the algorithm parameters during the
evolution process, resulting in slower algorithm evolution.
The final clustering scheme has a higher network communi-
cation energy consumption than CENEA’s clustering
scheme. CENEA’s clustering scheme uses the calculation of
the fitness of the individual to be crossed, the fitness of the

Table 1: Simulation experiment parameter settings.

Parameter Value

Lelec 50 nJ/bit
βfs 10 pJ/ bit × m2� �
βamp 0:0013 pJ/ bit × m4� �
aset 87m
n 3072 bits
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individual to be mutated, and the average fitness of the pop-
ulation as inputs to avoid the algorithm from falling into the
local optimum. The chaotic map is used to obtain random
numbers during initialization and selection operations,
which ensures the global efficiency of the CENEA. Simulta-
neously, due to the adoption of the niche method, the cross-
over and mutation probabilities are dynamically adjusted
during operation. CENEA’s clustering scheme avoids evolu-
tionary stagnation and premature convergence caused by
fixed algorithm parameters. It can be seen from Figure 3 that
under the condition of different sensor nodes, the total power
usage of EMWSN communication required by CENEA is
reduced by 4.1% to 8.3% compared to SFLA and 1.3% to
4.6% compared to GA. DE has dropped by 2.9% to 3.9%,
which means that the energy efficiency is higher when the
amount of data transmitted is the same.

Figure 4 shows the changes in network communication
energy consumption when 400 sensor nodes are within the
monitoring area of different area sizes. The cluster head ratio
is 5%. Figures 4(a)–4(d), respectively, represent the area sizes
which are 100m × 100m, 200m × 200m, 300m × 300m,
and 400m × 400m.

Figure 4 shows that CENEA has greater performance
advantages than SFLA, GA, and DE in both small and large
areas. In EMWSNs, the area of environmental monitoring
is uncertain. Compared with SFLA, GA, and DE, CENEA
has stronger adaptability when EMWSNs change the size of
the monitoring area. This is the ability to quickly configure
EMWSN cluster heads under different environmental condi-
tions. CENEA optimization is faster. It can be seen that when
the number of iterations is 20, the network energy consump-
tion is close to the optimal result. CENEA can use the least
time to get the best results. The running time of the CENEA
is shown in Table 2.

Table 2 shows that the running time of CENEA’s algo-
rithm is much shorter than SFLA and smaller than DE and
GA. The final result of algorithm optimization is shown in
Figure 5.

Figure 5 shows that the last optimization outcomes of
CENEA are optimal compared to SFLA, GA, and DE under
different area size conditions. Simultaneously, the CENEA
has the shortest running time. It means that CENEA can
get the best EMWSN cluster head solution in the shortest
time in a complex environment.
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Figure 3: Changes in network communication energy consumption with the number of sensor nodes: (a) 100 sensors; (b) 200 sensors; (c) 300
sensors; (d) 400 sensors.
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Figure 6 shows that when the cluster head ratios in
EMWSN are different and the clustering methods of CENEA,
SFLA, GA, and DE are used, respectively, the values of SFLA,
GA, and DE are more than the overall power usage of the
EMWSN communication. The number of sensor nodes is
400, and the area size is 400m × 400m. Figures 6(a)–6(d),
respectively, represent the proportion of cluster heads is
5%, 10%, 15%, and 20%.

It could be observed from Figure 6 that the CENEA-
based clustering technique effectively reduces network com-
munication energy consumption compared to SFLA, GA,
and DE. When the proportion of cluster heads is 5%, the

advantage of CENEA communication energy reduction is
very large compared with other algorithms. When the pro-
portion of cluster heads is 10%, 15%, and 20%, the greater
the number of sensor nodes is. Compared with the other
three algorithms, the reduction in network communication
energy consumption by CENEA is also obvious. The main
reason is that SFLA, GA, and DE did not dynamically adjust
their parameters in the iterative process, resulting in slow
evolution. In the process of evolution, CENEA can dynami-
cally adjust its mutation probability through the fuzzy con-
troller. Use elite operators to ensure the optimization trend,
and improve the evolution speed of the algorithm. Like the

0 20 40 60 80 100
Algorithm iterationsAlgorithm iterations

0.11765
0.1177

0.11775
0.1178

0.11785
0.1179

0.11795
0.118

0.11805
0.1181

0.11815

N
et

w
or

k 
co

m
m

un
ic

at
io

n 
en

er
gy

co
ns

um
pt

io
n 

(jo
ul

e)

SFLA
DE

GA
ECAGA

(a)

0 10 20 30 40 50 60 70 80 90 100
Algorithm iterations

0.1205

0.121

0.1215

0.122

0.1225

N
et

w
or

k 
co

m
m

un
ic

at
io

n 
en

er
gy

co
ns

um
pt

io
n 

(jo
ul

e)

SFLA
DE

GA
ECAGA

(b)

0 10 20 30 40 50 60 70 80 90 100
Algorithm iterations

0.1255

0.126

0.1265

0.127

0.1275

0.128

0.1285

0.129

0.1295

0.13

N
et

w
or

k 
co

m
m

un
ic

at
io

n 
en

er
gy

co
ns

um
pt

io
n 

(jo
ul

e)

SFLA
DE

GA
ECAGA

(c)

0 10 20 30 40 50 60 70 80 90 100
Algorithm iterations

0.131

0.132

0.133

0.134

0.135

0.136

0.137

0.138

0.139

0.14

N
et

w
or

k 
co

m
m

un
ic

at
io

n 
en

er
gy

co
ns

um
pt

io
n 

(jo
ul

e)

SFLA
DE

GA
ECAGA

(d)

Figure 4: Changes in network communication energy consumption with the following area sizes: (a) 100m × 100m; (b) 200m × 200m; (c)
300m × 300m; (d) 400m × 400m.

Table 2: Algorithm running time.

100m × 100m 200m × 200m 300m × 300m 400m × 400m
CENEA 17.3 s 23.2 s 17.8 s 18.8 s

SFLA 207.0 s 275.2 s 205.8 s 214.0 s

GA 17.7 s 24.6 s 19.2 s 19.3 s

DE 30.6 s 46.0 s 33.1 s 34.1 s
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quantity of sensor nodes raising, the complexity of the prob-
lem increases exponentially, and CENEA still has a great per-
formance advantage over the other three algorithms.

5. Conclusion

This paper proposes a CENEA clustering scheme for
EMWSNs, which uses a heuristic algorithm to dynamically

select the location of the cluster head to decrease the power
usage of EMWSNs. The CENEA avoids premature conver-
gence by dynamically changing the algorithm parameters in
the iterative process and, at the same time, has a faster con-
vergence speed. The simulation outcomes display that, com-
pared with the other three schemes, the proposed CENEA
clustering plan in EMWSNs could efficiently decrease the
power usage of a single round of network communication.
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Figure 5: The final optimization results of the algorithm in different area sizes.
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Figure 6: The values of SFLA, GA, and DE are more than the total energy consumption of CENEA network communication: (a) the
proportion of cluster heads is 5%; (b) the proportion of cluster heads is 10%; (c) the proportion of cluster heads is 15%; (d) the proportion
of cluster heads is 20%.
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Comparing CENEA with SFLA, GA, and DE through simu-
lation, it is verified that CENEA effectively reduces network
energy consumption in a small-scale environment (100m
× 100m) and a large-scale environment (400m × 400m).
The performance advantage of CENEA means that it can
propose more excellent cluster head selection schemes in
environmental monitoring. CENEA can meet the actual
needs of EMWSNs.

Although the energy-efficient clustering algorithm pro-
posed in this paper has proved its superior performance
through simulation, it still has some shortcomings due to
the limitation of research ability and environmental condi-
tions. Although the computation overhead of CENEA is
greatly reduced compared to SFLA, DE, and GA. However,
CENEA still cannot avoid a certain computational overhead,
especially when facing large-scale wireless sensor networks or
running on low-performance hardware. In this paper, the
sensor nodes in EMWSNs are statically and randomly dis-
tributed in the monitoring area, but some application scenar-
ios require the sensor nodes to be distributed as mobile
monitoring data. Although it was verified and implemented
under computer simulation conditions, it did not consider
the impact of environmental factors on the communication
between EMWSN nodes. The application scenario of
CENEA is EMWSNs with homogeneous nodes, and the
nodes are randomly distributed in a two-dimensional area,
without considering the actual three-dimensional environ-
ment. In the future, it will be studied to distribute sensor
nodes as mobile monitoring data in certain application sce-
narios. To improve the practicability and adaptability of the
algorithm, the next step of research can place the network
in a three-dimensional scene and be heterogeneous. In the
future, the impact of noise, temperature, obstacles, and other
environmental factors on data transmission between
EMWSN nodes will be considered, and it will be close to
the actual monitoring site.
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